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It is an important and challenging issue for the numerical solution of radiative transfer 
equations to maintain both high order accuracy and positivity. For the two-dimensional 
radiative transfer equations, Ling et al. give a counterexample (Ling et al. (2018) [13]) 
showing that unmodulated discontinuous Galerkin (DG) solver based either on the Pk or 
Q k polynomial spaces could generate negative cell averages even if the inflow boundary 
value and the source term are both positive (and, for time dependent problems, also a 
nonnegative initial condition). Therefore the positivity-preserving frameworks in Zhang and 
Shu (2010) [28] and Zhang et al. (2012) [29] which are based on the value of cell averages 
being positive cannot be directly used to obtain a high order conservative positivity-
preserving DG scheme for the radiative transfer equations neither on rectangular meshes 
nor on triangular meshes. In Yuan et al. (2016) [26], when the cell average of DG schemes 
is negative, a rotational positivity-preserving limiter is constructed which could keep high 
order accuracy and positivity in the one-dimensional radiative transfer equations with Pk

polynomials and could be straightforwardly extended to two-dimensional radiative transfer 
equations on rectangular meshes with Q k polynomials (tensor product polynomials). This 
paper presents an extension of the idea of the above mentioned one-dimensional rotational 
positivity-preserving limiter algorithm to two-dimensional high order positivity-preserving 
DG schemes for solving steady and unsteady radiative transfer equations on triangular 
meshes with Pk polynomials. The extension of this method is conceptually plausible but 
highly nontrivial. We first focus on finding a special quadrature rule on a triangle which 
should satisfy some conditions. The most important one is that the quadrature points can 
be arranged on several line segments, on which we can use the one-dimensional rotational 
positivity-preserving limiter. Since the number of the quadrature points is larger than the 
number of basis functions of Pk polynomial space, we determine a k-th polynomial by a 
L2-norm Least Square subject to its cell average being equal to the weighted average of 
the values on the quadrature points after using the rotational positivity-preserving limiter. 
Since the weights used here are the quadrature weights which are positive, then the cell 
average of the modified polynomial is nonnegative. And the final modified polynomial 
can be obtained by using the two-dimensional scaling positivity-preserving limiter on 
the triangular element. We theoretically prove that our rotational positivity-preserving 
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limiter on triangular meshes could keep both high order accuracy and positivity. It is 
relatively simple to implement, and also does not affect convergence to weak solutions. The 
numerical results validate the high order accuracy and the positivity-preserving properties 
of our schemes. The advantage of the triangular meshes on handling complex domain is 
also presented in our numerical examples.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The radiative transfer equation (RTE) describes the interaction of radiation with scattering and absorbing media, which 
has wide applications in the areas such as heat transfer, stellar atmospheres, optical molecular imaging, inertial confinement 
fusion, infrared and visible light in space and the atmosphere, and so on.

The RTE can be described as a hyperbolic-type integro-differential equation with six independent variables including 
three spatial variables, two solid angle variables and time. Due to the presence of complicated integral coupling term and 
the high dimension of the problem, it is a serious challenge to develop effective numerical methods for RTE, the topic of 
which attracted much attention in the past half century. The numerical methods used to solve this equations today include 
the discrete-ordinate method (DOM) [5], the Monte Carlo method (MCM) [9], the spherical harmonics method (SHM) [11], 
the finite volume method (FVM) [23], the finite element method (FEM) [24], the spectral method [30], and so on [8,20]. 
Among them, the DOM is widely applied to numerically solving the transport equation due to its relatively high accuracy, 
flexibility, and relatively low computational cost. The DOM uses a numerical integration rule to discretize the solid angle. 
The angle-discretized radiative transfer equation is then a system of linear hyperbolic equations coupled with a numerical 
integral term.

The discontinuous Galerkin (DG) method is known to be a particularly powerful numerical tool for the simulation of 
hyperbolic transport problems. Spatial DG finite element techniques applied to the radiative transfer equation have been 
pioneered by Reed and Hill [22] and theoretically studied in [12] by Lesaint and Raviart. Later, Cockburn and Shu extended 
it to nonlinear hyperbolic conservation laws [1–4], in which the authors have established a framework to easily solve 
nonlinear time dependent problems, such as the Euler equations, using explicit nonlinearly stable high order Runge-Kutta 
time discretizations and DG discretization in space described above. DG methods have the advantages of high order accuracy, 
geometric flexibility, suitability for handling h- and p-adaptivity, extremely local data structure, high parallel efficiency, and a 
good theoretical foundation for stability and error estimates. Over the last few decades, DG methods have been used widely 
in many areas of computational physics and computational engineering. In this paper, we will combine the discrete-ordinate 
method with the discontinuous Galerkin (DG) method to solve the radiative transfer equations on triangular meshes.

Physically and mathematically, the solution to the radiative transfer equation is non-negative, however this property is 
often lost in numerical approximations for a nonnegative source term and boundary condition (and, for time dependent 
problems, also a nonnegative initial condition), especially for high order methods. Especially in multidimensional problems, 
a negative solution in the numerical simulation may slow the convergence rate of the iterative processes, even lead to a fail-
ure in the simulation, and for time dependent problems, a negative solution may cause numerical instabilities. Furthermore, 
negative radiative intensity is non-physical which is difficult for physicists to accept. Several studies have been proposed 
to obtain positive intensities. The step scheme is proved to be positivity-preserving but is only first order accurate and 
introduces excessive numerical smearing [6]. The diamond scheme has second order accuracy, but negative intensities may 
appear [14]. And there are some other existing positivity-preserving schemes including the variable-weight scheme [10,19], 
the linear exponential discontinuous finite element method [25], step and linear adaptive methods [18], the step charac-
teristic scheme [16], the linear characteristic scheme [15], and the linear DG finite element method with the set-to-zero 
fix-up technique [17]. These methods are only first or second order accurate, or use non-polynomial nonlinear procedures 
which require iterative procedures to obtain the solution even for the system inside each cell, or rely on the characteristic 
procedure and hence are difficult to generalize to multi-dimensions.

This paper focuses on the positivity-preserving property of the high order accuracy DG schemes for the two-dimensional 
radiative transfer equations on triangular meshes. In [27], Zhang and Shu have established a general framework to con-
struct arbitrarily high order accurate DG schemes satisfying a strict maximum principle for one- and two-dimensional 
scalar conservation laws on rectangular meshes. The technique is generalized to the scaling positivity-preserving limiter 
for high order DG schemes solving compressible Euler equations in [28]. In [29], the authors extended the results [27,28]
to a general framework of constructing maximum-principle-satisfying and positivity-preserving high order DG schemes for 
scalar conservation laws on triangular meshes. It is important to emphasize that the scaling positivity-preserving limiter 
[28,29] are achieved by a linear scaling around the positive cell average of the primitive DG polynomial. Unfortunately, 
a counterexample is given in [13] that even if the inflow boundary value and the source term are both positive (and, 
for time dependent problems, also a nonnegative initial condition), unmodulated DG solver for two-dimensional radia-
tive transfer equations based either on the P k or Q k polynomial spaces could generate negative cell averages. Therefore 
the scaling positivity-preserving limiter cannot be directly used to obtain high order positivity-preserving DG schemes for 
two-dimensional radiative transfer equations. Very recently in [26], Yuan et al. construct an implicit high order positivity-
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preserving DG scheme for the one-dimensional steady and unsteady radiative transfer equations with P k polynomial space, 
which is achieved by using the scaling positivity-preserving limiter when the cell average is positive and a new rotational 
positivity-preserving limiter when the cell average is negative. And they have given a straightforward extension of the one-
dimensional algorithm to the two-dimensional high order positivity-preserving DG schemes on rectangular meshes with Q k

polynomials (tensor product polynomials).
In this paper, we give an extension of the one-dimensional rotational positivity-preserving limiter [26] to the two-

dimensional rotational positivity-preserving limiter on triangular meshes for DG schemes solving the radiative transfer 
equations with Pk polynomials. The extension is conceptually plausible but highly nontrivial. We first find a special quadra-
ture rule on the triangular element which should satisfy four major conditions. The first is a basic condition that the 
quadrature rule must be exact for the integration of the DG polynomial on the triangular element. The second one is that 
all the quadrature weights should be positive. The third one is that the quadrature points should have the Gauss-Lobatto 
type distribution on each edge of the triangular element, so that we could use one-dimensional scaling positivity-preserving 
limiter on the edge. The fourth one, which is one of the keypoints of this paper, is that these quadrature points can be 
arranged on certain line segments, each of which starts with one quadrature point on one edge of the triangular element 
and ends with another quadrature point on another edge. Then along these certain line segments, we could use the one-
dimensional rotational positivity-preserving limiter.

Our limiter is combined of the scaling positivity-preserving limiter and the rotational positivity-preserving limiter, which 
can be used to solve the radiative transfer equations on triangular meshes by the implicit or iterative DG method. To be 
specific, if the cell average is positive, we use the two-dimensional scaling positivity-preserving limiter [29] on the triangular 
element. If the cell average is negative, the limiting procedure consists of a one-dimensional scaling positivity-preserving 
limiter on the relevant cell boundary followed by the rotational positivity-preserving limiter around this cell boundary. Since 
the number of the quadrature points is larger than the number of basis functions of P k polynomial space, the modified 
polynomial cannot be interpolated directly. To solve this problem, we first find a k-th polynomial by a L2-norm Least Square 
subject to its cell average being equal to the weighted average of the values on the quadrature points after using the 
rotational positivity-preserving limiter. Since the weights used here are the quadrature weights which are positive, then 
the cell average of the modified polynomial is nonnegative. This is the other keypoint of this paper. And the final modified 
polynomial can be obtained by using the two-dimensional scaling positivity-preserving limiter on the triangular element. We 
theoretically prove that our rotational positivity-preserving limiter on triangular meshes could keep both high order accuracy 
and positivity. It is relatively simple to implement, and also does not affect convergence to weak solutions. Numerical 
results of the two-dimensional steady and unsteady radiative transfer equations also verify the high order accuracy and the 
positivity-preserving properties of our schemes. The advantage of the triangular meshes on handling complex domain is 
also presented in our numerical examples.

This paper is organized as follows. In Section 2, we introduce the radiative transfer equations and their DOM-DG schemes. 
In Section 3, we construct a special quadrature rule on the triangle satisfying four major conditions for the design of the 
positivity-preserving DG schemes. In Section 4, we construct our high order positivity-preserving DG schemes on triangu-
lar meshes. Some numerical experiments have been carried out to demonstrate the good performance of our limiters in 
Section 5. Section 6 concludes the paper.

