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In this paper, we construct a positivity-preserving high order accurate finite volume 
hybrid Hermite Weighted Essentially Non-oscillatory (HWENO) scheme for compressible 
Navier-Stokes equations, by incorporating a nonlinear flux and a positivity-preserving 
limiter. HWENO schemes have more compact stencils than WENO schemes but with 
higher computational cost due to the auxiliary variables. The hybrid HWENO schemes use 
linear reconstructions in smooth region thus are more efficient than conventional HWENO 
schemes. However, the hybrid HWENO is not robust for many demanding problems. The 
positivity-preserving hybrid HWENO scheme in this paper is not only more efficient but 
also much more robust than the conventional HWENO method for both compressible Euler 
and compressible Navier-Stokes equations, especially for solving gas dynamics equations 
in low density and low pressure regime. Numerical tests on low density and low pressure 
problems are performed to demonstrate the robustness and the efficiency of the positivity-
preserving hybrid HWENO scheme.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The compressible Euler equations and Navier-Stokes equations are the most popular continuum equations in the mod-
eling and analysis of gas dynamics problems. The positivity of density and pressure are crucial to robustness of numerical 
simulations, in many applications such as aerospace, meteorology, oceanography, hydraulic engineering, chemical engineer-
ing, etc. It is often necessary to preserve the positivity of density and pressure for constructing robust high order numerical 
schemes solving demanding gas dynamics problems, especially for problems involving both shocks and low density and low 
pressure.

In the past decade, quite a few successful positivity-preserving high-order schemes for solving compressible Euler equa-
tions have been constructed, including positivity-preserving discontinuous Galerkin (DG) scheme proposed by Zhang and 
Shu in [28,29], the positivity-preserving finite difference Weighted Essential Non-oscillatory (WENO) schemes in [8,25,30], 
as well as positivity-preserving finite volume WENO schemes in [7,8]. On the other hand, the positivity-preserving prop-
erty in these high order methods for compressible Euler equations does not hold for the additional diffusion term in the 
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compressible Navier-Stokes equations. Even though many popular high order accurate schemes can be rendered positivity-
preserving for a pure convection problem such as compressible Euler equations, it is challenging to extend these methods 
to a convection diffusion problem. For popular linear schemes including conventional finite volume methods and most 
DG schemes for solving scalar diffusion equations, positivity-preserving or bound-preserving can be enforced in the same 
fashion as in positivity-preserving high order schemes for compressible Euler equations, up to at most second order accu-
racy [26,31]. Though there are a few bound-preserving linear higher order accurate schemes for scalar diffusion equations 
[4,5,10,27], it is quite difficult to extend these methods to the complicated compressible Navier-Stokes system. In gen-
eral, for solving compressible Navier-Stokes equations, it is nontrivial to adopt the bound-preserving discretization of scalar 
diffusion operators or positivity-preserving techniques for compressible Euler system. In [26], Zhang first constructed a uni-
formly high order accurate positivity-preserving DG scheme for solving compressible Navier-Stokes equations, which can 
be easily and efficiently implemented in multiple dimensions. The key ingredients include a nonlinear diffusion flux and a 
positivity-preserving limiter, which also applies to finite volume schemes.

The finite volume (FV) Hermite WENO (HWENO) schemes were first proposed by Qiu and Shu in [18] and initially 
used as a limiter for stabilizing Runge-Kutta DG methods. Since then, many HWENO schemes have been developed to solve 
hyperbolic conservation laws and related problems, including FV HWENO schemes in [2,3,22,23,37] and FD HWENO schemes 
in [11,12] for hyperbolic conservation law, as a limiter for DG methods in [15–17,19,38,42], applications for the Hamilton-
Jacobi equation in [20,24,34–36,39–41], Vlasov equations in [1], KdV equation in [14], etc. Compared to WENO schemes, 
the major advantages of HWENO schemes include more compact stencil thus easier treatment of the boundary conditions, 
and higher resolution in numerical solutions for schemes of the same order. However, in practice HWENO schemes are 
less robust than WENO schemes, with higher computational cost due to the additional derivative equation. To improve 
robustness and computational efficiency, Zhao and Qiu proposed a high order FV hybrid HWENO schemes in [32,33], in 
which the Hermite type reconstruction is based on zeroth-order moment, i.e., the cell averages, and first-order moment 
reconstruction. Here hybrid refers to the hybridization of nonlinear and linear reconstructions, i.e., the nonlinear HWENO 
reconstruction is only used on troubled cells defined by some discontinuity detector and linear reconstruction is used 
on the other cells. Such hybrid schemes can save computational cost since linear reconstructions are more efficient than 
nonlinear ones. In [32,33], an additional limiter suppressing oscillations is applied on the first-order moment, coupled with 
the HWENO reconstruction, thus such a hybrid HWENO scheme is also more robust than the original HWENO scheme, but 
it is still unstable for many low density and low pressure problems.

In this paper, we design a positivity-preserving high order FV hybrid HWENO scheme, based on the work in [26,32], 
to solve compressible Navier-Stokes equations. When the Reynolds number is infinity and the viscous term disappears, it 
also reduces a positivity-preserving high order scheme for compressible Euler equations. The positivity-preserving finite 
volume HWENO scheme for solving compressible Euler equations in [2] was based on the reconstruction of the function 
cell averages and derivative cell averages, where two sets of stencil are used to approximate the function point values and 
derivative point values for spatial reconstruction. The positivity-preserving high order FV hybrid HWENO scheme in this 
paper is based on zeroth-order moment and first-order moment reconstruction, with only one set of stencil for spatial 
reconstruction. Compared with the reconstruction in [2], the hybrid HWENO scheme in this paper has less computational 
cost due to the hybridization techniques using only linear reconstruction for smooth regions.

The rest of the paper is organized as follows. In Section 2, we briefly describe the hybrid HWENO schemes for solving 
compressible Navier-Stokes equations. In Section 3, we introduce the positivity-preserving finite volume hybrid HWENO 
scheme for one-dimensional and two-dimensional compressible Navier-Stokes equations. Numerical tests are given in Sec-
tion 4. Concluding remarks are given by Section 5.

2. Finite volume hybrid Hermite WENO schemes

The dimensionless compressible Navier-Stokes equations for ideal gases in [26] in conservative form can be written as

Ut + ∇ · F(U,S) = 0, (2.1)

where U = (ρ, ρu, E)T are conservative variables with the velocity u = (u, v, w), ρ is the density, E is the total energy 
and the superscript T denotes transpose of a vector. Let S = ∇U denote the derivative. The flux function F(U, S) = Fa − Fd

consists of the advection and the diffusion fluxes:

Fa =
⎛⎝ ρu

ρu ⊗ u + pI
(E + p)u

⎞⎠ ,Fd =
⎛⎝ 0

τ
u · τ − q

⎞⎠ , (2.2)

where p is pressure, I is the unit tensor, the dimensionless stress tensor is given by τ = 1
Re

(
∇u + (∇u)T − 2

3 (∇ · u)I
)

with the Reynolds number Re, and q = −κ∇T denotes the heat diffusion flux with the thermal conductivity coefficient κ
proportional to 1

Re in molecular theory. Assuming the specific heat at constant pressure cp is a constant, the dimensionless 
quantity Prandtl number Pr = cp is a constant. For the ideal gas, the total energy E = 1 ρ||u||2 + ρe where e denotes 
κRe 2
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the internal energy, p = (γ − 1)ρe and T = e
cv

where the specific heat capacity cv and ratio of specific heats γ = cp
cv

are 
constants. We will use γ = 1.4 and Pr = 0.72 for air.

After multiplying (2.1) by the test function φ(x) and integration by part on a rectangular cell K , we can obtain the 
following integral form

d

dt

∫
K

U(x, t)φ(x)dx = −
∫
∂ K

(F · n)φ(x)ds +
∫
K

(F · ∇φ)dx, (2.3)

where n represents the outward unit vector normal to the boundary of the cell ∂ K . In the one dimensional case, the cell K
is an interval [xi− 1

2
, xi+ 1

2
] and the test function φ(x) is taken as 1

�x and x−x j

(�x)2 . In the two dimensional case, the cell K is a 

rectangle [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] and the test function φ(x) is taken as 1

�x�y , x−xi
(�x)2�y

and y−y j

�x(�y)2 . The line integral in 

(2.3) can be approximated by a L-points Gauss quadrature on each edge of ∂ K =
S⋃

s=1
∂ Ks

∫
∂ K

(F · n)φ(x)ds ≈
S∑

s=1

|∂ Ks|
L∑

�=1

ω�[F(U(Gs�, t),S(Us�, t)) · n]φ(Gs�) (2.4)

where Gs� and ω� are Gauss quadrature points on the edge ∂ Kis and normalized weights respectively. The flux 
F(U(Gs�, t), S(Us�, t)) · n at Gauss quadrature points should be replaced by a numerical flux which will be discussed in 
the next section. Both the Hermite interpolation approximation of the function U and its derivative S are needed in 
the finite volume scheme. The procedures of FV hybrid Hermite WENO reconstruction of U±(Gs�, t) can be found in 
[32] and the reconstructions of its derivatives S are given in Appendix A. Let U K = ∫

K U(x, t)φ(x)dx and L(U, S)K =
− 
∫
∂ K (F · n)φ(x)ds + ∫K (F · ∇φ)dx, the semi-discrete HWENO scheme (2.3) can be written as:

d

dt
U K = L(U,S)K . (2.5)

The ODE (2.5) is discretized in time by the third order strong stability preserving (SSP) Runge-Kutta method:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U (1)

K = Un
K + �tL(Un

K )

U (2)

K = 3

4
Un

K + 1

4
(U (1)

K + �tL(U (1)

K ))

Un+1
K = 1

3
Un

K + 2

3
(U (2)

K + �tL(U (2)

K ))

(2.6)

3. A positivity-preserving high order finite volume hybrid HWENO scheme

In this section, we construct a positivity-preserving high order finite volume hybrid HWENO scheme for solving com-
pressible Navier-Stokes equations by combining the hybrid Hermite WENO schemes in [32] with the positivity-preserving 
high order method in [26].

3.1. One-dimensional case

Consider the one-dimensional dimensionless compressible Navier-Stokes equation in conservative form

Ut + F(U,S)x = 0, (3.1)

where U = (ρ, m, E)T are the conservative variables and the superscript T denotes transpose of a vector. The flux function 
F(U, S) = Fa − Fd with S = Ux , and advection and diffusion fluxes are given respectively as Fa = (

ρu,ρu2 + p, (E + p)u
)T

, 
Fd = (0, τ , uτ − q)T , where τ = η

Re ux is the shear stress tensor and q = − γ
Pr·Re ex denotes the heat diffusion flux with e =

E/ρ − u2/2, p = (γ − 1)ρe, where ρ is the density, m = ρu is the momentum, u denotes the velocity, E is the total energy, 
e denotes the internal energy, p is the pressure, Re, γ and Pr are positive constants and η = 4/3.