2. The radiative transfer equations and their DOM-DG schemes

2.1. The radiative transfer equations

The radiative transfer equation is the mathematical statement of the conservation of photons [21]. We consider a 
unsteady-state, isotropically scattering transfer equation

1

c

∂ I(r,�, t)

∂t
+ � · ∇ I(r,�, t) + σt I(r,�, t) = σs

4π

∫
S

I(r,�, t)d� + q(r,�, t), (2.1)

where c is the speed of photon, I(r, �, t) is the radiative intensity in the direction �, the spatial position r and the time t , 
S is the unit sphere, σs ≥ 0 is the scattering coefficient of the medium, σt ≥ σs is the extinction coefficient of the medium 
due to both absorption and scattering, total solid angle is 4π spherical degree and q(r, �, t) is a given source term. The 
vector r is described by the Cartesian coordinates x, y, z. The vector � is usually described by a polar angle β measured 
with respect to a fixed axis in space (such as the z axis) and a corresponding azimuthal angle ϕ . If we introduce μ = cosβ , 
ζ = sin β cosϕ , η = sin β sinϕ then

dr = dxdydz, d� = sinβdβdϕ = −dμdϕ.

In all cases the essential point is to interpret � · ∇ I(r, �, t) in Equation (2.1) as a directional derivative in the � direction. 
That is, we write

� · ∇ I(r,�, t) = ∂ I
, (2.2)
∂s
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Fig. 1. Sketch of the geometry.

where s is a length along �.
If the x and y directions are infinite, the radiative intensity then depends only upon the single spatial coordinate z and 

the single angular coordinate β . This situation is shown in Fig. 1. Obviously, in this case, the directional derivative can be 
expressed as follows

∂ I

∂s
= ∂ I

∂z

(dz

ds

) + ∂ I

∂μ

(dμ

ds

)
. (2.3)

From Fig. 1 we clearly see that

dz

ds
= cosβ = μ,

dμ

ds
= 0. (2.4)

In the one-dimensional planar geometry, because I(z, μ, t) is independent of azimuthal angle ϕ , integral over the azimuthal 
angle ϕ is trivial. Hence in this geometry we have

1

4π

∫
S

I(r,�, t)d� = 1

4π

1∫
−1

2π∫
0

I(z,μ, t)dμdϕ = 1

2

1∫
−1

I(z,μ, t)dμ, (2.5)

and Equation (2.1) becomes

1

c

∂ I(z,μ, t)

∂t
+ μ

∂ I(z,μ, t)

∂z
+ σt I(z,μ, t) = σs

2

1∫
−1

I(z,μ, t)dμ + q(z,μ, t). (2.6)

If we ignore the dependence of time, i.e., ∂ I
∂t = 0, then we have the general form of the one-dimensional steady radiative 

transfer equation

μ
∂ I(z,μ)

∂z
+ σt I(z,μ) = σs

2

1∫
−1

I(z,μ)dμ + q(z,μ). (2.7)

In the two-dimensional Cartesian coordinate, the radiative intensity depends on the spatial coordinate x and y and the 
angular coordinate ζ and η, then we have

∂ I

∂s
= ∂ I

∂x

(dx

ds

) + ∂ I

∂ y

(dy

ds

) + ∂ I

∂ζ

(dζ

ds

) + ∂ I

∂η

(dη

ds

)
. (2.8)

Similarly, from Fig. 1 we can get

dx

ds
= sinβ cosϕ = ζ,

dy

ds
= sinβ sinϕ = η,

dζ

ds
= 0,

dη

ds
= 0, (2.9)

and
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1

4π

∫
S

I(r,�, t)d� = 1

4π

1∫
−1

2π∫
0

I(x, y,

√
1 − μ2 cosϕ,

√
1 − μ2 sinϕ, t)dμdϕ. (2.10)

Substitute (2.9) and (2.10) into (2.1), Equation (2.1) can be rewritten as

1

c

∂ I(x, y, ζ,η, t)

∂t
+ ζ

∂ I(x, y, ζ,η, t)

∂x
+ η

∂ I(x, y, ζ,η, t)

∂ y
+ σt I(x, y, ζ,η, t)

= σs

4π

1∫
−1

2π∫
0

I(x, y, ζ,η, t)dμdϕ + q(x, y, ζ,η, t),
(2.11)

where ζ = sin β cosϕ = √
1 − μ2 cosϕ , η = sin β sinϕ = √

1 − μ2 sinϕ , and the two-dimensional steady radiative transfer 
equation is

ζ
∂ I(x, y, ζ,η)

∂x
+ η

∂ I(x, y, ζ,η)

∂ y
+ σt I(x, y, ζ,η)

= σs

4π

1∫
−1

2π∫
0

I(x, y, ζ,η)dμdϕ + q(x, y, ζ,η).

(2.12)

2.2. The discrete ordinate method (DOM) for the radiative transfer equations

To solve the radiative transfer equation numerically, first we must discretize the angular variables to obtain a system of 
linear hyperbolic equations coupled with a numerical integral term. In this paper, we adopt the discrete-ordinate method. 
The radiative transfer equation (2.1) is solved for a finite number of directions spanning the total solid angle of the unit 
sphere around a point in space, and the integral over solid angle is replaced by a numerical quadrature.

We first consider a steady radiative transfer equation

� · ∇ I(r,�) + σt I(r,�) = σs

4π

∫
S

I(r,�)d� + q(r,�), r ∈D. (2.13)

Use n(r) to denote the unit outward normal vector at the point r on the domain boundary ∂D and define ∂Din = {r|r ∈
∂D, n(r) · � < 0}. The boundary condition is

I(r,�) = f (r,�), r ∈ ∂Din. (2.14)

For each discrete direction �m, m = 1, · · · , M , the equation (2.13) can be written as the following linear hyperbolic 
equations

�m · ∇ Im(r) + σt Im(r) = σs

M∑
m′=1

wm′ Im′(r) + qm(r), m = 1 · · · M, (2.15)

where Im(r) = I(r, �m) is the radiative intensity in the direction �m and all the average of the radiative intensity 
1

4π

∫
S I(r, �)d� is approximated by the Legendre-Chebyshev P N -T N quadrature 

∑M
m′=1 wm′ Im′ (r), i.e., 1

4π

∫
S I(r, �)d� ≈∑M

m′=1 wm′ Im′ (r), the quadrature weights with 
∑M

m′=1 wm′ = 1 and wm′ > 0, M is the number of directions on S .
Similarly, the discrete ordinate method for the unsteady radiative transfer equation reads

1

c

∂ Im(r, t)

∂t
+ �m · ∇ Im(r, t) + σt Im(r, t) = σs

M∑
m′=1

wm′ Im′(r, t) + qm(r, t), m = 1 · · · M. (2.16)

2.3. The DOM-DG method for the radiative transfer equations on triangular meshes

The angular discretization of the radiative transfer equation leads to a linear hyperbolic system of first-order partial 
differential equations in space. Now we discretize Equation (2.15) by the discontinuous Galerkin method.

Let’s denote a triangulation of the computational domain D by Th = {K } consisting of non-overlapping triangles covering 
completely the domain D, where h is the maximum edge size of the triangular meshes. Assume the coordinates of the 
vertices (x̂, ŷ) for the reference triangular element K̂ to be {(0, 1), (1, 0), (0, 0)}, and the area of K̂ to be |K̂ |, then we can 
define the orthogonal basis functions {bp(x̂, ŷ), p = 0, 1, · · · } over K̂ , the specific formulation of which can be found in 
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Fig. 2. Transformation between the reference element K̂ and the arbitrary triangular element K .

Appendix A. For an arbitrary triangular element K ∈ Th , let its vertices be {(x1, y1), (x2, y2), (x3, y3)}, and its area be |K |, 
then there is an affine transformation F : K̂ → K[

x(x̂, ŷ)

y(x̂, ŷ)

]
=

[
(x2 − x3) (x1 − x3)

(y2 − y3) (y1 − y3)

][
x̂
ŷ

]
+

[
x3
y3

]
, (2.17)

and its inverse transformation F−1: K → K̂[
x̂(x, y)

ŷ(x, y)

]
= 1

J

[
(y1 − y3) − (x1 − x3)

−(y2 − y3) (x2 − x3)

][
x − x3
y − y3

]
, (2.18)

where J = | ∂(x,y)

∂(x̂, ŷ)
| = (x2 − x3)(y1 − y3) − (y2 − y3)(x1 − x3) = |K |/|K̂ |. This transformation relation can be seen in Fig. 2. 

Therefore, we can define a series of orthogonal basis functions {φ(K )
p (x, y), p = 0, 1, · · · } over the arbitrary triangular ele-

ment K by {bp(x̂, ŷ), p = 0, 1, · · · },

φ
(K )
p (x, y) = bp(x̂(x, y), ŷ(x, y)), p = 0,1, · · · . (2.19)

Define the finite element space:

V k
h = {Ih

m(x, y) ∈ L2(D) : Ih
m(x, y)|K ∈ Pk(K ),∀K }, (2.20)

where Pk(K ) is the set of all polynomials of degree at most k on the triangular element K and the dimension of P k(K ) is 
L = dim(Pk(K )) = (k+1)(k+2)

2 .
For a given direction �m , if we define the degrees of freedom as

I [p]
m,K = 1∫

K (φ
(K )
p (x, y))2dxdy

∫
K

Ih
m(x, y)φ

(K )
p (x, y)dxdy, p = 0,1, · · · , L − 1, (2.21)

then the DG polynomial solution Ih
m(x, y) in the space V k

h can be expressed as

Ih
m(x, y) =

L−1∑
p=0

I [p]
m,K φ

(K )
p (x, y), ∀(x, y) ∈ K . (2.22)

We multiply Equation (2.15) by a test function φ(x, y) ∈ V k
h , then integrate it over the element K , and replace the exact 

solution Im(x, y) by its approximation Ih
m(x, y), finally we have∫

K

�m · (∇ Ih
m(x, y))φ(x, y)dxdy +

∫
K

σt Ih
m(x, y)φ(x, y)dxdy

=
∫
K

σs�K (x, y)φ(x, y)dxdy +
∫
K

qm(x, y)φ(x, y)dxdy,

(2.23)

with

�K (x, y) =
M∑

m′=1

wm′ Im′,K (x, y).

Apply the Green’s theorem on the gradient term, we have
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∫
K

�m · (∇ Ih
m(x, y))φ(x, y)dxdy

=
∫
∂ K

ne
K · (�m Ih

m(x, y)φ(x, y))dτ −
∫
K

(�m Ih
m(x, y)) · (∇φ(x, y))dxdy,

(2.24)

where ne
K is the outward unit normal to the cell boundary ∂ K .

It is noted that the function Ih
m(x, y) may be discontinuous across the cell boundaries. For the particular direction �m , 

we define the inflow boundary ∂ K m− and the outflow boundary ∂ K m+ of the cell K by

∂ K m+ = {eK m+ ∈ ∂ K |�m · ne
K m+ ≥ 0},

∂ K m− = {eK m− ∈ ∂ K |�m · ne
K m− < 0}, (2.25)

where ne
K m+ and ne

K m− are the outward unit normal to ∂ K m+ and ∂ K m− , respectively.

By applying the monotone upwind numerical flux at the cell boundaries, and use the notations Ih
m(int(K )) and Ih

m(ext(K ))

to denote the approximations to the values on the edge eK ∈ ∂ K obtained from the interior and the exterior of K , respec-
tively. Then the DG scheme for solving the equation (2.15) on the triangular element K can be described as

∫
K

σt Ih
m(x, y)φ(x, y)dxdy −

∫
K

(�m Ih
m(x, y)) · (∇φ(x, y))dxdy

+
∫

∂ K m+
ne

K m+ · (�m Ih
m(int(K )))φ(x, y)dτ

=
∫
K

σs�K (x, y)φ(x, y)dxdy +
∫
K

qm(x, y)φ(x, y)dxdy

−
∫

∂ K m−
ne

K m− · (�m Ih
m(ext(K )))φ(x, y)dτ .

(2.26)

Likewise, for the unsteady radiative transfer equation, we use the implicit backward Euler time discretization to solve 
Equation (2.16),

∫
K

σ̂t Ih
m(x, y, tn)φ(x, y)dxdy −

∫
K

(�m Ih
m(x, y, tn)) · (∇φ(x, y))dxdy

+
∫

∂ K m+
ne

K m+ · (�m Ih
m(int(K ), tn))φ(x, y)dτ

=
∫
K

σs�K (x, y, tn)φ(x, y)dxdy +
∫
K

q̂m(x, y, tn)φ(x, y)dxdy

−
∫

∂ K m−
ne

K m− · (�m Ih
m(ext(K ), tn))φ(x, y)dτ ,

(2.27)

with σ̂t = 1
c
tn

+ σt , q̂m(x, y, tn) = qm(x, y, tn) + 1
c
tn

Ih
m(x, y, tn−1), and the time step 
tn = tn − tn−1.

Generally, the discrete set of algebraic equations in the DOM-DG schemes such as (2.26) and (2.27) is widely solved 
by the source iterative (SI) method [14] in an optimal sweeping order. This is usually referred to as the grid sweeping 
algorithm. More details can be found in [26]. The SI method is defined for solving the DOM-DG scheme (2.26) as follows: 
when the �-th iteration solution I(�)m,K (x, y) (for all m = 1, · · · , M and ∀K ) is known, we compute I(�+1)

m (x, y) cell by cell in 
the sweeping direction [7], and for each fixed element K , we run through m = 1, · · · , M to solve (omitting the superscript 
h below for the sake of writing simplicity)
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∫
K

σt I(�+1)
m (x, y)φ(x, y)dxdy −

∫
K

(�m I(�+1)
m (x, y)) · (∇φ(x, y))dxdy

+
∫

∂ K m+
ne

K m+ · (�m I(�+1)
m (int(K )))φ(x, y)dτ

=
∫
K

σs�
∗
K (x, y)φ(x, y)dxdy +

∫
K

qm(x, y)φ(x, y)dxdy

−
∫

∂ K m−
ne

K m− · (�m I(�+1)
m (ext(K )))φ(x, y)dτ ,

(2.28)

where

�∗
K (x, y) =

M∑
m′=1

wm′ I∗m′,K (x, y),

and

I∗m′,K (x, y) =
{

I(�+1)

m′,K (x, y), if it is already available,

I(�)m′,K (x, y), otherwise.

The initial iteration values I(0)
m,K can be determined arbitrarily. The SI iteration process continues until a prescribed conver-

gence criterion is satisfied. In this paper we take the absolutely maximum residue maxm ‖I(�+1)
m − I(�)m ‖∞ ≤ 10−12 in our 

numerical experiments in Section 5.
Similarly, the SI method to solve the DOM-DG scheme (2.27) can be described as follows∫

K

σ̂t I(�+1)
m (x, y, tn)φ(x, y)dxdy −

∫
K

(�m I(�+1)
m (x, y, tn)) · (∇φ(x, y))dxdy

+
∫

∂ K m+
ne

K m+ · (�m I(�+1)
m (int(K ), tn))φ(x, y)dτ

=
∫
K

σs�
∗
K (x, y, tn)φ(x, y)dxdy +

∫
K

q̂m(x, y, tn)φ(x, y)dxdy

−
∫

∂ K m−
ne

K m− · (�m I(�+1)
m (ext(K ), tn))φ(x, y)dτ .

(2.29)

Notice that the SI solver (2.29) is equivalent to (2.28) for solving the steady radiative transfer equation, thus, we only need 
to discuss (2.28) below.

3. The specific quadrature points on the triangle K for the design of the positivity-preserving DG schemes

In this section, we would like to find a special quadrature rule on the triangle K for the design of our two-dimensional 
rotational positivity-preserving limiter on triangular meshes by the idea of the one-dimensional rotational positivity-
preserving limiter [26], which has been proven to maintain high order accuracy and positivity. The quadrature rule on 
the triangle K should satisfy:

(1) The quadrature rule is exact for the integration of the DG polynomial on the triangle K .
(2) All the quadrature weights should be positive.
(3) The quadrature points should have the Gauss-Lobatto type distribution on each edge eK of the triangle K , so that we 

could use the one-dimensional scaling limiter on the edge.
(4) These quadrature points can be arranged on certain line segments, each of which starts with one quadrature point on 

one edge of the triangle K and ends with another quadrature point on another edge. Then on these certain line segments, 
we could use the one-dimensional rotational positivity-preserving limiter.

Let P K (x, y) be the DG polynomial of degree k on the triangle K , and P K̂ (x(x̂, ŷ), y(x̂, ŷ)) be the DG polynomial of 
degree k on the reference triangle K̂ . For an arbitrary triangular element K , using the transformations (2.17) and (2.18), we 
have

1

|K |
∫
K

P K (x, y)dxdy = 1

|K̂ |
∫

P K̂ (x(x̂, ŷ), y(x̂, ŷ))dx̂d ŷ. (3.1)

K̂
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Thus, we first discuss how to use quadrature to decompose the cell average as a convex combination of point values of the 
DG polynomial P K̂ (x(x̂, ŷ), y(x̂, ŷ)) on the reference triangle K̂ below.

Consider the quadrature rule on the unit square R with the vertices S1(− 1
2 , 12 ), S2(

1
2 , 12 ), S3(

1
2 , − 1

2 ), and S4(− 1
2 , − 1

2 )

in the u-v plane. Let N be the smallest integer such that 2N − 3 ≥ k, then the N-point Gauss-Lobatto quadrature rule is 
exact for a single variable polynomial of degree k. Let {v̂γ1 : γ1 = 1, · · · , N} denote the Gauss-Lobatto quadrature points 
on v ∈ [− 1

2 , 12 ] with weights ŵγ1 , and {ûγ2 : γ2 = 1, · · · , N} denote the Gauss-Lobatto quadrature points on u ∈ [− 1
2 , 12 ]

with weights ŵγ2 . For a two-variable polynomial, we can use the tensor product of N Gauss-Lobatto points for u and N
Gauss-Lobatto points for v as the quadrature rule on the square R , then the quadrature points can be written as Rk =
{(ûγ2 , ̂vγ1 ) : γ1 = 1, · · · , N; γ2 = 1, · · · , N}. This quadrature is exact for a two-variable polynomial if its degree with respect 
to u is not larger than k and the degree with respect to v is also not larger than k.

Without loss of generality, we assume the orientation of the three vertices V̂ 1(0, 1), V̂ 2(1, 0) and V̂ 3(0, 0) of the trian-
gular K̂ is clockwise. We define the following three functions

g1(u, v) = (1

2
+ v

)
V̂ 1 + (1

2
+ u

)(1

2
− v

)
V̂ 2 + (1

2
− u

)(1

2
− v

)
V̂ 3,

g2(u, v) = (1

2
+ v

)
V̂ 2 + (1

2
+ u

)(1

2
− v

)
V̂ 3 + (1

2
− u

)(1

2
− v

)
V̂ 1,

g3(u, v) = (1

2
+ v

)
V̂ 3 + (1

2
+ u

)(1

2
− v

)
V̂ 1 + (1

2
− u

)(1

2
− v

)
V̂ 2.

(3.2)

Each of them is a projection from the square R to the reference triangle K̂ , mapping the top edge of R into one vertex and 
the other three edges to the edges of K̂ . We denote S1 S2 as the line segment starts with the point S1 and ends with the 
point S2. Specifically, the function g1 maps the top edge S1 S2 of the rectangle R into the vertex V̂ 1 and the edges S2 S3, 
S3 S4, S4 S1 to the edges V̂ 1 V̂ 2, V̂ 2 V̂ 3, V̂ 3 V̂ 1 of the triangle K̂ , respectively. The function g2 maps the top edge S1 S2 of the 
R into the vertex V̂ 2 and the edges S2 S3, S3 S4, S4 S1 to the edges V̂ 2 V̂ 3, V̂ 3 V̂ 1, V̂ 1 V̂ 2 of the triangle K̂ , respectively. The 
function g3 maps the top edge S1 S2 of the rectangle R into the vertex V̂ 3 and the edges S2 S3, S3 S4, S4 S1 to the edges 
V̂ 3 V̂ 1, V̂ 1 V̂ 2, V̂ 2 V̂ 3 of the triangle K̂ , respectively. We will use the projects gi(u, v), i = 1, 2, 3 and the quadrature points Rk

to construct our quadrature points on the triangle K̂ , then we have

1

|K̂ |
∫
K̂

P K̂ (x̂, ŷ)dx̂d ŷ = 1

|K̂ |
∫
R

P K̂ (gi(u, v))

∣∣∣∂ gi(u, v)

∂(u, v)

∣∣∣dudv, i = 1,2,3, (3.3)

where the Jacobian 
∣∣∣ ∂ gi(u,v)

∂(u,v)

∣∣∣ = 2|K̂ |( 1
2 − v). Notice that P K̂ (gi(u, v))

∣∣∣ ∂ gi(u,v)
∂(u,v)

∣∣∣ is still a two-variable polynomial and its 
degrees with respect to u and v are k and k +1, respectively. Thus, the double integral in u and v is exact to the quadrature 
Rk if 2N − 3 ≥ k + 1. Here, we take N = k + 1 when k ≥ 2. For the case of k = 1, we choose N = k + 2. Therefore, we have

1

|K̂ |
∫
R

P K̂ (gi(u, v))

∣∣∣∂ gi(u, v)

∂(u, v)

∣∣∣dudv =
N∑

γ1=1

N∑
γ2=1

ŵγ1 ŵγ2 2(
1

2
− v̂γ1)P K̂ (gi(ûγ2 , v̂γ1)), i = 1,2,3. (3.4)

So we can obtain three different quadrature rules for P K̂ (x̂, ŷ) over K̂ . The quadrature points are gi(Rk), i = 1, 2, 3 with 
nonnegative quadrature weights, see Figs. 3(b)(c)(d) for k = 4.