The test function φ(x) is taken 1
�x and x−xi

(�x)2 and the cell K is the interval Ii = [xi− 1
2
, xi+ 1

2
] in (2.3) in one-dimensional 

case, then the semi-discrete hybrid HWENO scheme (2.5) can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dUi(t)

dt
= − 1

�x

[
F (U,S) |x

i+ 1
2
,t −F (U,S) |x

i− 1
2
,t

]
,

dVi(t)

dt
= − 1

2�x

[
F (U,S) |x

i+ 1
2
,t +F (U,S) |x

i− 1
2
,t

]
+ 1

(�x)2

∫
F(U,S)dx,

(3.2)
Ii

3
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where the zeroth-order moment Ui(t) = 1
�x

∫
Ii

U(x, t)dx and the first order moment Vi(t) = 1
�x

∫
Ii

x−xi
�x U(x, t)dx in Ii . After 

replacing the flux function at the interface of cell Ii by the numerical flux, and using the Gauss-Lobatto quadrature to 
approximate the integral 

∫
Ii

F(U,S)dx, we can obtain the first order Euler forward time discretization finite volume hybrid 
HWENO scheme⎧⎪⎨⎪⎩

U
n+1
i = U

n
i − �t

�x
(̂Fi+ 1

2
− F̂i− 1

2
),

V
n+1
i = V

n
i − �t

2�x
(̂Fi+ 1

2
+ F̂i− 1

2
) + �t

�x
Fi,

(3.3)

where F̂i+ 1
2

is the numerical flux to approximate the value of the flux F(U,S) at the interface point xi+ 1
2

. We use the 
positivity-preserving numerical flux in [26] defined by

F̂i+ 1
2

=̂F
(

U−
i+ 1

2
,S−

i+ 1
2
,U+

i+ 1
2
,S+

i+ 1
2

)
=1

2

[
F
(

U−
i+ 1

2
,S−

i+ 1
2

)
+ F

(
U+

i+ 1
2
,S+

i+ 1
2

)
− βi+ 1

2

(
U+

i+ 1
2

− U−
i+ 1

2

)] (3.4)

βi+ 1
2

> max
U±

i+ 1
2
,S±

i+ 1
2

[
|u| + 1

2ρ2e
(

√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|)

]
(3.5)

and Fi is approximated by a four-point Gauss-Lobatto quadrature formula

Fi = 1

�x

∫
Ii

F(U,S))dx ≈
4∑

α=1

ω̂αF(U(̂xα
i , t),S(̂xα

i , t)), (3.6)

where the weights are ω̂1 = ω̂4 = 1
12 and ω̂2 = ω̂3 = 5

12 , and the Gauss-Lobatto quadrature points on the cell Ii are ̂x1
i =

xi− 1
2
, ̂x2

i = x
i−

√
5

10
, ̂x3

i = x
i+

√
5

10
, ̂x4

i = xi+ 1
2

with xi+a = xi + a�x.

Our goal is to design the conservative schemes that are positivity-preserving of density and internal energy or pressure. 
Here we consider the positivity of internal energy instead of pressure. For ideal gas, the equation of state is p = (γ − 1)ρe
which satisfies p > 0 ⇔ e > 0 under the density ρ > 0. So if the density ρ > 0, positivity of pressure is equivalent to 
positivity of internal energy, which is also mentioned in [26]. However, the other equation of state does not have this 
conclusion such as Jones-Wilkins-Lee (JWL) equation of state for explosive products in [6]. Define the set of admissible 
states by

G =
⎧⎨⎩U =

⎛⎝ ρ
m
E

⎞⎠ : ρ > 0, ρe(U) = (γ − 1)(E − 1

2

m2

ρ
) > 0

⎫⎬⎭ . (3.7)

It is straightforward to check that ρe is a concave function of U if ρ > 0. Thus it satisfies the Jensen’s inequality: ∀U1, U2 ∈ G , 
∀λ1, λ2 ≥ 0, λ1 + λ2 = 1,

ρe(λ1U1 + λ2U2) ≥ λ1ρe(U1) + λ2ρe(U2). (3.8)

Therefore, G is a convex set. Let N = �(k + 3)/2�, namely, N is smallest integer satisfying 2N − 3 ≥ k and k the degree 
of reconstruction polynomial. So a N-point Legendre Gauss-Lobatto quadrature formula on the interval Ii =

[
xi− 1

2
, xi+ 1

2

]
is exact for integrals of polynomials of degree up to 2N − 3. Denote these quadrature points as {̂xα

i : α = 1, 2, ..., N} =
{xi− 1

2
= x̂1

i , ̂x
2
i , · · · , ̂xN−1

i , ̂xN
i = xi+ 1

2
} and let ω̂α be the normalized quadrature weights on the interval [− 1

2 , 12 ] such that ∑N
μ=1 ω̂α = 1. Let Pi(x) = (ρi(x),mi(x), Ei(x))T be the reconstruction polynomials of degree k in the scheme (3.3) on the 

interval Ii with cell average Un
i and nodal values U−

i+ 1
2

and U+
i− 1

2
at two endpoints of the cell Ii , then

U
n
i = 1

�x

∫
Ii

Pi(x)dx =
N∑

α=1

ω̂αPi
(̂
xα

i

)=
N−1∑
α=2

ω̂αPi
(̂
xα

i

)+ ω̂1U+
i− 1

2
+ ω̂N U−

i+ 1
2
. (3.9)

By the mean value theorem for (3.9), there exist some points x1
i , x

2
i , x

3
i , in cell Ii such that

(
ρi(x1

i ),mi(x2
i ), Ei(x3

i )
)T =

N−1∑ ω̂α

1 − ω̂1 − ω̂N
Pi
(̂
xα

i

)=
U

n
i − ω̂1U+

i− 1
2

− ω̂N U−
i+ 1

2

1 − ω̂1 − ω̂N
. (3.10)
α=2

4
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Then we have the following sufficient condition for positivity of cell averages, which can be easily enforced to preserve 
positivity of density and pressure without constructing the polynomials Pi(x).

Theorem 1. A sufficient condition for Un+1
i ∈ G in the scheme (3.3) with reconstruction polynomials Pi(x) = (ρi(x),mi(x), Ei(x))T of 

degree k is

U±
i± 1

2
∈ G,

U
n
i − ω̂1U+

i− 1
2

− ω̂N U−
i+ 1

2

1 − ω̂1 − ω̂N
∈ G, ∀i (3.11)

under the CFL condition

�t

�x
max

i
βi+ 1

2
≤ ω̂ = 1

N(N − 1)
, N = �(k + 3)/2� (3.12)

where ̂ω denote the smallest weight in ̂ωα , i.e., ̂ω = ω̂1 = ω̂N .

Proof. By plugging (3.4), (3.9) and (3.10) into the first equation of scheme (3.3), we obtain

U
n+1
i =

(
ω̂1 − 1

2

�t

�x
βi− 1

2

)[
U+

i− 1
2

+ 1

2

�t

�x

(
ω̂1 − 1

2

�t

�x
βi− 1

2

)−1

F
(

U+
i− 1

2
,S+

i− 1
2

)]

+
(
ω̂N − 1

2

�t

�x
βi+ 1

2

)[
U−

i+ 1
2

− 1

2

�t

�x

(
ω̂N − 1

2

�t

�x
βi+ 1

2

)−1

F
(

U−
i+ 1

2
,S−

i+ 1
2

)]

+1

2

�t

�x
βi− 1

2

[
U−

i− 1
2

+ β−1
i− 1

2
F
(

U−
i− 1

2
,S−

i− 1
2

)]
+1

2

�t

�x
βi+ 1

2

[
U+

i+ 1
2

− β−1
i+ 1

2
F
(

U+
i+ 1

2
,S+

i+ 1
2

)]

+ (1 − ω̂1 − ω̂N)

U
n
i − ω̂1U+

i− 1
2

− ω̂N U−
i+ 1

2

1 − ω̂1 − ω̂N
.

(3.13)

First we set

βi+ 1
2

> max
U−

i+ 1
2
,S−

i+ 1
2
,U+

i+ 1
2

S+
i+ 1

2

[
|u| + 1

2ρ2e

(√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|

)]
.

Then under the CFL condition �t
�x maxi βi+ 1

2
≤ ω̂, we have 1

2
�t
�x

(
ω̂ − 1

2
�t
�x βi+ 1

2

)−1 ≤ β−1
i+ 1

2
. By the Lemma 6 in [26], we have

U−
i− 1

2
∈ G ⇒ U−

i− 1
2

+ β−1
i− 1

2
F
(

U−
i− 1

2
,S−

i− 1
2

)
∈ G,

U+
i+ 1

2
∈ G ⇒ U+

i+ 1
2

− β−1
i+ 1

2
F
(

U+
i+ 1

2
,S+

i+ 1
2

)
∈ G,

U+
i− 1

2
∈ G ⇒ U+

i− 1
2

+ 1
2

�t
�x

(
ω̂1 − 1

2
�t
�x βi− 1

2

)−1
F
(

U+
i− 1

2
,S+

i− 1
2

)
∈ G,

U−
i+ 1

2
∈ G ⇒ U−

i+ 1
2

− 1
2

�t
�x

(
ω̂N − 1

2
�t
�x βi+ 1

2

)−1
F
(

U−
i+ 1

2
,S−

i+ 1
2

)
∈ G.

Moreover, (3.13) is a convex combination under the same CFL condition (3.12). Thus we get U
n+1
i ∈ G for the scheme 

(3.3). �
To enforce the condition (3.12) in Theorem 1, we use the simplified scaling limiter for HWENO schemes in [29]. For 

convenience, assume there is a vector of reconstructed polynomials Pi(x) = (ρi(x),mi(x), Ei(x))T on the interval Ii with the 
cell average Pi = (ρ i,mi, Ei

)T
. Define ρei = ρe(Pi) = Ei − 1

2 m2
i /ρ i . Assume Pi has positive density and energy, i.e., ρ i > 0, 

Ei > 0. We seek polynomials P̃i(x) with the same cell averages so that P̃i (̂x1
i ), P̃i (̂xN

i ), 
∑N−1

α=2
ω̂α

1−2ω̂ P̃i (̂xα
i ) ∈ G . The following 

procedure can be applied to enforce the sufficient condition (3.11) for each cell Ii :
1. To keep the positivity of density, we modify firstly density by

ρ̂i(x) = θρ (ρi(x) − ρ̄i) + ρ̄i, θρ = min

{
1,

ρ̄i − ε

ρ̄i − ρmin

}
(3.14)

where ε is a small positive number as the desired lower bound for density, e.g., ε = 10−13, ρmin = min{ρi (̂x1
i ), ρi (̂xN

i ), ρi (̂x∗
i )}

with ρi (̂x∗) = 1 (ρ̄i − ω̂1ρi (̂x1) − ω̂Nρi (̂xN )) and θρ ∈ [0, 1]. Since ρ̄i = ω̂ρi (̂x1) + ω̂ρi (̂x1) + (1 − 2ω)ρi(x∗), we have 
i 1−2ω̂ i i i i i

5
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ρ̄i ≥ min{ρi (̂x1
i ), ρi (̂xN

i ), ρi (̂x∗
i )}, thus θρ ∈ [0, 1]. Moreover, it’s straightforward to check that ρi (̂x1

i ) > 0, ρi (̂xN
i ) > 0 and 

ρ̂i(x∗
i ) ≥ 0. Then ρ̂−

i+ 1
2

= θρ

(
ρ−

i+ 1
2

− ρ̄i

)
+ ρ̄i , ρ̂+

i− 1
2

= θρ

(
ρ+

i− 1
2

− ρ̄i

)
+ ρ̄i .

Let P̂i(x) = (ρ̂i(x),mi(x), Ei(x))T . The convex combination 
∑N−1

α=2
1

1−2ω̂ P̂i (̂xα
i ) is equal to (ρ̂i(x∗,1

i ), ̂mi(x∗,2
i ), ̂Ei(x∗,3

i ))T by 
the mean value theorem, where x∗1

i , x∗2
i , x∗3

i are three different points on the cell Ii . We abuse the notation by using ̂Pi(x∗∗
i )

to denote the vector (ρ̂i(x∗,1
i ), ̂mi(x∗,2

i ), ̂Ei(x∗,3
i ))T , then ̂Pi(x∗∗

i ) = 1
1−2ω̂ (Pi − ω̂1P̂i (̂x1

i ) − ω̂N P̂i (̂xN
i )).

2. For enforcing the positivity of internal energy, we perform the following procedure

P̃i(x) = θe
(̂
Pi(x) − Pi

)+ Pi, θe = min

{
1,

ρei − ε

ρei − ρemin

}
, (3.15)

where ε is a small positive number as the desired lower bound for internal energy, e.g., ε = 10−13, ρemin =
min

{
ρe(̂Pi (̂x1

i )),ρe(̂Pi (̂xN
i ))ρe(̂Pi (̂x∗∗

i ))
}

and θe ∈ [0, 1]. Since the cell average of P̂i(x) is still Pi , we have the convex com-
bination Pi = ω̂1P̂i (̂x1

i ) + ω̂N P̂i (̂xN
i ) + (1 − 2ω̂)̂Pi(x∗∗

i ), so ρe(Pi) ≥ ω̂1ρe 
(̂
Pi (̂x1

i )
)+ ω̂Nρe 

(̂
Pi (̂xN

i )
)+ (1 − 2ω̂)ρe 

(̂
Pi(x∗∗

i )
)

by 
the Jensen’s inequality, thus θe ∈ [0, 1]. It’s straightforward to check ̃Pi (̂x1

i ), ̃Pi (̂xN
i ) ∈ G and ̃Pi(x∗∗

i ) ∈ G . Therefore, we get the 
polynomial ̃Pi(x) satisfying the condition (3.11).

In fact, we only need to obtain the point values Ũ±
i∓ 1

2
= P̃i(x j∓ 1

2
) in a finite volume scheme. For simplicity, denote 

q̂1
i = P̂−

i+ 1
2

= (ρ̂−
i+ 1

2
, m−

i+ 1
2
, E−

i+ 1
2
)T , q̂2

i = P̂+
i− 1

2
= (ρ̂+

i− 1
2
, m+

i− 1
2
, E+

i− 1
2
)T and q̂3

i =
P̄i−ω̂P̂+

i− 1
2
−ω̂P̂−

i+ 1
2

1−2ω̂
. For k = 1, 2, 3, if ρe(̂qk) < ε, 

then set tk
ε = ρe(q̂k)−ε

ρe(P̄i)−ρe(q̂k)
; if ρe(̂qk) ≥ ε, then set tk

ε = 1. Take θe = min{t1
ε, t2

ε, t3
ε}, then

Ũ+
i− 1

2
= P̃i(xi− 1

2
) = θe

(
P̂+

i− 1
2

− Pi

)
+ Pi,

Ũ−
i+ 1

2
= P̃i(xi+ 1

2
) = θe

(
P̂−

i+ 1
2

− Pi

)
+ Pi .

Finally, use Ũ+
i− 1

2
, ̃U−

i+ 1
2

instead of U+
i− 1

2
, U−

i+ 1
2

in the scheme (3.3).

Remark 3.1. It is needed to emphasize that we mainly introduce the design and implementation of positivity-preserving 
property of one-dimensional FV hybrid HWENO scheme. U

n
i and V

n
i in (3.2) are applied to HWENO interpolation for the 

approximation of the function U and its derivative S in Gauss-Labotto points, and the detailed procedures of FV hybrid 
HWENO interpolation in one dimensional case are given in the appendix A.

Remark 3.2. To obtain processed point value Ũ±
i∓ 1

2
, we only need cell average Ui and point values U±

i∓ 1
2
, U±

i∓ 1
2

in the limiter 
(3.14) and (3.15). The reconstruction polynomials Pi(x) are not needed in implementation. It is a high order accurate and 
conservative limiter [26].

3.2. Two-dimensional case

Consider the two-dimensional dimensionless compressible Navier-Stokes equation in conservative form

Ut + ∇ · F(U,S) = 0 (3.16)

where U = (ρ, ρu, E)T are the conservative variables with the velocity u = (u, v), S = ∇U and the flux function F(U, S) =
Fa − Fd with advection and diffusion fluxes as

Fa =
⎛⎝ ρU

ρU ⊗ U + pI
(E + p)U

⎞⎠ , Fd =
⎛⎝ 0

τ
u · τ − q

⎞⎠ , (3.17)

where ρ is the density, m and n are the momentas given by m = ρu and n = ρv , u and v denotes the velocity, E is the total 
energy, e denotes the internal energy, p is the pressure and I is the unit tensor. The shear stress tensor and heat diffusion 
flux are

τ = 1

Re

(
τxx τxy

τyx τyy

)
, q = 1

Re

γ

Pr
(ex, e y)

T (3.18)

with

e = E − 1
(u2 + v2), p = (γ − 1)ρe (3.19)
ρ 2

6
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and

τxx = 4

3
ux − 2

3
v y, τxy = τyx = u y + vx, τyy = 4

3
v y − 2

3
ux.

The equation (3.16) can be written as

Ut + F(U,S)x + G(U,S)y = 0 (3.20)

with

F(U,S) =

⎛⎜⎜⎝
ρu

ρu2 + p − τxx
Re

ρuv − τyx
Re

(E + p)u − 1
Re (τxxu + τyx v + γ

Pr ex)

⎞⎟⎟⎠ ,

G(U,S) =

⎛⎜⎜⎝
ρv

ρuv − τxy
Re

ρv2 + p − τyy
Re

(E + p)v − 1
Re (τxyu + τyy v + γ

Pr e y)

⎞⎟⎟⎠ .

The test function φ(x, y) is taken as 1
�x�y , x−xi

(�x)2�y
and y−y j

�x(�y)2 and cell K is a rectangular [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
]

in (2.3) in two-dimensional case. Then the semi-discrete hybrid HWENO scheme (2.5) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dUi j(t)

dt
= − 1

�x�y

y
j+ 1

2∫
y

j− 1
2

[
F(U,S) |x

i+ 1
2
,y −F(U,S) |x

i− 1
2
,y

]
dy

− 1

�x�y

x
i+ 1

2∫
x

i− 1
2

[
G(U,S) |x,y

j+ 1
2

−G(U,S) |x,y
j− 1

2

]
dx,

dVi j(t)

dt
= − 1

2�x�y

y
j+ 1

2∫
y

j− 1
2

[
F(U,S) |x

i− 1
2
,y +F(U,S) |x

i+ 1
2
,y

]
dy

− 1

�x�y

x
i+ 1

2∫
x

i− 1
2

x − xi

�x

[
G(U,S) |x,y

j+ 1
2

−G(U,S) |x,y
j− 1

2

]
dx

+ 1

(�x)2�y

x
i+ 1

2∫
x

i− 1
2

y
j+ 1

2∫
y

j− 1
2

F(U,S)dxdy,

dWi j(t)

dt
= − 1

�x�y

y
j+ 1

2∫
y

j− 1
2

y − y j

�y
[F(U,S) |x

i+ 1
2
,y −F(U,S) |x

i− 1
2
,y]dy

− 1

2�x�y

x
i+ 1

2∫
x

i− 1
2

[
G(U,S) |x,y

j− 1
2

+G(U,S) |x,y
j+ 1

2

]
dx

+ 1

�x(�y)2

x
i+ 1

2∫
x

i− 1
2

y
j+ 1

2∫
y

j− 1
2

G(U,S)dxdy,

(3.21)

where
7
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Ui j(t) = 1

�x�y

∫
K

U(x, y, t)dxdy,

Vi j(t) = 1

�x�y

∫
K

U(x, y, t)
x − xi

�x
dxdy,

Wi j(t) = 1

�x�y

∫
K

U(x, y, t)
y − y j

�y
dxdy.