By combining the points of the three quadrature rules, we obtain the quadrature points Gk
K̂

on the reference triangle K̂

Gk
K̂

= g1(Rk) ∪ g2(Rk) ∪ g3(Rk). (3.5)

Let NG be the number of Gk
K̂

, then NG = 3(N − 1) + 3(N − 2)2. Clearly, the quadrature points Gk
K̂

have the Gauss-Lobatto 
type distribution on each edge of the reference element K̂ , see Fig. 4 for k = 4. Using Equations (3.3) and (3.4), we can find 
a quadrature rule to decompose the cell average of P K̂ (x, y) over the reference triangle K̂ as follows

1

|K̂ |
∫
K̂

P K̂ (x̂, ŷ)dx̂d ŷ =1

3

3∑
i=1

N∑
γ1=1

N∑
γ2=1

2(
1

2
− v̂γ1)ŵγ1 ŵγ2 P K̂ (gi(ûγ2 , v̂γ1))

=
∑

(x̂α, ŷα)∈Gk
K̂

ŵα P K̂ (x̂α, ŷα).

(3.6)

There are 3(N − 2)2 quadrature points laying in the interior of K̂ , whose weights are

2
ŵγ1 ŵγ2(

1 − v̂γ1), γ1 = 2, · · · , N − 1; γ2 = 2, · · · , N − 1. (3.7)

3 2



10 M. Zhang et al. / Journal of Computational Physics 397 (2019) 108811
Fig. 3. Illustration of the three projections for k = 4.

Fig. 4. The quadrature points Gk
K̂

on the triangle K̂ for k = 4.

We would like to find the quadrature weights ŵα in (3.6) for the quadrature points at three vertices and other Gauss-
Lobatto points laying on each edge. Notice that g1(ûγ2 , ̂v N ), g2(û1, ̂v1) and g3(ûN , ̂v1) are the same point V̂ 1; g1(ûN , ̂v1), 
g2(ûγ2 , ̂v N) and g3(û1, ̂v1) are the same point V̂ 2; g1(û1, ̂v1), g2(ûN , ̂v1) and g3(ûγ2 , ̂v N ) are the same point V̂ 3. Using 
v̂1 = − 1

2 , v̂ N = 1
2 and ŵ1 = ŵ N , the quadrature weight of the vertex V̂ 1 is

2

3
(

1

2
− v̂ N)ŵ N

N∑
γ2=1

ŵγ2 + 2

3
(

1

2
− v̂1)ŵ1 ŵ1 + 2

3
(

1

2
− v̂1)ŵ1 ŵ N = 4

3
ŵ1 ŵ1. (3.8)

Similarly, the weights for the vertices V̂ 2 and V̂ 3 are also 4 ŵ1 ŵ1.
3
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Remark 3.1. Notice that when v̂ N = 1
2 , the quadrature weights of the points gi(ûγ2 , ̂v N), i = 1, 2, 3, satisfy ŵ N ŵγ2 2( 1

2 −
v̂ N) = 0. Thus, the weights of the vertices V̂ 1, V̂ 2, V̂ 3 are zero in the quadrature rules g1(Rk), g2(Rk), and g3(Rk), respec-
tively. If we only choose one of the quadrature rules gi(Rk), i = 1, 2, 3, the second and the third conditions in the beginning 
of this section are violated. That is why we combine the points of the three quadrature rules to obtain the quadrature points 
on the triangle. Moreover, the quadrature weights of the quadrature points are symmetric on the triangle in this way.

From the edge-mapping relationship of the projections, we easily find that for the projection g1, the quadrature points 
g1(ûN , −v̂γ ), g1(−ûγ , ̂v1), g1(û1, ̂vγ ) lie on the edges V̂ 1 V̂ 2, V̂ 2 V̂ 3, V̂ 3 V̂ 1, respectively. For the projection g2, the quadra-

ture points g2(û1, ̂vγ ), g2(ûN , −v̂γ ), g2(−ûγ , ̂v1) lie on the edges V̂ 1 V̂ 2, V̂ 2 V̂ 3, V̂ 3 V̂ 1, respectively. And for the projection 
g3, the quadrature points g3(−ûγ , ̂v1), g3(û1, ̂vγ ), g3(ûN , −v̂γ ) lie on the edges V̂ 1 V̂ 2, V̂ 2 V̂ 3, V̂ 3 V̂ 1, respectively. Here 
γ = 2, · · · , N − 1. After simple calculation, we can get

g1( ûN ,−v̂γ ) = (
1

2
+ v̂γ ,

1

2
− v̂γ ), g1(−ûγ , v̂1) = (

1

2
− ûγ ,0), g1( û1, v̂γ ) = (0,

1

2
+ v̂γ ),

g2( û1, v̂γ ) = (
1

2
+ v̂γ ,

1

2
− v̂γ ), g2( ûN ,−v̂γ ) = (

1

2
− v̂γ ,0), g2(−ûγ , v̂1) = (0,

1

2
+ ûγ ),

g3(−ûγ , v̂1) = (
1

2
+ ûγ ,

1

2
− ûγ ), g3( û1, v̂γ ) = (

1

2
− v̂γ ,0), g3( ûN ,−v̂γ ) = (0,

1

2
+ v̂γ ).

Note that ûγ = v̂γ , we substitute ûγ by v̂γ . Then g1(ûN , −v̂γ ), g2(û1, ̂vγ ), g3(−ûγ , ̂v1) are the same point ( 1
2 + v̂γ , 12 − v̂γ ), 

and its weight is
2

3
(

1

2
+ v̂γ )ŵγ ŵ N + 2

3
(

1

2
− v̂γ )ŵγ ŵ1 + 2

3
(

1

2
− v̂1)ŵ1 ŵγ = 4

3
ŵγ ŵ1. (3.9)

Similarly, the weights for ( 1
2 − v̂γ , 0), (0, 12 + v̂γ ) are 4

3 ŵγ ŵ1.
Thus, the weights ŵα of all the quadrature points (x̂α, ŷα) ∈ Gk

K̂
on the reference triangular element are positive. We 

list the specific quadrature points on K̂ and the corresponding weights for the case of k = 1, 2, 3, 4 in Appendix B (Ta-
bles 10–12).

Obviously, the affine transformations between the reference triangle K̂ and the arbitrary triangle K only change the 
position of the quadrature points but do not change their weights. We denote quadrature points of the arbitrary triangle K
as Gk

K = {(xα
K , yα

K ), α = 1, · · · , NG}, then we can find the quadrature rule on the triangle K as follows

1

|K |
∫
K

P K (x, y)dxdy =
∑

(xα
K ,yα

K )∈Gk
K

ŵα P K (xα
K , yα

K ). (3.10)

Our quadrature points also satisfy the fourth condition presented in the beginning of this section. For convenience, for 
any γ = 1, · · · , N , we use the notation �γ

v to denote the line segment starts with the point (ûγ , ̂v1) and ends with the 
point (ûγ , ̂v N), �γ

−u to denote the line segment starts with the point (ûN , ̂vγ ) and ends with the point (û1, ̂vγ ), and �γ
u

to denote the line segment starts with the point (û1, ̂vγ ) and ends with the point (ûN , ̂vγ ), see Figs. 5(a)(b)(c) for k = 4, 
respectively. Without loss of generality, here we only illustrate the edge V 2 V 3 of the triangle K . Each of the transformations 
gi, i = 1, 2, 3, maps the top edge S1 S2 of the rectangle R into one vertex and maps the other three edges of R into the three 
edges of the reference triangle K̂ , so that the edge V̂ 2 V̂ 3 is corresponding to the edges S3 S4, S2 S3, S4 S1 of the rectangle 
R in three transformations gi, i = 1, 2, 3, respectively. The transformation g1, g2, g3 map the line segments �γ

v , �γ
−u and 

�
γ
u on the rectangle R into the corresponding line segments g1(�

γ
v ), g2(�

γ
−u) and g3(�

γ
u ) on the reference triangle K̂ , 

respectively. Let notations T γ
g1 , T γ

g2 and T γ
g3 on the arbitrary triangle K correspond to the line segments g1(�

γ
v ), g2(�

γ
−u)

and g3(�
γ
u ) on the reference triangle K̂ , respectively. See Fig. 5 for k = 4.

So for a given edge V 2 V 3 of the arbitrary triangle K , which includes N − 2 Gauss-Lobatto points except for the vertices 
V 2 and V 3. We denote these points as {(xγ

e , yγ
e ), γ = 2, · · · , N − 1}, then we can arrange all the quadrature points on K on 

the certain line segments T γ
g1 , T γ

g2 and T N+1−γ
g3 , on which there are N quadrature points including the point (xγ

e , yγ
e ). See 

Figs. 5(g)(h)(i) for k = 4, respectively.

4. High order positivity-preserving DG schemes for radiative transfer equations on triangular meshes

Generally, higher order approximations for radiative intensity may provide more accurate solutions but artifacts might 
appear such as negativeness of the solutions. In Section 3, we have constructed the special quadrature points Gk

K on the 
arbitrary triangular K which satisfies four major conditions. One of the keypoints of this paper is these quadrature points 
can be arranged on the certain line segments, each of which starts with one quadrature point on one edge of the triangle K
and ends with another quadrature point on another edge. On these certain line segments we can use the one-dimensional 
rotational positivity-preserving limiter [26]. In this section, we extend the one-dimensional rotational positivity-preserving 
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Fig. 5. All the quadrature points can be arranged on the line segments for k = 4.

limiter for DG method solving radiative transfer equations to the two-dimensional rotational positivity-preserving limiter on 
triangular meshes with Pk polynomials.

Taking the test function φ(x, y) = 1 in Equation (2.28), the cell averages produced by the DG method satisfies∫
K

σt I(�+1)
m (x, y)dxdy +

∫
∂ K m+

ne
K m+ · (�m I(�+1)

m (int(K )))dτ

=
∫
K

σs�
∗
K (x, y)dxdy +

∫
K

qm(x, y)dxdy −
∫

∂ K m−
ne

K m− · (�m I(�+1)
m (ext(K )))dτ .

(4.1)

For simplicity, we denote (·̄) as the cell averaging operator over the triangle K , (·̃) as the edge averaging operator on the 
edge eK , that is,

P̄ K = 1

|K |
∫
K

P K (x, y)dxdy, P̃eK = 1

|eK |
∫
eK

P K (x, y)dτ , (4.2)

then Equation (4.1) can be rewritten as

|K |σt Ī(�+1)
m,K +

∑
eKm+

(
|eK m+|(ne

K m+ · �m) Ĩ(�+1)
m,eKm+

)
= |K |σs�̄

∗
K + |K |q̄m,K −

∑
e m−

(
|eK m−|(ne

K m− · �m) Ĩ(�+1)
m,eKm−

)
.