The integral in (3.21) can be approximated by quadrature with sufficient accuracy. Assume {xβ

i , β = 1, ..., L} and 
{yβ

j , β = 1, ..., L} denote the Gauss quadrature points on the interval [xi− 1
2
, xi+ 1

2
] and [y j− 1

2
, y j+ 1

2
] respectively, ωβ are 

the corresponding weights of the Gauss quadrature on interval [− 1
2 , 12 ] satisfing 

∑L
β=1 ωβ = 1. For example, (xi− 1

2
, yβ

j ) are 
the Gauss quadrature points on the left edge of the cell Ii j , where the subscript β denotes the values at the Gauss quadra-

ture points, for instance, u+
i− 1

2 ,β
= u+

i− 1
2 , j

(yβ

j ). Denote λ1 = �t
�x and λ2 = �t

�y . Using the numerical flux to approximate the 
value of the flux at the interface of the cell (i, j) and Gauss quadrature to approximate the integral terms in (3.21), then we 
can obtain the first order Euler forward time discretization finite volume hybrid HWENO scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
n+1
i j = U

n
i j − λ1

L∑
β=1

ωβ(̂Fi+ 1
2 ,β − F̂i− 1

2 ,β) − λ2

L∑
β=1

ωβ(̂Gβ, j+ 1
2

− Ĝβ, j− 1
2
)

V
n+1
i j = V

n
i j − λ1

2

L∑
β=1

ωβ(̂Fi+ 1
2 ,β + F̂i− 1

2 ,β) + λ1

L∑
β=1

L∑
γ =1

ωkωlF
(

U(xβ

i , yγ
j ),S(xβ

i , yγ
j )
)

− λ2

L∑
β=1

ωβ

xβ − xi

�x
(̂Gβ, j+ 1

2
− Ĝβ, j− 1

2
)

W
n+1
i j = W

n
i j − λ1

L∑
α=1

ωβ

yβ − y j

�y
(̂Fi+ 1

2 ,β − F̂i− 1
2 ,β) − λ2

2

L∑
β=1

ωβ(̂Gβ, j+ 1
2

+ Ĝβ, j− 1
2
)

+ λ2

L∑
β=1

L∑
γ =1

ωβωγ G
(

U(xβ

i , yγ
j ),S(xβ

i , yγ
j )
)

,

(3.22)

where F̂i+ 1
2 ,β and Ĝβ, j+ 1

2
are the numerical flux to approximate the value of the flux F(U,S) and G(U,S) at the point 

(xi+ 1
2
, yβ

j ) and (xβ

i , y j+ 1
2
) respectively, defined by

F̂i+ 1
2 ,β =̂F

(
U−

i+ 1
2 ,β

,S−
i+ 1

2 ,β
,U+

i+ 1
2 ,β

,S+
i+ 1

2 ,β

)
=1

2

[
F
(

U−
i+ 1

2 ,β
,S−

i+ 1
2 ,β

)
+ F

(
U+

i+ 1
2 ,β

,S+
i+ 1

2 ,β

)
− βi+ 1

2

(
U+

i+ 1
2 ,β

− U−
i+ 1

2 ,β

)]
,

βi+ 1
2

> max
U±

i+ 1
2 ,β

,S±
i+ 1

2 ,β

[
|u · ni | + 1

2ρ2e
(

√
ρ2 |q · ni |2 + 2ρ2e

∥∥τ · ni − pnT
i

∥∥2 + ρ |q · ni|)
]

,

(3.23)

Ĝβ, j+ 1
2

=Ĝ
(

U−
β, j+ 1

2
,S−

β, j+ 1
2
,U+

β, j+ 1
2
,S+

β, j+ 1
2

)
=1

2

[
G
(

U−
β, j+ 1

2
,S−

β, j+ 1
2

)
+ G

(
U+

β, j+ 1
2
,S+

β, j+ 1
2

)
− β j+ 1

2

(
U+

β, j+ 1
2

− U−
β, j− 1

2

)]
β j+ 1

2
> max

U±
β, j+ 1

2
,S±

β, j+ 1
2

[∣∣u · n j
∣∣+ 1

2ρ2e
(

√
ρ2
∣∣q · n j

∣∣2 + 2ρ2e
∥∥∥τ · n j − pnT

j

∥∥∥2 + ρ
∣∣q · n j

∣∣)]
(3.24)

with ni = (1, 0) and n j = (0, 1).
Our goal is to design the conservative schemes that are positivity-preserving of density and internal energy. Here we still 

consider the positivity of internal energy instead of pressure. Define the set of admissible states by
8
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G =

⎧⎪⎪⎨⎪⎪⎩U =

⎛⎜⎜⎝
ρ
m
n
E

⎞⎟⎟⎠ : ρ > 0, ρe(U) = E − 1

2

m2 + n2

ρ
> 0

⎫⎪⎪⎬⎪⎪⎭ . (3.25)

We will use Gauss-Lobatto quadrature rule on (i, j) cell, denote {x̂α
i , α = 1, ..., N} as the Gauss-Lobatto points on the 

interval [xi− 1
2
, xi+ 1

2
] and { ŷα

j , α = 1, ..., N} as the Gauss-Lobatto points on the interval [y j− 1
2
, y j+ 1

2
]. For simplicity, as-

sume that we have a vector of approximation polynomials of degree k at time t , Hi j(x, y) = (ρi j(x, y), mij(x, y), nij(x, y), 
Eij(x, y))T with the cell average U

n
i j = (ρ i j, mij, nij, Eij)

T . Consider the quadrature rule for Ui j(x, y) on the rectangle 
Ii j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] with approximation polynomials Hi j(x, y). Denote μ1 = λ1

λ1+λ2
, μ2 = λ2

λ1+λ2
, then

U
n
i j = μ1

�x�y

∫
Ii j

Hi j(x, y)dxdy + μ2

�x�y

∫
Ii j

Hi j(x, y)dxdy

= μ1

L∑
β=1

N∑
α=1

ωβω̂αHi j(x̂α
i , yβ

j ) + μ2

L∑
β=1

N∑
α=1

ωβω̂αHi j(xβ

i , ŷα
j )

=
L∑

β=1

N−1∑
α=2

ωβω̂α

(
μ1Hi j(x̂α

i , yβ

j ) + μ2Hi j(xβ

i , ŷα
j )
)

+
L∑

β=1

ωβω̂1

[
μ1(U+

i− 1
2 ,β

+ U−
i+ 1

2 ,β
) + μ2(U+

β, j− 1
2

+ U−
β, j+ 1

2
)

]
.

(3.26)

By the mean value theorem for (3.26), there exist some points (x1∗
i , y1∗

j ), (x2∗
i , y2∗

j ), (x3∗
i , y3∗

j ), (x4∗
i , y4∗

j ) in cell (i, j) such 
that (

ρi j(x1∗
i , y1∗

j ),mij(x2∗
i , y2∗

j ),nij(x3∗
i , y3∗

j ), Eij(x4∗
i , y4∗

j )
)T

=
L∑

β=1

N−1∑
α=2

ωβ

ω̂α

1 − ω̂1 − ω̂N

(
μ1Hi j(x̂α

i , yβ

j ) + μ2Hi j(xβ

i , ŷα
j )
)

.

(3.27)

Substituting (3.23), (3.24), (3.26) and (3.27) into the first equation of scheme (3.22), we have

U
n+1
i j = (1 − ω̂1 − ω̂N)

(
ρi j(x1∗

i , y1∗
j ),mij(x2∗

i , y2∗
j ),nij(x3∗

i , y3∗
j ), Eij(x4∗

i , y4∗
j )
)T

+
L∑

β=1

ωβλ1

2

[
βi+ 1

2
U+

i+ 1
2 ,β

− F(U+
i+ 1

2 ,β
,S+

i+ 1
2 ,β

) + βi− 1
2

U−
i− 1

2 ,β
+ F(U−

i− 1
2 ,β

,S−
i− 1

2 ,β
)

]

+
L∑

β=1

ωβμ1

[
(ω̂N − λ1

2μ1
βi+ 1

2
)

(
U−

i+ 1
2 ,β

− λ1

2μ1
(ω̂1 − λ1

2μ1
βi+ 1

2
)−1F(U−

i+ 1
2 ,β

,S−
i+ 1

2 ,β
)

)]

+
L∑

β=1

ωβμ1

[
(ω̂1 − λ1

2μ1
βi− 1

2
)

(
U+

i− 1
2 ,β

+ λ1

2μ1
(ω̂1 − λ1

2μ1
βi− 1

2
)−1F(U+

i− 1
2 ,β

,S+
i− 1

2 ,β
)

)]

+
L∑

β=1

ωβλ2

2

[
β j+ 1

2
U+

β, j+ 1
2

− F(U+
β, j+ 1

2
,S+

β, j+ 1
2
) + β j− 1

2
U−

β, j− 1
2

+ F(U−
β, j− 1

2
,S−

β, j− 1
2
)

]

+
L∑

β=1

ωβμ2

[
(ω̂N − λ2

2μ2
β j+ 1

2
)

(
U−

β, j+ 1
2

− λ2

2μ2
(ω̂1 − λ2

2μ2
β j+ 1

2
)−1F(U−

β, j+ 1
2
,S−

β, j+ 1
2
)

)]

+
L∑

β=1

ωβμ2

[
(ω̂1 − λ2

2μ2
β j− 1

2
)

(
U+

j− 1
2 ,β

+ λ2

2μ2
(ω̂1 − λ2

2μ2
β j− 1

2
)−1F(U+

β, j− 1
2
,S+

β, j− 1
2
)

)]
.

(3.28)

Starting from (3.22) to (3.28) and following the same line as in the proof of Theorem 1, we can easily prove the following 
result.
9
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Theorem 2. For the finite volume HWENO scheme (3.22) with approximation polynomials Hi j(x, y) = (ρi j(x, y), mij(x, y), nij(x, y),

Eij(x, y))T . Assume Un
i j ∈ G for all i, j, if

(
ρi j(x1∗

i , y1∗
j ),mij(x2∗

i , y2∗
j ),nij(x3∗

i , y3∗
j ), Eij(x4∗

i , y4∗
j )
)T ∈ G,

U±
β,y

j± 1
2

,U±
x

i± 1
2
,β ,U±

β,y
j∓ 1

2

,U±
x

i∓ 1
2
,β ∈ G,

(3.29)

then Un+1
i j ∈ G under the CFL condition

�t

(
1

�x
+ 1

�y

)
max

i, j
{βi+ 1

2
, β j+ 1

2
} < ω̂ = 1

N(N − 1)
. (3.30)

To enforce the condition (3.29) in Theorem 2, the following limiter can be used for each cell (i, j).
1. We first modify density by

ρ̂i j(x) = θρ

(
ρi j(x) − ρ̄i j

)+ ρ̄i j, θρ = min

{
1,

ρ̄i j − ε

ρ̄i j − ρmin

}
, (3.31)

where θρ ∈ [0, 1], ρmin = min

{
ρ±

β, j± 1
2
,ρ±

i± 1
2 ,β

,ρ±
β, j∓ 1

2
,ρ±

i∓ 1
2 ,β

,ρi j(x1
i , y1

j )

}
and ε = 10−13, then the modified density is given 

by

ρ̂+
β, j− 1

2
= θρ

(
ρ+

β, j− 1
2

− ρ̄n
i j

)
+ ρ̄n

i j, ρ̂−
β, j+ 1

2
= θρ

(
ρ−

β, j+ 1
2

− ρ̄n
i j

)
+ ρ̄n

i j,

ρ̂+
i− 1

2 ,β
= θρ

(
ρ+

i− 1
2 ,β

− ρ̄n
i j

)
+ ρ̄n

i j, ρ̂−
i+ 1

2 ,β
= θρ

(
ρ−

i+ 1
2 ,β

− ρ̄n
i j

)
+ ρ̄n

i j .

Let Ĥi j(x, y) = (ρ̂i j(x, y),mij(x, y),nij(x, y), Eij(x, y)
)T

. Denote

q̂1
i j = Ĥ

i+ 1
2 , j+

√
3

6
, q̂2

i j = Ĥ
i+ 1

2 , j−
√

3
6

, q̂3
i j = Ĥ

i+
√

3
6 , j− 1

2
, q̂4

i j = Ĥ
i−

√
3

6 , j− 1
2
,

q̂5
i j = Ĥ

i− 1
2 , j−

√
3

6
, q̂6

i j = Ĥ
i− 1

2 , j+
√

3
6

, q̂7
i j = Ĥ

i−
√

3
6 , j+ 1

2
, q̂8

i j = Ĥ
i+

√
3

6 , j+ 1
2
,

and

q̂9
i j =

(
ρ̂i j(x1∗

i , y1∗
j ),mij(x2∗

i , y2∗
j ),nij(x3∗

i , y3∗
j ), Eij(x4∗

i , y4∗
j )
)T

=
U

n
i j −∑L

k=1 ωkω̂1

[
λ1
μ (Ĥ−

i+ 1
2 ,k

+ Ĥ+
i− 1

2 ,k
) + λ2

μ (Ĥ−
k, j+ 1

2
+ Ĥ+

k, j− 1
2
)

]
1 − 2ω̂1

.

Define ρei j = Eij − 1
2

m2
i j

ρ i j
− 1

2
n2

i j
ρ i j

and let ρ̂e(Ui j(x, y)) = Eij(x, y) − 1
2

mij(x,y)2

ρ̂i j(x,y)
− 1

2
nij(x,y)2

ρ̂i j(x,y)
.

2. To enforce the positivity of internal energy, we modify the internal energy by

H̃i j(x, y) = θe
(
Ĥi j(x, y) − Ui j

)+ Ui j, θe = min

⎧⎪⎨⎪⎩1,
ρei j − ε

ρei j − min
l=1,···,9

{
ρ̂e(q̂l

i j)
}
⎫⎪⎬⎪⎭ , (3.32)

where θe ∈ [0, 1] and ρ̂emin = min
l=1,···,9

{
ρ̂e(q̂l

i j)
}

. Actually we only need to obtain the point value Ũ±
i∓ 1

2 ,β
= H̃±

i∓ 1
2 ,β

, ̃U±
β, j∓ 1

2
=

H̃±
β, j∓ 1

2
, we define the internal energy function as �(U) = E − 1

2
m2

ρ − 1
2

n2

ρ . For l = 1, · · ·, 9, if � 
(
ρ̂e(q̂l

i j)
)

< ε, then set 

tl
ε = �

(
Ui j
)−ε

�
(
Ui j
)−�

(
ρ̂e(q̂l )

) ; if � 
(
ρ̂e(q̂l

i j)
)

≥ ε, then set tl
ε = 1. Take θe = min{t1

ε, · · ·, t9
ε}, then
i j

10
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Ũ−
i+ 1

2 ,β
= H̃−

i+ 1
2 ,β

= θe

(
Ĥ−

i+ 1
2 ,β

− Ui j

)
+ Ui j,

Ũ+
i− 1

2 ,β
= H̃+

i− 1
2 ,β

= θe

(
Ĥ+

j− 1
2 ,β

− Ui j

)
+ Ui j,

Ũ−
β, j+ 1

2
= H̃−

β, j+ 1
2

= θe

(
Ĥ−

β, j+ 1
2

− Ui j

)
+ Ui j,

Ũ+
β, j− 1

2
= H̃+

β, j− 1
2

= θe

(
Ĥ+

β, j− 1
2

− Ui j

)
+ Ui j.

Finally, use Ũ±
i∓ 1

2 ,β
, ̃U±

β, j∓ 1
2

instead of U±
i∓ 1

2 ,β
, U±

β, j∓ 1
2

in the scheme (3.22).

Remark 3.3. Notice that we mainly introduce the design and implementation of positivity-preserving property of two-
dimensional FV hybrid HWENO scheme. Un

i j, V
n
i j and Wn

i j in (3.21) are applied to HWENO interpolation for the approximation 
of the function U and its partial derivative S in Gauss-Labotto points, and the detailed procedures of FV hybrid HWENO 
interpolation in two dimensional case are given in the appendix A.

Remark 3.4. Similar to the one-dimensional case, the approximation polynomials are not needed for implementing the 
limiter (3.31) and (3.32). And it is a high order accurate and conservative limiter, see [26].

3.3. Implementation of CFL constraints

In this paper, we use (2.6) for high order time discretization. Since strong stability preserving (SSP) Runge-Kutta time 
discretization is a convex combination of forward Euler steps and G is convex, Theorem 1 and Theorem 2 still hold for (2.6)
if the CFL is one third of (3.12) and (3.30). However, the CFL constraints (3.12) and (3.30) should not be used directly for 
at least two reasons. First, since |u| + 1

2ρ2e
(
√

ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|) = O (1) for a smooth solution, the CFL constraints 
(3.12) and (3.30) give �t = O(�x) which do not necessarily satisfy the linear stability constraints �t = O(Re�x2) for any 
explicit time discretizations. In other words, the time step should also satisfy �t = O(Re�x2) besides (3.12) and (3.30). 
Second, the time step constraints (3.12) and (3.30) is a sufficient condition but may not be a necessary condition for 
Un+1

K ∈ G , thus in practice it should not be used directly for the sake of efficiency.
To this end, we can use the same simple time marching strategy in [26]. The positivity preserving limiter should be used 

for each stage in (2.6) and we can implement the positivity-preserving high order finite volume hybrid HWENO scheme 
with the third order SSP Runge-Kutta (2.6) for equation (2.1) as follows:

Step 1. At time level n, for the given Un
K ∈ G . Compute the wave speed αi = |ui | +

√
γ pi
ρi

. Let α� = maxi |αi | taken over 

all edges, �x = minK
|K |
|eK | and eK is the longest edge in cell K set the time step

�t = min

{
a

1

α�
�x,bRe�x2

}
, (3.33)

where the two parameters are set as a = 1
12 and b = 0.001 for compressible Navies-Stokes equations. For compressible Euler 

equations, it is replaced by �t = 1
12α� �x since Re = ∞.

Step2. Compute the first stage, denoted by U (1)

K . If the cell average U (1)

K ∈ G , then proceed to next step. Otherwise U (1)

K
has negative density or pressure, then recompute the first stage with a time step halved.

Step3. For the given U (1)

K ∈ G , compute the second stage, denoted by U (2)

K . If the cell average U (2)

K ∈ G , then proceed to 
next step. Otherwise U (2)

K has negative density or pressure, then return the Step2 and restart the computation with a time 
step halved.

Step4. For the given U (2)

K ∈ G , compute the U (n+1)

K . If the cell average U (n+1)

K ∈ G , then the computation to time step 
n + 1 is done. Otherwise U (n+1)

K has negative density or pressure, then return the Step2 and restart the computation with a 
time step halved.

Theorem 1 and Theorem 2 imply that the implementation above will not result in any infinite loops and the restarting 
is ensured to stop when time step constraints (3.12) and (3.30) are met for each stage.

4. Numerical tests

In this section, we test the positivity-preserving (PP) high order finite volume hybrid HWENO scheme with the third 
order SSP Runge-Kutta method on several demanding examples. For HWENO reconstruction, quintic polynomial reconstruc-
tion is used in one dimension, and cubic polynomial reconstruction is used in two dimensions. The hybrid HWENO scheme 
11
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Table 4.1
Accuracy test of the PP hybrid HWENO scheme for one-dimensional and two-dimensional compressible Navier-Stokes equations with Re = 100, the L1 and 
L∞ errors are showed.

Mesh L∞ Error L∞ Order L1 Error L1 Order

20 1.21 E-2 – 5.90 E-3 –
40 2.23 E-3 2.44 6.65 E-4 3.15
80 5.58 E-5 5.32 1.44 E-5 5.53
160 1.10 E-6 5.66 2.46 E-7 5.87
320 2.25 E-8 5.61 7.13 E-9 5.11
640 6.35 E-10 5.15 2.14 E-10 5.06
10 × 10 1.08E-3 – 2.25E-4 –
20 × 20 1.32E-4 3.04 1.73E-5 3.70
40 × 40 1.05E-5 3.65 1.24E-6 3.80
80 × 80 6.07E-7 4.11 7.71E-8 4.01
160 × 160 2.93E-8 4.37 4.53E-9 4.09
320 × 320 1.54E-9 4.25 2.70E-10 4.07

in [32] will blow up for Examples 4.3-4.7 for compressible Euler equations due to loss of positivity. The same positivity-
preserving methods in Section 3 also apply to the HWENO scheme without any hybridization, which is also tested. The CPU 
time of the PP hybrid FV HWENO scheme and the PP FV HWENO scheme is listed in Table 4.2. The only difference in these 
two schemes is in the reconstruction step: the HWENO scheme uses nonlinear HWENO reconstruction in all cells, whereas 
the hybrid HWENO scheme uses the nonlinear HWENO reconstruction only in troubled cells and uses linear reconstruction 
in other cells, e.g., smooth regions. Moreover, on troubled cells, the hybrid HWENO scheme uses one more non-oscillatory 
limiter on the first-order moment variables, as a preprocessing step before the HWENO reconstruction, see [32] for details 
of the troubled cell indicator and the non-oscillatory limiter on the first-order moment.

Example 4.1. Accuracy test. We test the accuracy of the PP hybrid HWENO scheme for compressible Navier-Stokes equations 
in one and two dimensions with Re = 100. For one-dimensional equation (3.1), the initial condition is ρ = 1, u = 0, E =

12
γ −1 + 1

2 exp(−4(cos(x/2))2) on the interval [0, 2π ]. For two-dimensional equation (3.16), the initial condition is ρ = 1, u =
v = 0, E = 12

γ −1 + 1
2 exp(−4(cos(x/2))2 − 4(cos(y/2))2) on the rectangle domain [0, 2π ] ×[0, 2π ]. The boundary condition is 

periodic. The reference solution was generated by a Fourier collocation spectral method using 1280 points and a 1280 ×1280
mesh in one and two dimensions respectively. The reconstruction polynomial has degree four in one dimension and, degree 
three in two dimensions. The errors in Table 4.1 verify the accuracy of the diffusion flux and the limiter.