(4.3)
K
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We assume that the source term qm,K (x, y) and I(�+1)
m,K (x, y) at the domain boundary are nonnegative and the values of the 

DG polynomials I(�)m,K and I(�+1)
m,K in the upstream cells (which have already been updated) at the quadrature points are also 

nonnegative (which is achieved by using the positivity-preserving limiter described below in the upstream cells), then we 
know that �̄∗

K , q̄m,K , Ĩ(�+1)
m,eKm− are all nonnegative. Notice that ne

K m+ · �m ≥ 0 and ne
K m− · �m < 0 in the equation (2.25), then 

on the triangular cell K , by the mean value theorem, there exists a point q ∈ K , such that

I(�+1)
m,K (q) =

|K |σt Ī(�+1)
m,K + ∑

eKm+

(
(ne

K m+ · �m)|eK m+| Ĩ(�+1)
m,eKm+

)
|K |σt + ∑

eKm+

(
(ne

K m+ · �m)|eK m+|
) ≥ 0. (4.4)

Obviously, this equation implies that, at least one of Ī(�+1)
m,K and Ĩ(�+1)

m,eKm+ , ∀eK m+ ∈ ∂ K m+ is nonnegative.
Next, in order to keep the high order accuracy as well as the positivity preserving property of the radiative intensity on 

triangular meshes, we adopt either the scaling positivity-preserving limiter or the rotational positivity-preserving limiter on 
I(�+1)
m,K (x, y) depending on which is nonnegative among Ī(�+1)

m,K and Ĩ(�+1)
m,eKm+ , ∀eK m+ ∈ ∂ K m+ .

4.1. The scaling positivity-preserving limiter on triangular meshes

If Ī(�+1)
m,K ≥ 0, we will employ the scaling positivity-preserving limiter [29] to modify I(�+1)

m,K (x, y) as follows

Î(�+1)
m,K (x, y) = λ

(
I(�+1)
m,K (x, y) − Ī(�+1)

m,K

)
+ Ī(�+1)

m,K , (4.5)

with

λ = min
{∣∣∣ Ī(�+1)

m,K

Ī(�+1)
m,K − z

∣∣∣,1
}
, z = min

(xα
K ,yα

K )∈Gk
K

(
I(�+1)
m,K (xα

K , yα
K ),0

)
. (4.6)

Proposition 4.1. [29]. Suppose I(�+1)
m,K (x, y) is a k-th degree polynomial defined on the triangular element K which approximates a 

smooth function I(x, y) ≥ 0 to (k + 1)-th order accuracy, and ̄I(�+1)
m,K ≥ 0, then the limited polynomial ̂I(�+1)

m,K (x, y) defined by (4.5) and 
(4.6) achieves positivity ̂I(�+1)

m,K (xα
K , yα

K ) ≥ 0 for all (xα
K , yα

K ) ∈ Gk
K and guarantees the same (k +1)-th order accuracy for approximating 

I(x, y).

4.2. The rotational positivity-preserving limiter on triangular meshes

For a given discrete direction �m , there are two different types of elements on triangular meshes. The first type has two 
inflow boundaries and one outflow boundary, and the second type has one inflow boundary and two outflow boundaries. If 
Ī(�+1)
m,K is negative, then there exists at least one of outflow boundaries, denoted as ẽK ∈ ∂ K m+ , whose edge average Ĩ(�+1)

m,ẽK

should be nonnegative. In this case, the limiting procedure consists of the one-dimensional scaling positivity-preserving 
limiter on ẽK followed by the one-dimensional rotational positivity-preserving limiter around this cell boundary. In the 
second type, we only need to choose one of outflow boundaries denoted as ẽK .

For the convenience of description, firstly we review the idea of the one-dimensional rotational positivity-preserving 
limiter algorithm proposed in [26]. To be specific, assume � to be a line segment which includes N Gauss-Lobatto points 
{ξ j, j = 1, · · · , N}, and I(ξ) to be a k-th single variable polynomial defined on the cell �. For simplicity of notation, we 
denote the right end point ξN of � as ξc and its radiative intensity as Ic which satisfies Ic ≥ 0. Similarly, for any points ξ, ξ ′ ∈
� the values of the radiative intensity at these points are denoted as I and I ′ , respectively. The rotational transformation 
can be written as follows:[

ξ ′ − ξc

I ′ − Ic

]
=

[
cos θ, sin θ

− sin θ, cos θ

][
ξ − ξc

I − Ic

]
, (4.7)

where θ is the rotational angle, shown in Fig. 6. Suppose I ′ = 0, from Fig. 6 it is easy to compute θ = θ1 − θ2, that is

θ = arcsin
Ic − I√

(ξc − ξ)2 + (Ic − I)2
− arcsin

Ic√
(ξc − ξ)2 + (Ic − I)2

. (4.8)

The algorithm for the one-dimensional rotational positivity-preserving limiter can be defined as follows:
1. Compute the rotational angle θ j by (4.8) for each negative Gauss-Lobatto point ξ j on the line segment �, so that the 

point (ξ j, I(ξ j)) is rotated around (ξc, Ic) clockwise to reach the new point (ξ ′
j, 0). We set θ j = 0, if a particular ξ j is a 

nonnegative Gauss-Lobatto point.
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Fig. 6. Sketch of the rotational transformation.

2. Taking θ = max j=1,··· ,N−1 θ j , for j = 1, · · · , N − 1, we rotate each point (ξ j, I(ξ j)) to the new point (ξ ′
j, I

(rot)
j ) by 

the rotational transformation (4.7) with the rotational angle θ , where I(rot)
j = Ic + cos θ(I(ξ j) − Ic) − sin θ(ξ j − ξc), and 

ξ ′
j = ξc + cos θ(ξ j − ξc) + sin θ(I(ξ j) − Ic). Let I(rot)

N = Ic , then it is easy to see that the value I(rot)
j ≥ 0 for all j = 1, · · · , N .

This rotational positivity-preserving limiter has some properties proved in [26]. Here we only give the conclusion in the 
following lemma.

Lemma 4.2. [26]. Suppose I(�+1)(ξ) is a k-th single variable polynomial defined on the cell � which approximates a smooth function 
I(ξ) ≥ 0 to (k + 1)-th order accuracy, and the right end point value I(�+1)(ξc) is nonnegative. By the procedure of the one-dimensional 
rotational positivity-preserving limiter algorithm above, we have the value I(rot)

j ≥ 0 and 
∣∣∣I(rot)

j − I(�+1)(ξ j)
∣∣ ≤ Chk+1

1 for all j =
1 · · · , N, where h1 is the length of �.

Now, we modify the DG polynomial I(�+1)
m,K (x, y) on the triangular element K as follows. First, we apply the one-

dimensional scaling positivity-preserving limiter on the outflow boundary ẽK . We denote the Gauss-Lobatto points laying 
on this edge (anticlockwise order) as follows

Gk
e = {(xα

K , yα
K )|ẽK

} = {(xϑ
e , yϑ

e ),ϑ = 1, · · · , N}. (4.9)

We determine the modified polynomial I(�+1)
m,K (x, y)|ẽK

at the outflow boundary ẽK of the triangle K as

I(�+1)
m,K (x, y)|ẽK

= λe

(
I(�+1)
m,K (x, y)|ẽK

− Ĩ(�+1)

m,ẽK

)
+ Ĩ(�+1)

m,ẽK
, (4.10)

with

λe = min
{∣∣∣ Ĩ(�+1)

m,ẽK

Ĩ(�+1)

m,ẽK
− ze

∣∣∣,1
}
, ze = min

(xϑ
e ,yϑ

e )∈Gk
e

(
I(�+1)
m,K (xϑ

e , yϑ
e ),0

)
. (4.11)

This one-dimensional scaling positivity-preserving limiter (4.10) and (4.11) is proved in [28] to achieve positivity and main-
tain the original (k + 1)-th order accuracy, i.e.,

I(�+1)
m,K (xϑ

e , yϑ
e )|ẽK

≥ 0, ϑ = 1, · · · , N, (4.12)

and ∣∣∣I(�+1)
m,K (x, y)|ẽK

− I(�+1)
m,K (x, y)|ẽK

∣∣∣ = O (hk+1). (4.13)

We compute the difference de by

de = max
ϑ

∣∣∣I(�+1)
m,K (xϑ

e , yϑ
e )|ẽK

− I(�+1)
m,K (xϑ

e , yϑ
e )

∣∣∣. (4.14)

Obviously, we have

de = O (hk+1). (4.15)

We modify the values of I(�+1)
m,K (x, y) at all the quadrature points by

Ǐ(�+1)
(xα , yα ) = I(�+1)

(xα , yα ) + de, ∀(xα , yα ) ∈ Gk . (4.16)
m,K K K m,K K K K K K
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Fig. 7. Sketch of the line segments on which we perform rotational transformation. The red line segments represent T ϑ
g1

, the blue line segments represent 
T ϑ

g2
, and the green line segments represent T N−ϑ+1

g3
. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 

article.)

Notice that {φ(K )
p (x, y), p = 0, 1, · · · , L − 1} are the orthogonal basis functions on the triangular element K and φ(K )

0 (x, y) =
1, then the k-th degree DG polynomial I(�+1)

m,K (x, y) can be written by

I(�+1)
m,K (x, y) =

L−1∑
p=0

I [p]
m,K φ

(K )
p (x, y), ∀(x, y) ∈ K , (4.17)

where I [p]
m,K =

∫
K I(�+1)

m,K (x,y)φ
(K )
p (x,y)dxdy∫

K (φ
(K )
p (x,y))2dxdy

, p = 0, 1, · · · , L − 1, are the degrees of freedom.

Thus, the k-th degree modified polynomial Ǐ(�+1)
m,K (x, y) can be written as

Ǐ(�+1)
m,K (x, y) = (I [0]

m,K + de) +
L−1∑
p=1

I [p]
m,K φ

(K )
p (x, y), ∀(x, y) ∈ K . (4.18)

Clearly, the modified polynomial Ǐ(�+1)
m,K (x, y) maintains the (k + 1)-th order accuracy for approximating I(�+1)

m,K (x, y), i.e.,∣∣∣ Ǐ(�+1)
m,K (x, y) − I(�+1)

m,K (x, y)

∣∣∣ = O (hk+1), ∀(x, y) ∈ K , (4.19)

and is positive at the Gauss-Lobatto points along the edge ẽK

Ǐ(�+1)
m,K (xϑ

e , yϑ
e ) ≥ 0, ϑ = 1, · · · , N. (4.20)

Further, to guarantee the positivity of the radiative intensity at all the quadrature points (xα
K , yα

K ) ∈ Gk
K , we need to apply 

the one-dimensional rotational positivity-preserving limiter to Ǐ(�+1)
m,K (x, y) around the cell outflow boundary ẽK . We assume 

ẽK to be the edge V 2 V 3. For each point (xϑ
e , yϑ

e ), ϑ = 2, · · · , N − 1 on the edge V 2 V 3, we need to perform three times the 
one-dimensional rotational transformation algorithm along line segments T ϑ

g1
, T ϑ

g2
, and T N−ϑ+1

g3
, respectively. Fig. 7 shows 

the sketch of the line segments for k = 4, where (xϑ
e , yϑ

e ) is the rotational center.
So we need to perform the one-dimensional rotational positivity-preserving limiter 3(N − 2) times in all to obtain the 

modified values at all the quadrature points along these line segments. Let Ǐ(rot)
α be the value obtained by performing the 

rotational positivity-preserving limiter on Ǐ(�+1)
m,K (xα

K , yα
K ). Using Lemma 4.2, we have

Ǐ(rot)
α ≥ 0, α = 1, · · · , NG , (4.21)

and ∣∣∣ Ǐ(rot)
α − Ǐ(�+1)

m,K (xα
K , yα

K )

∣∣∣ = O (hk+1), ∀(xα
K , yα

K ) ∈ Gk
K . (4.22)

The modified polynomial ˇ̌I(�+1)
m,K (x, y) of degree k is determined by the unique interpolation in the L2-norm Least Square 

satisfying
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ˇ̌I(�+1)
m,K (x, y) = arg min

P(x,y)∈V k
h

{ ∑
(xα

K ,yα
K )∈Gk

K

(
P(xα

K , yα
K ) − Ǐ(rot)

α

)2
}
, (4.23)

subject to

1

|K |
∫
K

P(x, y)dxdy =
NG∑
α=1

ŵα Ǐ(rot)
α . (4.24)

The details on how to obtain the modified polynomial ˇ̌I(�+1)
m,K (x, y) could be seen in the following proof of Theorem 4.3.

Theorem 4.3. Assume Ǐ(�+1)
m,K (x, y) to be a k-th degree polynomial defined on the triangular element K which approximates a smooth 

function, if the k-th degree polynomial ˇ̌I(�+1)
m,K (x, y) defined by Equations (4.23), (4.24), and for all (xα

K , yα
K ) ∈ Gk

K satisfies (4.21), 
(4.22), then we have∣∣∣ˇ̌I(�+1)

m,K (x, y) − Ǐ(�+1)
m,K (x, y)

∣∣∣ = O (hk+1), (4.25)

and the cell average 
¯̌̌
I(�+1)
m,K ≥ 0.

Proof. Obviously, the cell average

¯̌̌
I(�+1)
m,K =

NG∑
α=1

ŵα Ǐ(rot)
α ≥ 0. (4.26)

Because the optimal polynomial ˇ̌I(�+1)
m,K (x, y) is in the space V k

h defined in (2.20), then we can write it as

ˇ̌I(�+1)
m,K (x, y) = a0 +

L−1∑
p=1

apφ
(K )
p (x, y), ∀(x, y) ∈ K , (4.27)

where a0 = ∑NG
α=1 ŵα Ǐ(rot)

α and the coefficients ap, p = 1, · · · , L − 1, need to be determined.

Using (2.19), we can also rewrite ˇ̌I(�+1)
m,K (x, y) as

ˇ̌I(�+1)
m,K (x, y) = a0 +

L−1∑
p=1

apbp(x̂(x, y), ŷ(x, y)), ∀(x, y) ∈ K . (4.28)

We would like to find a = (a1, a2, · · · , aL−1)
T by solving the least square problem

Aa = B, (4.29)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(x̂1, ŷ1) b2(x̂1, ŷ1) · · · bL−1(x̂1, ŷ1)

b1(x̂2, ŷ2) b2(x̂2, ŷ2) · · · bL−1(x̂2, ŷ2)
...

... · · · ...

b1(x̂α, ŷα) b2(x̂α, ŷα) · · · bL−1(x̂α, ŷα)
...

... · · · ...

b1(x̂NG , ŷNG ) b2(x̂NG , ŷNG ) · · · bL−1(x̂NG , ŷNG )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.30)

and

B =
(

Ǐ(rot)
1 − a0, Ǐ(rot)

2 − a0, · · · , Ǐ(rot)
NG

− a0

)T
. (4.31)

Then we can obtain a = (AT A)−1 AT B . By calculation, we can rewrite ˇ̌I(�+1)
m,K (x, y) as follows

ˇ̌I(�+1)
m,K (x, y) =

NG∑
Ǐ(rot)
α fα(x̂, ŷ) =

NG∑
Ǐ(rot)
α f (K )

α (x, y), (4.32)

α=1 α=1
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where the polynomial fα(x̂, ŷ) is the linear combination of the basis functions bp(x̂, ŷ), p = 0, 1, · · · , L − 1, that is to say, 
f (K )
α (x, y) is the linear combination of the basis functions φ(K )

p (x, y), p = 0, 1, · · · , L − 1, and satisfies

NG∑
α=1

f (K )
α (x, y) =

NG∑
α=1

fα(x̂, ŷ) = 1.

Because the basis functions bp(x̂, ŷ), p = 0, 1, · · · , L − 1, over K̂ are bounded continuous functions and using (2.19), then 
f (K )
α (x, y) is also a bounded continuous function on K , i.e., there exists a constant C , independent of mesh size parameter 

h, such that∣∣∣ f (K )
α (x, y)

∣∣∣ ≤ C, α = 1, · · · , NG . (4.33)

The specific form of f (K )
α (x, y) is shown in Appendix C. Using (4.22) and (4.33), thus we have∣∣∣ˇ̌I(�+1)

m,K (x, y) − Ǐ(�+1)
m,K (x, y)

∣∣∣
=

∣∣∣ NG∑
α=1

Ǐ(rot)
α f (K )

α (x, y) −
NG∑
α=1

Ǐ(�+1)
m,K (xα

K , yα
K ) f (K )

α (x, y)

∣∣∣
=

∣∣∣ NG∑
α=1

(
Ǐ(rot)
α − Ǐ(�+1)

m,K (xα
K , yα

K )
)

f (K )
α (x, y)

∣∣∣
≤

NG∑
α=1

∣∣∣ Ǐ(rot)
α − Ǐ(�+1)

m,K (xα
K , yα

K )

∣∣∣∣∣∣ f (K )
α (x, y)

∣∣∣
≤ Chk+1. �

(4.34)

Finally, we will again perform the two-dimensional scaling positivity-preserving limiter defined in subsection 4.1 to 
modify ˇ̌I(�+1)

m,K (x, y) over the triangular element K ,

Î(�+1)
m,K (x, y) = λK

(ˇ̌I(�+1)
m,K (x, y) − ¯̌̌

I(�+1)
m,K

)
+ ¯̌̌

I(�+1)
m,K , (4.35)

where the parameter λK is determined as

λK = min
{∣∣∣ ¯̌̌

I(�+1)
m,K

¯̌̌
I(�+1)
m,K − zK

∣∣∣,1
}
, zK = min

(xα
K ,yα

K )∈Gk
K

(ˇ̌I(�+1)
m,K (xα

K , yα
K ),0

)
. (4.36)

Thus, we can get the final modified DG polynomial Î(�+1)
m,K (x, y) satisfying

Î(�+1)
m,K (xα

K , yα
K ) ≥ 0, ∀(xα

K , yα
K ) ∈ Gk

K , (4.37)

and ∣∣∣ Î(�+1)
m,K (x, y) − ˇ̌I(�+1)

m,K (x, y)

∣∣∣ = O (hk+1). (4.38)

From the definition of the rotational positivity-preserving limiter on triangular meshes, we have the following conclusion.

Theorem 4.4. Assume I(�+1)
m,K (x, y) is a k-th degree polynomial defined on the triangular element K which approximates a smooth 

function I(x, y) ≥ 0 to (k + 1)-th order accuracy, then the limited polynomial Î(�+1)
m,K (x, y) obtained by the above procedures achieves 

positivity-preserving property ̂I(�+1)
m,K (xα

K , yα
K ) ≥ 0 for all (xα

K , yα
K ) ∈ Gk

K and maintains the same (k + 1)-th order accuracy for approx-
imating I(x, y).

Similarly, the two-dimensional high order positivity-preserving DG schemes proposed for the steady radiative transfer 
equation can naturally be extended to the unsteady radiative transfer equation.

Remark 4.5. We emphasize that neither the DG method itself nor the rotational positivity-preserving limiter depends on 
the particular choice of basis functions for the implementation. If other basis functions are used, a change of coefficients 
under different basis sets is needed.
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Remark 4.6. It is proved in [26] that the usage of the rotational positivity-preserving limiter does not affect the original 
high order accuracy of the DG scheme for solving radiative transfer equation on rectangular meshes, nor does it affect 
convergence to weak solutions even if the scheme is not conservative. In this paper, we also have the same results on 
triangular meshes.

5. Numerical results

In this section, we carry out some numerical experiments in two dimensions to validate the high order accuracy and 
positivity-preserving properties of our DG schemes on triangular meshes. For the DG schemes with the positivity-preserving 
limiter, we test the following two types: “scaling limiter preferred” and “rotational limiter preferred”. For the scaling-limiter-
preferred procedure, we judge if the cell average Ī(�+1)

m,K ≥ 0 first. If yes, then the scaling positivity-preserving limiter is 
employed; if not, then the rotational positivity-preserving limiter is applied. And for the rotational-limiter-preferred proce-
dure, we judge if the outflow edge average Ĩ(�+1)

m,ẽK
≥ 0 first. If yes, then the rotational positivity-preserving limiter is applied; 

if not, then the scaling positivity-preserving limiter is used. Regarding the discrete-ordinate quadrature rule, we adopt the 
Legendre-Chebyshev P N -T N quadrature [16] in which the μ-levels are equal to the roots of the Gauss-Legendre quadrature, 
and the azimuthal angles ϕ are determined from the roots of the orthogonal Chebyshev polynomials. To be more specific, 
P8-T8 are used for all the following tests with nonzero scattering terms, unless otherwise stated.

For the accuracy test of the DG schemes, the error in the computed solution is measured in the L1, and L∞ norms. We 
used 21 quadrature points {(xK

s , yK
s )} on each triangle K to compute the L1 and L∞ norms i.e.,

‖eh‖L1 = max
m

{ ∑
K∈Th

( |K |
21

21∑
s=1

∣∣Ih
m,K (xK

s , yK
s ) − Im,K (xK

s , yK
s )

∣∣)}
,

‖eh‖L∞ = max
m

{
max
K∈Th

(
max

s

∣∣Ih
m,K (xK

s , yK
s ) − Im,K (xK

s , yK
s )

∣∣)}
,

where these quadrature points {(xK
s , yK

s )} on the triangle K are obtained by the affine transformation (2.17) from the 
reference triangle K̂ to K , and the corresponding points on K̂ are{( i

5
,

j

5

)
, j = 0, · · · ,5; i = 0, · · · ,5 − j

}
.

Example 5.1 (The accuracy test of the DG schemes for the two-dimensional steady radiative transfer equation simulating the purely 
absorbing model [26]).