We can see that the PP hybrid HWENO scheme achieves fifth order accuracy in one dimension and fourth order accuracy 
in two dimensions, which is consistent with the designed order of accuracy of the HWENO scheme.

Example 4.2. The Lax problem. The initial condition is

(ρ, u, p, γ ) =
{

(0.445,0.698,3.528,1.4), x ∈ [0,5)

(0.5,0,0.571,1.4), x ∈ [0,5]. (4.1)

The final computing time is T = 1.3. See [26] for how the reference solution can be generated. See Fig. 4.1 for results of 
the HWENO scheme without hybridization of linear reconstruction and the positivity-preserving limiter. Even though the 
HWENO scheme produces non-oscillatory solutions for Re = 100 in Fig. 4.1, oscillations will emerge and stability will be lost 
for larger Reynolds number. The oscillations can be observed for the numerical solutions of compressible Euler equations, 
namely Re = ∞ in Fig. 4.1. This indicates that, for the HWNEO scheme based on the reconstruction of the zero-order and 
first-order moment without modifying the first order moment in troubled cell, itself is unstable.

See Fig. 4.2 for the results of the PP hybrid HWENO scheme, which produces non-oscillatory solutions with a good 
resolution. About 2.43% and 2.68% cells are troubled cells for Re = 1000 and ∞ respectively. For other cells, a linear ap-
proximation is used thus the PP hybrid HWENO scheme saves about 77.68% and 75.08% computational time compared to 
the PP HWENO scheme as shown in Table 4.2. Notice that PP limiter was not triggered in the PP hybrid HWENO scheme in 
this test as shown in Table 4.2, which is due to the additional non-oscillatory limiter on the first-order moment in troubled 
cells. In other words, the hybrid HWENO scheme without any PP limiter is already very stable, for the Lax problem. In 
addition, there is a little dent in the plot of the velocity (the left figure of the second row of Fig. 4.2). This is indeed a 
numerical artifact in PP hybrid HWENO scheme. For example, the numerical solution velocity of the FV WENO scheme in 
[13] showed a similar dent.

From the bottom row of Fig. 4.2, we observe that there are less troubled cells for the case Re = 1000 thus the non-
oscillatory first-order moment limiter is used on less cells, compared to the case Re = ∞. Roughly speaking, the non-
oscillatory first-order moment limiter simply induces artificial viscosity. For this reason, the numerical results of PP hybrid 
HWENO scheme for Re = 1000 have slightly better resolution at the discontinuity than the numerical results of PP hybrid 
HWENO scheme for Re = ∞. This phenomenon is also observed in other numerical tests.
12



Fig. 4.1. The Lax shock tube problem. T = 1.3. Solid line: the reference solution; squares: the results of the HWENO scheme on uniform 200 cells. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 4.2
CPU time: the total computing time in seconds for the PP hybrid HWENO scheme and the PP HWENO scheme to solve compressible NS equations; Time 
saving ratios: the CPU time saving ratios of the total CPU time by the PP hybrid HWENO scheme over the PP HWENO scheme on the same numerical 
example; PP limiter ratio: the ratio of PP limiter triggered (either θρ < 1 or θe < 1) cells over the total cells.

Numerical example PP hybrid HWENO scheme PP HWENO scheme Time saving 
ratiosCPU time PP limiter CPU time PP limiter

Re = ∞
4.2 1D Lax problem 2.45 0.00% 8.16 0.00% 69.98%
4.3 Double rarefraction problem 1.63 10.00% 3.98 10.00% 59.05%
4.4 1D Sedov problem 17.61 3.00% 56.55 3.00% 68.86%
4.5 Leblanc problem 71.77 0.25% 628.86 0.25% 88.59%
4.6 2D Sedov problem 9611.84 1.09% 25726.30 1.09% 62.64%
4.7 Shock-diffraction problem 13776.48 0.23% 38014.60 0.23% 63.76%

Re = 1000
4.2 1D Lax problem 2.20 0.00% 7.64 0.00% 71.20%
4.3 Double rarefraction problem 9.88 10.00% 30.25 10.00% 67.34%
4.4 1D Sedov problem 21.56 3.00% 69.59 3.00% 69.02%
4.5 Leblanc problem 96.97 0.25% 935.99 0.25% 89.64%
4.6 2D Sedov problem 11764.44 1.09% 32355.45 1.09% 63.64%
4.7 Shock-diffraction problem 17183.64 0.23% 48318.10 0.23% 64.45%

Example 4.3. The 1D double rarefaction problem. This test case has the low pressure and low density region. Negative 
density or pressure can be easily produced in many high order numerical schemes, resulting in blow up of the computation. 
The initial condition is
C. Fan, X. Zhang and J. Qiu Journal of Computational Physics 445 (2021) 110596
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Fig. 4.2. The Lax problem. T = 1.3 for Re = ∞ (Left) and 1000 (Right). From top to bottom: density, velocity, pressure, time history of troubled cells in the 
PP hybrid HWENO scheme. Solid line: the reference solution; squares: PP hybrid HWENO scheme on uniform 200 cells.
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(ρ, u, p, γ ) =
{

(7,−1,0.2,1.4), x ∈ [−1,0),

(7,1,0.2,1.4), x ∈ [0,1]. (4.2)

The final computing time is T = 0.6. The left and right boundary conditions are inflow and outflow respectively. The nu-
merical results of PP hybrid HWENO scheme are shown in Fig. 4.3 for Re = 1000 and ∞. About 11.30% and 19.57% cells are 
troubled cells for Re = 1000 and Re = ∞. The PP hybrid HWENO scheme saves 67.34% and 59.05% CPU time compared to 
the PP HWENO scheme respectively.

Example 4.4. The 1D Sedov problem. This test involves both very low density and strong shocks. The exact solution for 
Euler equation is specified in [9,21]. The computational domain is [−2, 2] and initial conditions are that the density is 1, the 
velocity is 0, the total energy is 10−12 everywhere except in the center cell, which is a constant E0/�x with E0 = 3200000, 
with γ = 1.4. The inlet and outlet conditions are imposed on the left and right boundaries, respectively. The final compute 
time is T = 0.001 and computational results of the PP hybrid HWENO scheme are presented in Fig. 4.4. About 14.50%
cells are troubled cells, and 68.86% CPU time is saved compared to HWENO scheme for compressible Euler equations. For 
compressible Navier-Stokes equations, there are 11.92% troubled cells, and 69.02% CPU time is saved compared to the PP 
HWENO scheme.

Example 4.5. The Leblanc problem. The initial condition is

(ρ, u, p, γ ) =
{

(2,0,109,1.4), x ∈ [−10,0),

(0.001,0,1,1.4), x ∈ [0,10]. (4.3)

The inlet and outlet conditions are imposed on the left and right boundaries, respectively. The computational results of the 
PP hybrid HWENO scheme at the final time T = 0.0001 are presented in Fig. 4.5. About 0.97% and 1.35% cells are troubled 
cells for Re = 1000 and ∞ respectively, and about 89.64% and 88.59% computational time is saved compared to the PP 
HWENO scheme.

Example 4.6. The 2D Sedov problem. The computational domain is a square of [0, 1.1] × [0, 1.1]. For the initial condition, 
similar to the 1D case, the density is 1, the velocity is 0, the total energy is 10−12 everywhere except in the lower left corner 
is the constant 0.244816

�x�y and γ = 1.4. The numerical boundary on the left and bottom edges is reflective. The numerical 
boundary on the right and top is outflow. The results at the final time T = 1 of the PP hybrid HWENO schemes are shown 
in the Fig. 4.6. About 13.82% and 14.62% cells are troubled cells for Re = 1000 and ∞, and 63.64% and 62.64% computational 
time is saved compared to the PP HWENO scheme.

Example 4.7. The shock diffraction problem. The computational domain is the union of [0, 1] × [6, 11] and [1, 13] × [0, 11]. 
The initial condition is a pure right-moving shock of Mach number 5.09, initially located at x = 0.5 and 6 ≤ y ≤ 11, moving 
into undisturbed air ahead of the shock with a density of 1.4 and a pressure of 1. The boundary conditions are inflow 
at x = 0, 6 ≤ y ≤ 11, outflow at x = 13, 0 ≤ y ≤ 11, 1 ≤ x ≤ 13, y = 0 and 0 ≤ x ≤ 13, y = 11, and reflective at the walls 
0 ≤ x ≤ 1, y = 6 and at x = 1, 0 ≤ y ≤ 6. The final computing time T = 2.3. It is well known that the diffraction of high 
speed shock waves at sharp angles leads to low density and low pressure. See Fig. 4.7 for the results. For compressible 
Euler equations, about 5.07% cells are troubled cells, and 63.76% CPU time is saved compared to the PP HWENO scheme. 
For compressible Navier-Stokes equations, about 4.39% cells are troubled cells, and 64.45% CPU time is saved compared to 
the PP HWENO scheme.

5. Concluding remarks

In this paper, we have constructed the positivity-preserving FV hybrid HWENO scheme for solving compressible NS 
equations, based on the work in [26,32]. For compressible Euler equations, the scheme is much more robust than hybrid 
HWENO schemes in [32]. For both Euler and Navier-Stokes equations, it performs well on representative challenging low 
density and low pressure problems. Thanks to hybridization techniques, it is not only more efficient than conventional 
HWENO schemes, but also produces better resolution for high Reynolds number flows due to less artificial viscosity. Nu-
merical tests have demonstrated the robustness and the efficiency of the scheme. Future work includes the extension of 
the positivity-preserving FV hybrid HWENO scheme to unstructured meshes and the positivity-preserving finite difference 
WENO scheme for compressible Navier-Stokes equations.
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Fig. 4.3. The Double Rarefaction problem. T = 0.6. From top to bottom: density, velocity, pressure, and time history of troubled cells. Re = ∞ (right) and 
1000 (left). Solid line: the exact solution; squares: PP hybrid HWENO scheme on uniform 200 cells.
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Fig. 4.4. The 1D Sedov problem. T = 0.001. From top to bottom: density, velocity, pressure, and time history of troubled cells. Re = ∞ (left) and 1000 
(right). Solid line: the reference solution; squares: PP hybrid HWENO scheme on uniform 400 cells.
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Fig. 4.5. The Leblanc problem. T = 0.0001 for Re = ∞ (Left) and 1000 (Right). From top to bottom: log plot of density, velocity, log plot of pressure, time 
history of troubled cells. Solid line: the reference solution; squares: PP hybrid HWENO scheme on uniform 3200 cells.
18
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Fig. 4.6. The 2D Sedov problem. T = 1.0 for Re = ∞ (Left) and 1000 (Right). Top row: 30 equally spaced contour lines from 0.95 to 5 for density. Bottom 
row: troubled cells at final time. The PP hybrid HWENO scheme with mesh size �x = �y = 1.1/160.
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Appendix A

The hybrid HWENO reconstruction for function values u(x, y) at the specific points based on the zeros-order and first-
order moment can be found in [32]. To implement the scheme in this paper, we still need a reconstruction of gradients 
∇u(x, y). Here we describe the hybrid HWENO reconstruction for derivative ux(x) and the partial derivatives ux(x, y) and 
u y(x, y).