In this test, we solve the two-dimensional steady radiative transfer equation (2.12) with σt = 1, σs = 0, and the source 
function q = 0. The computational domain is D = [0, 1] × [0, 1]. ζ = 0.5, η = 0.1. The boundary conditions are

I(x,0, ζ,η) = 0, I(0, y, ζ,η) = sin6(π y).

In this case, the problem has the exact solution given as follows:

I(x, y, ζ,η) =
{

0, y <
η
ζ

x,

sin6(π(y − η
ζ

x))e− σt
ζ

x
, otherwise.

(5.1)

For this problem, numerically negative radiative intensity appears if the positivity-preserving limiter is not used in the 
high order DG schemes. The errors and orders of accuracy for the {P 1, P 2, P 3, P 4} DG schemes without the positivity-
preserving limiters and with the positivity-preserving limiters (both the scaling limiter preferred and the rotational limiter 
preferred procedures) are shown in Tables 1–4, respectively. In these tables, we also list the percentages of the cells where 
either the scaling positivity-preserving limiter or the rotational positivity-preserving limiter (denoted as “limiter” in the 
tables) is performed in the computation, respectively. The conservation errors (denoted as “c_err” in the tables) produced 
by the positivity-preserving limiters are also shown in the tables. We also notice that the conservation error converges to 
0 asymptotically with the refinement of the mesh, and higher order DG schemes produce smaller conservation errors. We 
can clearly see from these tables that, on our triangular meshes, the DG schemes with the above mentioned two types of 
the positivity-preserving limiting procedures can achieve the same designed order of accuracy as the DG schemes without 
the positivity-preserving limiters in both the L1 and L∞ norms. Moreover the DG schemes with the positivity-preserving 
limiter can also keep the positivity of the radiative intensity.

Example 5.2 (The positivity-preserving test of the DG schemes for the two-dimensional steady radiative transfer equation simulating 
the transparent model [26]).
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Table 1
Errors of the P 1 DG scheme for the two-dimensional steady radiative transfer equa-
tion simulating the purely absorbing model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 2.893E-03 5.191E-02
1/20 7.254E-04 1.996 1.606E-02 1.692
1/40 1.800E-04 2.011 4.586E-03 1.808
1/80 4.468E-05 2.010 1.190E-03 1.946

With positivity-preserving limiter (scaling limiter preferred)
1/10 3.024E-03 5.191E-02 17.63 0.0
1/20 7.409E-04 2.029 1.606E-02 1.692 10.74 0.0
1/40 1.808E-04 2.035 4.586E-03 1.808 7.51 0.0
1/80 4.473E-05 2.016 1.190E-03 1.946 5.72 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 3.742E-03 5.191E-02 10.90 1.311E-04
1/20 7.511E-04 2.317 1.606E-02 1.692 4.57 2.916E-06
1/40 1.800E-04 2.061 4.586E-03 1.808 2.02 1.437E-08
1/80 4.468E-05 2.011 1.190E-03 1.946 1.00 1.339E-10

Table 2
Errors of the P 2 DG scheme for the two-dimensional steady radiative transfer equa-
tion simulating the purely absorbing model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 3.191E-04 4.187E-03
1/20 3.819E-05 3.063 7.925E-04 2.402
1/40 4.491E-06 3.088 1.237E-04 2.679
1/80 5.303E-07 3.082 1.641E-05 2.915

With positivity-preserving limiter (scaling limiter preferred)
1/10 3.211E-04 4.187E-03 8.97 0.0
1/20 3.825E-05 3.069 7.925E-04 2.402 5.29 0.0
1/40 4.491E-06 3.090 1.237E-04 2.679 4.59 0.0
1/80 5.303E-07 3.082 1.641E-05 2.915 2.93 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 3.221E-04 4.187E-03 10.26 1.142E-06
1/20 3.829E-05 3.073 7.925E-04 2.402 4.65 1.037E-08
1/40 4.492E-06 3.091 1.237E-04 2.679 3.49 1.277E-10
1/80 5.303E-07 3.083 1.641E-05 2.915 3.09 3.898E-13

Table 3
Errors of the P 3 DG scheme for the two-dimensional steady radiative transfer equa-
tion simulating the purely absorbing model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 3.046E-05 4.637E-04
1/20 1.806E-06 4.076 3.691E-05 3.651
1/40 1.101E-07 4.035 2.910E-06 3.665
1/80 6.549E-09 4.072 1.908E-07 3.930

With positivity-preserving limiter (scaling limiter preferred)
1/10 4.083E-05 6.299E-04 8.97 0.0
1/20 2.022E-06 4.336 3.691E-05 4.093 6.65 0.0
1/40 1.131E-07 4.161 2.910E-06 3.665 5.03 0.0
1/80 6.567E-09 4.106 1.908E-07 3.930 3.84 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 3.570E-05 4.637E-04 8.01 8.430E-07
1/20 1.886E-06 4.243 3.691E-05 3.651 4.01 6.726E-09
1/40 1.111E-07 4.085 2.910E-06 3.665 3.15 4.376E-11
1/80 6.556E-09 4.083 1.908E-07 3.930 2.21 1.509E-13
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Table 4
Errors of the P 4 DG scheme for the two-dimensional steady radiative transfer equa-
tion simulating the purely absorbing model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 2.565E-06 4.907E-05
1/20 7.397E-08 5.116 2.202E-06 4.478
1/40 2.148E-09 5.106 7.962E-08 4.790
1/80 6.327E-11 5.085 2.550E-09 4.964

With positivity-preserving limiter (scaling limiter preferred)
1/10 2.998E-06 5.661E-05 9.94 0.0
1/20 7.835E-08 5.258 2.202E-06 4.684 5.45 0.0
1/40 2.183E-09 5.166 7.962E-08 4.790 4.15 0.0
1/80 6.367E-11 5.100 2.550E-09 4.964 3.33 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 2.653E-06 4.907E-05 8.97 1.500E-08
1/20 7.516E-08 5.141 2.202E-06 4.478 5.37 9.043E-11
1/40 2.158E-09 5.122 7.962E-08 4.790 3.87 4.124E-13
1/80 6.337E-11 5.089 2.550E-09 4.964 2.82 1.748E-15

Fig. 8. The meshes and the contours of the radiative intensity for the transparent model simulated by the DG schemes with the scaling-limiter-preferred 
procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been performed in the computation.
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Fig. 9. The comparison of the radiative intensity cut along y = 0.5 for the transparent model simulated by the DG schemes without the positivity-preserving 
limiters and with the scaling-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the points ( i
39 , 0.5), i =

0, 1, · · · , 39.

This problem is a two-dimensional transparent medium which is described by equation (2.12) with σt = 0, σs = 0 and 
the source term q = 0. The computational domain is [0, 1] × [0, 1]. ζ = 0.7, η = 0.7. The boundary conditions are

I(x,0, ζ,η) = 0, I(0, y, ζ,η) = 1. (5.2)

The problem has the exact solution given as follows

I(x, y, ζ,η) =
{

0, y <
η
ζ

x,
1, otherwise,

(5.3)

which exhibits a discontinuity along with y = η
ζ

x. Notice that we generate the triangular meshes on the computational 
domain by MATLAB pdetool for all examples. The triangular meshes which are shown in Figs. 8 and 11 don’t align with the 
discontinuity in the solution.

In this test, a negative solution will appear if we do not adopt the positivity-preserving limiter in the DG schemes, while 
the DG schemes with the positivity-preserving limiter can always get a nonnegative solution. Figs. 8(a)(b)(c)(d) show the 
contours of the radiative intensity obtained by the {P 1, P 2, P 3, P 4} DG schemes with the mesh size h = 1

40 and the cells 
where the scaling-limiter-preferred procedure has been enacted in the simulation, respectively. Figs. 11(a)(b)(c)(d) show the 
case with the rotational-limiter-preferred procedure. In these pictures, we mark the cells where the positivity-preserving 
limiter has been performed by discrete white points as well. It can be seen that, by using two types of limiters a positive 
solution can be obtained in our numerical experiments. Figs. 9–10 show the comparison of the radiative intensity cut along 
the lines y = 0.5 and x = 0.5 obtained by Pk(k = 1, 2, 3, 4) DG schemes without the positivity-preserving limiters and 
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Fig. 10. The comparison of the radiative intensity cut along x = 0.5 for the transparent model simulated by the DG schemes without the positivity-preserving 
limiters and with the scaling-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the points (0.5, i
39 ), i =

0, 1, · · · , 39.

with the scaling-limiter-preferred procedure on the mesh size h = 1
40 , respectively. And Figs. 12–13 show the comparison 

of the radiative intensity cut along the lines y = 0.5 and x = 0.5 obtained by P k(k = 1, 2, 3, 4) DG schemes without the 
positivity-preserving limiters and with the rotational-limiter-preferred procedure on the mesh size h = 1

40 , respectively. 
From these pictures, we can observe that the positivity-preserving limiter is necessary for the DG schemes to produce 
nonnegative solutions and the limiter can also maintain good resolution.

Notice that in this paper, we have not used any nonoscillatory limiters such as the TVB limiter [3], the WENO limiter 
[31], or the HWENO limiter [32]. So in Figs. 9–10 and Figs. 12–13, there are some localized spurious oscillations near the 
discontinuities in the numerical solutions, which are not eliminated by the positivity-preserving limiters if they are not near 
zero.

Example 5.3 (The positivity-preserving test of the DG schemes for the two-dimensional steady radiative transfer equation simulating 
the purely absorbing model [26]).

We test the schemes on the purely absorbing model expressed by (2.12) with σt = 1, σs = 0, and q = 0. The computa-
tional domain is [0, 1] × [0, 1]. ζ = 0.7, η = 0.7. The boundary conditions are

I(x,0, ζ,η) = 0, I(0, y, ζ,η) = 1. (5.4)

In this case, the problem has the exact solution given as follows:
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Fig. 11. The meshes and the contours of the radiative intensity for the transparent model simulated by the DG schemes with the rotational-limiter-preferred 
procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been performed in the computation.

I(x, y, ζ,η) =
{

0, y <
η
ζ

x,

e− σt
ζ

x
, otherwise,

(5.5)

which exhibits a discontinuity along with y = η
ζ

x. Notice that the triangular meshes used in this example don’t align with 
the discontinuity in the solution.

Similarly as the last example, a negative solution will appear if we do not adopt the positivity-preserving limiter. 
Figs. 14(a)(b)(c)(d) plot the contours of the radiative intensity simulated by the {P 1, P 2, P 3, P 4} DG schemes with the 
scaling-limiter-preferred procedure, respectively. Fig. 17 shows the case with the rotational-limiter-preferred procedure. In 
Figs. 15–16, the comparison of the radiative intensity cut along the lines y = 0.5 and x = 0.5 obtained by P k (k = 1, 2, 3, 4)

DG schemes without the positivity-preserving limiters and with the scaling-limiter-preferred procedure on the mesh size 
h = 1

40 are shown, respectively. And in Figs. 18–19, the comparison of the radiative intensity cut along the lines y = 0.5 and 
x = 0.5 obtained by Pk(k = 1, 2, 3, 4) DG schemes without the positivity-preserving limiters and with the rotational-limiter-
preferred procedure are presented, respectively. We can clearly see that our positivity-preserving DG schemes can keep the 
radiative intensity positive during the simulation on triangular meshes.