A.1. One-dimensional case

We consider the reconstruction procedure for derivative values (ux)
∓
i± 1

2
and (ux)i±√

5/10 from {ui, vi}. Here ui(t) =
1

�x

∫
Ii

u(x, t)dx is the zeroth order moment and vi(t) = 1
�x

∫
Ii

u(x, t) x−xi
�x dx is the first order moment in Ii . Given the sten-

cils S1, S2, S3 and S0, similar to hybrid HWENO reconstruction of (u)∓
i± 1

2
and (u)i±√

5/10 in [32], first identify the troubled 
cell and modify the first order moment in the troubled cell as in [32]. If one of the cells in stencil S0 is identified as a 
troubled cell, then apply the HWENO method described in Step A.1 to reconstruct (ux)

∓
1 ; otherwise we use the linear re-
i± 2

19



C. Fan, X. Zhang and J. Qiu Journal of Computational Physics 445 (2021) 110596
Fig. 4.7. The Shock Diffraction problem. T = 2.3 for Re = ∞(Left) and 1000 (Right). From top to bottom: density 20 equally spaced contour lines from 
0.066227 to 7.0668, pressure 40 equally spaced contour lines from 0.091 to 37, and the troubled cells at the final time. The PP hybrid HWENO scheme 
with mesh size �x = �y = 1/32.

construction method described in Step A.2 to reconstruct (ux)
∓
i± 1

2
. We use linear reconstruction for (ux)i±√

5/10 on all cells, 
as described in Step A.3.

StepA.1. The HWENO reconstruction of (ux)
∓
i± 1

2
.

In [32], the reconstruction procedure involves the Hermite cubic polynomials p1(x), p2(x), p3(x) in the small stencils 
S1, S2, S3 and a Hermite quintic polynomial p0(x) in a large stencil S0. Now, we need the derivative of these polynomial at 
cell boundary xi+ 1

2
in terms of the averages, which can be written as:

p′
0(xi+ 1 ) = 5

ūi−1 − 9
ūi + 19

ūi+1 + 11
v̄ i−1 − 97

v̄ i − 62
v̄ i+1.
2 36�x 4�x 9�x 18�x 18�x 9�x
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p′
1(xi+ 1

2
) = 21

4�x
ūi−1 − 21

4�x
ūi + 51

2�x
v̄i−1 + 99

2�x
v̄i,

p′
2(xi+ 1

2
) = 5

22�x
ūi−1 − 1

�x
ūi + 17

22�x
ūi+1 + 60

11�x
v̄i,

p′
3(xi+ 1

2
) = − 9

4�x
ūi + 9

4�x
ūi+1 − 15

2�x
v̄i − 15

2�x
v̄i+1.

By p′
0(xi+ 1

2
) =∑3

n=1 γ ′
n p′

n(xi+ 1
2
), we obtain linear weights γ ′

1 = 11
459 , γ ′

2 = 44
765 , γ ′

3 = 124
135 , and define the smoothness indica-

tors for the reconstruction of derivatives as

β ′
n =

3∑
α=2

∫
Ii

�x2α−1
(

∂α pn(x)

∂xα

)2

dx, n = 1,2,3, (A.1)

then ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β ′

1 =1

4
(15ūi−1 − 15ūi + 66v̄ i−1 + 114v̄ i)

2 + 975

4
(ūi−1 − ūi + 6v̄ i−1 + 6v̄ i)

2 ,

β ′
2 = (ūi−1 − 2ūi + ūi+1)

2 + 975

121
(ūi−1 − ūi+1 + 24v̄ i)

2 ,

β ′
3 =1

4
(15ūi − 15ūi+1 + 66v̄ i+1)

2 + 975

4
(ūi − ūi+1 + 6v̄ i + 6v̄ i+1)

2 .

The nonlinear weights are computed as ω′
n = ω̄n

ω̄1+ω̄2+ω̄3
with ω̄n = γ ′

n(
ε+β ′

n
)2 , n = 1, 2, 3. The final HWENO reconstruction of 

(ux)
−
i+ 1

2
is given by (ux)

−
i+ 1

2
=∑3

n=1 ω′
n p′

n(xi+ 1
2
). Similarly, we can obtain the HWENO reconstruction of (ux)

+
i− 1

2
.

StepA.2. The linear reconstruction of (ux)
∓
i± 1

2
.

If no cells in S0 are identified as troubled cells, then we simply use upwind linear reconstruction for (ux)
∓
i± 1

2
:

(ux)
+
i− 1

2
= p′

0

(
xi− 1

2

)
= −19ui−1

9�x
+ 9ui

4�x
− 5ui+1

36�x
− 62vi−1

9�x
− 97vi

18�x
+ 11vi+1

18�x
,

(ux)
+
i+ 1

2
= p′

0

(
xi+ 1

2

)
= 5ui−1

36�x
− 9ui

4�x
+ 19ui+1

9�x
+ 11vi−1

18�x
− 97vi

18�x
+ 62vi+1

9�x
.

StepA.3. The linear reconstruction of (ux)i±√
5/10.

(ux)i−
√

5
10

=p′
0

(
x

i−
√

5
10

)
= −

(
99

√
5

360�x
+ 1

72

)
ūi−1 + 11

√
5

20�x
ūi −

(
99

√
5

360
− 1

72

)
ūi+1

−
(

21
√

5

20�x
+ 11

180�x

)
v̄ i−1 + 1069

√
5

90�x
v̄i −

(
−21

√
5

20�x
+ 11

180�x

)
v̄ i+1,

(ux)i+
√

5
10

=p′
0

(
x

i+
√

5
10

)
=
(

99
√

5

360�x
− 1

72

)
ūi−1 − 11

√
5

20�x
ūi +

(
99

√
5

360
+ 1

72

)
ūi+1

+
(

21
√

5

20�x
− 11

180�x

)
v̄ i−1 + 1069

√
5

90�x
v̄i +

(
−21

√
5

20�x
− 11

180�x

)
v̄ i+1.

A.2. Two-dimensional case

Similar to the one-dimensional case, firstly, we first identify the troubled cells and modify the first order moment in the 
troubled cells, see in [32] for detail. Then, we use the HWENO reconstruction in StepA.4 to reconstruct ux(G�) and u y(G�)

only when G� is in the interior of a troubled cell Ii, j . For all other cases, we use the linear reconstruction in StepA.5.
StepA.4. Suppose we have constructed the eight Hermite cubic polynomials p1(x, y), . . . , p8(x, y) in the small stencil 

and have the explicit expression of these polynomials in [32]. Then we can get the values of the partial derivative of these 
polynomial at the specific points. To combine the polynomials to obtain third-order approximation to ux and u y at the point 
Gk , we choose the linear weights denoted by γ (k)

x1 , ..., γ (k)
x8 , γ (k)

y1 , ..., γ (k)
y8 such that

∂ u (Gk) =∑8 γ
(k)
xn

∂ pn (Gk),
∂ u (Gk) =∑8 γ

(k)
yn

∂ pn (Gk) (A.2)

∂x n=1 ∂x ∂ y n=1 ∂ y

21
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which are valid for any quadratic polynomial u. Then we can obtain third-order approximations to ux and u y at the point Gk
for all sufficiently smooth functions u. Notice that pn(x, y) is an incomplete Hermite cubic reconstruction polynomial, (A.2)
holds for any polynomial u which is a linear combination of 1, x, y, x2, xy, y2, x3, y3 if 

∑8
n=1 γ

(k)
xn = 1 and if 

∑8
n=1 γ

(k)
yn = 1

respectively. There are two other constraints on each of the groups of linear weights γ (k)
x1 , ..., γ (k)

x8 and γ (k)
y1 , ..., γ (k)

y8 for (A.2)

to hold for u = x2 y, xy2 respectively. This leaves 5 free parameters in determining each group of the linear weights, obtained 

uniquely by the least square methodology on 
8∑

n=1
(γ

(k)
xn )2 and 

8∑
n=1

(γ
(k)
yn )2 respectively.

Similar to the one dimensional case, if G� is in the interior of a cell Ii, j we use linear reconstruction to get ux(G�) and 
u y(G�). Only when G� is located on the cell boundary of a troubled cell Ii, j , we use HWENO reconstruction procedures as 
follows. We compute the smoothness indicator, denoted by βn:

βn =
3∑

|�|=2

∣∣Ii j
∣∣|�|−1

∫
Ii j

(
∂ |�|

∂xl1∂ yl2
pn(x, y)

)2

dxdy, n = 1, . . . 8, (A.3)

where � = (�1, �2), |�| = �1 + �2. Computing the nonlinear weights:

ω
(�)
xn = ω

(�)
xn∑

k ω
(�)

xk

,ω
(�)

xk = γ
(�)

xk
(ε+βxk)

2 , ω
(�)
yn = ω

(�)
xn∑

k ω
(�)

xk

,ω
(�)

xk = γ
(�)

xk
(ε+βxk)

2 , k, � = 1, · · · ,8. (A.4)

The HWENO reconstruction to u−
x (Gk) and u−

y (Gk) given by u−
x (G�) =∑8

n=1 ω
(�)
xn

∂
∂x pn (G�) and u−

y (G�) =∑8
n=1 ω

(�)
yn

∂
∂ y pn (G�). The reconstructions to u+

x (G�) and u+
y (G�) are similar.

StepA.5. The linear approximation of the partial derivatives at point G� can be taken directly by (A.2).

References

[1] X. Cai, J. Qiu, J.-M. Qiu, A conservative semi-Lagrangian HWENO method for the Vlasov equation, J. Comput. Phys. 323 (2016) 95–114.
[2] X. Cai, X. Zhang, J. Qiu, Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations, J. Sci. Comput. 68 (2016) 

464–483.
[3] X. Cai, J. Zhu, J. Qiu, Hermite WENO schemes with strong stability preserving multi-step temporal discretization methods for conservation laws, J. 

Comput. Math. 35 (2017) 52–73.
[4] Z. Chen, H. Huang, J. Yan, Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion 

equations on unstructured triangular meshes, J. Comput. Phys. 308 (2016) 198–217.
[5] J. Du, Y. Yang, Maximum-principle-preserving third-order local discontinuous Galerkin method for convection-diffusion equations on overlapping 

meshes, J. Comput. Phys. 377 (2019) 117–141.
[6] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. 

Comput. Phys. 152 (1999) 457–492.
[7] Y. Guo, T. Xiong, Y. Shi, A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations, J. Comput. Phys. 274 

(2014) 505–523.
[8] X.Y. Hu, N. Adams, C.-W. Shu, Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys. 

242 (2013) 169–180.
[9] V.P. Korobeinikov, Problems of Point Blast Theory, American Institute of Physics, College Park, 1991.

[10] H. Li, S. Xie, X. Zhang, A high order accurate bound-preserving compact finite difference scheme for scalar convection diffusion equations, SIAM J. 
Numer. Anal. 56 (2018) 3308–3345.

[11] H. Liu, J. Qiu, Finite difference Hermite WENO schemes for hyperbolic conservation laws, J. Sci. Comput. 63 (2015) 548–572.
[12] H. Liu, J. Qiu, Finite difference Hermite WENO schemes for conservation laws, II: an alternative approach, J. Sci. Comput. 66 (2016) 598–624.
[13] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994) 200–212.
[14] D. Luo, W. Huang, J. Qiu, A hybrid LDG-HWENO scheme for KdV-type equations, J. Comput. Phys. 313 (2016) 754–774.
[15] H. Luo, J.D. Baum, R. Lohner, A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys. 225 (2007) 

686–713.
[16] H. Luo, Y.D. Xia, S.J. Li, R. Nourgaliev, C.P. Cai, A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on 

tetrahedral grids, J. Comput. Phys. 231 (2012) 5489–5503.
[17] M.R. Norman, Hermite WENO limiting for multi-moment finite-volume methods using the ADER-DT time discretization for 1-d systems of conservation 

laws, J. Comput. Phys. 282 (2015) 381–396.
[18] J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. 

Comput. Phys. 193 (2004) 115–135.
[19] J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, 

Comput. Fluids 34 (2005) 642–663.
[20] J. Qiu, C.-W. Shu, Hermite WENO schemes for Hamilton-Jacobi equations, J. Comput. Phys. 204 (2005) 82–99.
[21] L.I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press, New York, 1959.
[22] Z. Tao, F. Li, J. Qiu, High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws, J. Comput. Phys. 281 (2015) 

148–176.
[23] Z. Tao, F. Li, J. Qiu, High-order central Hermite WENO schemes: dimension-by-dimension moment-based reconstructions, J. Comput. Phys. 318 (2016) 

222–251.
[24] Z. Tao, J. Qiu, Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations, Adv. Comput. 

Math. 43 (2017) 1023–1058.
[25] T. Xiong, J.-M. Qiu, Z. Xu, Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler 

equations, J. Sci. Comput. 67 (2015) 1066–1088.
22

http://refhub.elsevier.com/S0021-9991(21)00491-5/bib34E0339D46B03E4B52EB4F70E6A27166s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibEDEFD3FD8A673C43AAAB3EA7311A38B0s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibEDEFD3FD8A673C43AAAB3EA7311A38B0s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib5F97E325216AD38953C081C77233E4C8s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib5F97E325216AD38953C081C77233E4C8s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibA124EB113B00D7BAFADADD4A4247D46Cs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibA124EB113B00D7BAFADADD4A4247D46Cs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib98FF3A37BAC6FD699D85FA3081A01D5Es1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib98FF3A37BAC6FD699D85FA3081A01D5Es1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibD7A20885E39EF939402F03781B8BC5D1s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibD7A20885E39EF939402F03781B8BC5D1s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib9DD1D929CD306D92E5140C6D3A221EAAs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib9DD1D929CD306D92E5140C6D3A221EAAs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib390F6DF113158CE3F729D26D85B706D0s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib390F6DF113158CE3F729D26D85B706D0s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib89C786F24AC60E97746CA1B2D926AC95s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib2697421D07072EF66AB9AB3B3C0EC89Fs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib2697421D07072EF66AB9AB3B3C0EC89Fs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib9AE333FB3DECE103E655C9EC1EF40D08s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibC1A3C8828F23B8DFFB40B3ADF36BAA66s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib9D91ACB35AE0E774FE5FA55904693495s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib0610C4C7D02C7AAD992C596F65A2C2F3s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibB7B82D34F5BE2C9CD2E9B23AC290919Fs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibB7B82D34F5BE2C9CD2E9B23AC290919Fs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib659A4006E47CB3F7DED516D73BAC0BF1s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib659A4006E47CB3F7DED516D73BAC0BF1s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib9E6440E57DE6A6BCA0FBE1E3C189BD1Es1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib9E6440E57DE6A6BCA0FBE1E3C189BD1Es1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibB7D24B3793941F0057D8E098BD06699Es1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibB7D24B3793941F0057D8E098BD06699Es1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib84C6D7C9081AF77D9F2F8A82EAF95E04s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib84C6D7C9081AF77D9F2F8A82EAF95E04s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibD6DE618F751A2B7AAC65E70B4D0A837Cs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibA38A9EEE027399B078AA0D9D2E69C6EFs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib38AEB3FA7CF705347A7241E409B2A325s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib38AEB3FA7CF705347A7241E409B2A325s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib4199C305A50023A95CEAA19823FD305Cs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib4199C305A50023A95CEAA19823FD305Cs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib222A09D9587381BCE5CAE9C6515677F4s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib222A09D9587381BCE5CAE9C6515677F4s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib31F65C5AFFCF37E7971A73BAFC6055DDs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib31F65C5AFFCF37E7971A73BAFC6055DDs1


C. Fan, X. Zhang and J. Qiu Journal of Computational Physics 445 (2021) 110596
[26] X. Zhang, On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations, J. Comput. Phys. 328 (2017) 
301–343.

[27] X. Zhang, Y. Liu, C.-W. Shu, Maximum-principle-satisfying high order finite volume weighted essentially nonoscillatory schemes for convection-diffusion 
equations, SIAM J. Sci. Comput. 34 (2012) A627–A658.

[28] X. Zhang, C.-W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. 
Comput. Phys. 229 (2010) 8918–8934.

[29] X. Zhang, C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, 
Proc. R. Soc. A, Math. Phys. Eng. Sci. 467 (2011) 2752–2776.

[30] X. Zhang, C.-W. Shu, Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. Comput. Phys. 231 (2012) 
2245–2258.

[31] Y. Zhang, X. Zhang, C.-W. Shu, Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on tri-
angular meshes, J. Comput. Phys. 234 (2013) 295–317.

[32] Z. Zhao, Y.B. Chen, J. Qiu, A hybrid Hermite WENO scheme for hyperbolic conservation laws, J. Comput. Phys. 405 (2020).
[33] Z. Zhao, J. Qiu, A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws, J. Comput. Phys. 417 (2020).
[34] F. Zheng, J. Qiu, Directly solving the Hamilton-Jacobi equations by Hermite WENO schemes, J. Comput. Phys. 307 (2016) 423–445.
[35] F. Zheng, C.-W. Shu, J. Qiu, Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations, J. Comput. Phys. 337 (2017) 27–41.
[36] F. Zheng, C.-W. Shu, J. Qiu, High order finite difference Hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes, Comput. 

Fluids 183 (2019) 53–65.
[37] J. Zhu, J. Qiu, A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes, Sci. China Ser. A, Math. 51 (2008) 

1549–1560.
[38] J. Zhu, J. Qiu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: unstructured meshes, J. 

Sci. Comput. 39 (2009) 293–321.
[39] J. Zhu, J. Qiu, Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes, J. Comput. Phys. 254 (2013) 76–92.
[40] J. Zhu, J. Qiu, Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equation, Commun. Comput. Phys. 15 (2014) 959–980.
[41] J. Zhu, J. Qiu, Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: unstructured meshes, Comput. Math. Appl. 68 (2014) 

1137–1150.
[42] J. Zhu, X.H. Zhong, C.-W. Shu, J. Qiu, Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter, Commun. Comput. 

Phys. 19 (2016) 944–969.
23

http://refhub.elsevier.com/S0021-9991(21)00491-5/bib7991A547771452FFBF9C30FA7033A1A6s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib7991A547771452FFBF9C30FA7033A1A6s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib5529A6F4DA0CCEFDD452FA85AD914D39s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib5529A6F4DA0CCEFDD452FA85AD914D39s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibF58C5310E796B5F2D10158015CA12BAAs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibF58C5310E796B5F2D10158015CA12BAAs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibF0BF6235B3260DB28CDA5AD6EECBC352s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibF0BF6235B3260DB28CDA5AD6EECBC352s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib67D1A318544B27206FCB0DF9229F0829s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib67D1A318544B27206FCB0DF9229F0829s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib8F1B4B4AD3F3EDC41D2ECEAE1B30A3D8s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib8F1B4B4AD3F3EDC41D2ECEAE1B30A3D8s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib903FA947E8B2BB4CF1AC1903E6F735FFs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibEDD5DD10661966448FD211E97537DF84s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibC1F12189B2602CDE2CEA546A15C24494s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibB7C0139F506C79C3089AD5D61EA0DA1Fs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib27572CC194B997F0EFEE7465D15EDCDEs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib27572CC194B997F0EFEE7465D15EDCDEs1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibE7281BFA105175E19B9B585F13035869s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibE7281BFA105175E19B9B585F13035869s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibAE6DFDDEFBF3F73A728FE7666551C487s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibAE6DFDDEFBF3F73A728FE7666551C487s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bibF8DEF9E319697C5F61346BF975816777s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib535BE980FD50265D9E4FBC017826EDF7s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib7540F896069011F54B5DE510F1A6DA91s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib7540F896069011F54B5DE510F1A6DA91s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib2F3C47FBFB002E9E2C69B7095CD88BE6s1
http://refhub.elsevier.com/S0021-9991(21)00491-5/bib2F3C47FBFB002E9E2C69B7095CD88BE6s1

	Positivity-preserving high order finite volume hybrid Hermite WENO schemes for compressible Navier-Stokes equations
	1 Introduction
	2 Finite volume hybrid Hermite WENO schemes
	3 A positivity-preserving high order finite volume hybrid HWENO scheme
	3.1 One-dimensional case
	3.2 Two-dimensional case
	3.3 Implementation of CFL constraints

	4 Numerical tests
	5 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	References