We plot the comparison of the radiative intensity cut along the line y = 0.5 obtained by P 4 DG scheme with the mesh 
sizes h = 1

10 , 1
20 , 1

40 , 1
80 in Fig. 20, and the comparison of the radiative intensity cut along the line x = 0.5 in Fig. 21. We can 

easily see that the resolution near the discontinuities of the solution is better with the mesh size h = 1
80 compared to the 

solutions obtained with the mesh sizes h = 1
10 , 1

20 and 1
40 . We find that the overshoots become weakened as the mesh is 

refined.
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Fig. 12. The comparison of the radiative intensity cut along the line y = 0.5 for the transparent model simulated by the DG schemes without the positivity-
preserving limiters and with the rotational-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the points 
( i

39 , 0.5), i = 0, 1, · · · , 39.

Like the previous example, in Figs. 15–16 and Figs. 18–19, there are some localized spurious oscillations near the dis-
continuities in the numerical solution, which are not eliminated by the positivity-preserving limiters if they are not near 
zero.

Example 5.4 (The positivity-preserving test of the DG schemes for the two-dimensional steady radiative transfer equation simulating 
the purely absorbing model on circular domain).

In order to show the advantage of the triangular meshes to handle complicated geometries, we test the schemes for the 
two-dimensional steady radiative transfer equation (2.12) on a circular domain. In this example, we take σt = 1, σs = 0, and 
q = 0. The computational domain is a unit disk (x2 + y2) ≤ 1, and ζ = 0.4, η = −0.7. We define ∂Din = {(x, y)|x2 + y2 =
1, n(x, y) · � < 0} and the boundary condition is

I(x, y, ζ,η) = sin8(π(x + y)), (x, y) ∈ ∂Din, (5.6)

where n(x, y) is the unit outward normal vector at the point (x, y) on the boundary x2 + y2 = 1 and the vector � = (ζ, η). 
In this problem, we have the exact solution as follows:

I(x, y, ζ,η) = sin8(π(x + y − (ζ + η)ξ))e−σtξ , (5.7)

with ξ = (ζ x + ηy + √
ζ 2 + η2 − (ηx − ζ y)2)/(ζ 2 + η2).

Fig. 22 shows the contours of the radiative intensity simulated by the {P 1, P 2, P 3, P 4} DG schemes with the scaling-
limiter-preferred procedure, respectively, while Fig. 23 shows the case with the rotational-limiter-preferred procedure. Our 
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Fig. 13. The comparison of the radiative intensity cut along the line x = 0.5 for the transparent model simulated by the DG schemes without the positivity-
preserving limiters and with the rotational-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the points 
(0.5, i

39 ), i = 0, 1, · · · , 39.

schemes with the positivity-preserving limiters obtain a positive solution while the negative solution appears when we do 
not use the positivity-preserving limiters. From the figures we can see that, our limiters perform very well similarly as in 
the previous examples on the triangular meshes. The positivity of the radiative intensity is preserved by both positivity-
preserving limiters.

Example 5.5 (The positivity-preserving test of the DG schemes for the two-dimensional steady radiative transfer equation simulating 
the purely scattering models).

In this problem, we test the schemes on the purely scattering model (2.12) with σt = 1, σs = 1, and q = 0. The compu-
tational domain is [0, 1] × [0, 1]. The boundary condition is set as follows:

I(x,0, ζ,η) = 0, η > 0; I(x,1, ζ,η) = 0, η < 0;
I(0, y, ζ,η) = 1 − cos(4π y), ζ > 0; I(1, y, ζ,η) = 0, ζ < 0.

(5.8)

Figs. 24(a)(b)(c)(d) show the contours of the radiative intensity in the direction � = (0.2578, 0.1068) simulated by the 
{P 1, P 2, P 3, P 4} DG schemes with the scaling-limiter-preferred procedure and the cells where the positivity-preserving 
limiters have been enacted in the simulation, respectively. Fig. 25 shows the case with the rotational-limiter-preferred 
procedure. The white points mean the cells enacted by the positivity-preserving limiters in our simulation. We can see 
that the numerical results verify the positivity-preserving property of our schemes again. The results also indicate the 
effectiveness of our schemes on triangular meshes.
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Fig. 14. The contours of the radiative intensity for the purely absorbing model simulated by the DG schemes with the scaling-limiter-preferred procedure 
on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been enacted in the computation.

In order to see how the method behaves in the diffusive regime, where the problem is purely scattering and the problem 
is optically thick, we repeat the example with σt = σs = 100. We plot the numerical radiative intensity contours obtained 
with the scaling-limiter-preferred procedure and with the rotational-limiter-preferred procedure in Figs. 26 and 27, respec-
tively. The figures show that our positivity-preserving limiters can also work well in diffusive regime.

Additionally, we list the number of the source iterations simulated by the {P 1, P 2, P 3, P 4} DG schemes (with the mesh 
size h = 1

40 ) with the positivity-preserving limiters and without the limiters in Table 5. We can see that our positivity-
preserving limiters do not degrade the iterative performance for the diffusive problem.

Example 5.6 (The accuracy test of the DG schemes for the two-dimensional unsteady radiative transfer equation simulating the 
absorbing-scattering model).

To verify our schemes can keep both properties of high order accuracy and positivity-preserving for the two-dimensional 
unsteady radiative transfer equation (2.11), we take σt = 22000, σs = 1 and the source term q(x, y, ζ, η, t) = et

( − 2π(ζ +
η)(ζ 2 + η2) cos3( π

2 (x + y)) sin( π
2 (x + y)) + ( 1

c + σt)((ζ
2 + η2) cos4( π

2 (x + y)) + a) − σs(
2
3 cos4( π

2 (x + y)) + a)
)
. Here the 

photon speed c = 3.0 × 108, and the small parameter a = 10−14 is used to ensure the source term to be nonnegative. The 
computational domain is [0, 1] × [0, 1]. The initial condition is

I(x, y, ζ,η,0) = (ζ 2 + η2) cos4(
π

2
(x + y)) + a, (5.9)

and the boundary conditions are
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Fig. 15. The comparison of the radiative intensity cut along the line y = 0.5 for the purely absorbing model simulated by the DG schemes without the 
positivity-preserving limiters and with the scaling-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the 
points ( i

39 , 0.5), i = 0, 1, · · · , 39.

I(x,0, ζ,η, t) = et((ζ 2 + η2) cos4(
π

2
x) + a

)
, η > 0,

I(x,1, ζ,η, t) = et((ζ 2 + η2) cos4 (π
2

(x + 1)
) + a

)
, η < 0,

I(0, y, ζ,η, t) = et((ζ 2 + η2) cos4(
π

2
y) + a

)
, ζ > 0,

I(1, y, ζ,η, t) = et((ζ 2 + η2) cos4 (π
2

(y + 1)
) + a

)
, ζ < 0.

(5.10)

Obviously, the exact solution can be expressed as:

I(x, y, ζ,η, t) = et((ζ 2 + η2) cos4(
π

2
(x + y)) + a

)
. (5.11)

It is a unsteady problem on a rectangle domain. The final computational time is t = 0.1, and in order to make the 
spatial accuracy dominated, we choose the small time step 
t = 10−3. Similarly, a negative solution will appear if we 
do not adopt the positivity-preserving limiter in the DG schemes, while the DG schemes with the positivity-preserving 
limiter can always maintain the nonnegative solution. We show the contours of the radiative intensity in the direction 
� = (−0.7860, 0.3255) simulated by the DG schemes with the mesh size h = 1

40 with the scaling-limiter-preferred pro-
cedure in Fig. 28 and with the rotational-limiter-preferred procedure in Fig. 29, respectively. The white points represent 
the cells where the positivity-preserving limiters have been enacted in the simulation. The errors and orders of accuracy 
for the {P 1, P 2, P 3, P 4} DG schemes without the positivity-preserving limiters and with the positivity-preserving limiters 
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Fig. 16. The comparison of the radiative intensity cut along the line x = 0.5 for the purely absorbing model simulated by the DG schemes without the 
positivity-preserving limiters and with the scaling-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the 
points (0.5, i

39 ), i = 0, 1, · · · , 39.

Table 5
The iterative numbers of the source iteration combined with positivity-preserving limiters and 
without limiters.

Pk Without limiters Scaling limiter preferred Rotational limiter preferred

P 1 21 21 21
σt = 1 P 2 21 21 21
σs = 1 P 3 21 21 21

P 4 21 21 21

P 1 16282 16239 16312
σt = 100 P 2 16284 16262 16304
σs = 100 P 3 16284 16274 16291

P 4 16284 16280 16286

(both the scaling-limiter-preferred and the rotational-limiter-preferred procedures) are shown in the Tables 6–9, respec-
tively. In these tables, we also list the percentage of the cells where either the scaling positivity-preserving limiter or the 
rotational positivity-preserving limiter has been enacted in the computation, respectively. We also show the conservation 
errors in the tables. We notice that the conservation error goes to 0 with the refinement of the mesh, and higher order 
DG schemes generate smaller conservation errors. The numerical results verify the properties of high order accuracy and 
positivity-preserving of our schemes.
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Fig. 17. The contours of the radiative intensity for the purely absorbing model simulated by the DG schemes with the rotational-limiter-preferred procedure 
on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been performed in the computation.

Example 5.7 (The positivity-preserving test of the DG schemes for the two-dimensional unsteady radiative transfer equation simulating 
the purely absorbing model on circular domain).

In this final example, we test the schemes for the two-dimensional unsteady radiative transfer equation (2.11) on a circu-
lar domain where the triangular meshes are used to handle such irregular geometry. Take σt = 22000, σs = 0, and the source 
term q(x, y, ζ, η, t) = et

(
(σt + 1

c )((ζ 2 + η2) cos4(π(x2 + y2)) + a) − 8π(ζ x + ηy)(ζ 2 + η2) cos3(π(x2 + y2)) sin(π(x2 + y2))
)
. 

ζ = −0.8, η = −0.8. c = 3.0 × 108, and a = 10−14 is used to ensure the source term to be nonnegative. The computational 
domain is a unit disk (x2 + y2) ≤ 1. The initial condition is

I(x, y, ζ,η,0) = (ζ 2 + η2) cos4(π(x2 + y2)) + a, (5.12)

We define ∂Din = {(x, y)|x2 + y2 = 1, n(x, y) · � < 0} and the boundary condition is

I(x, y, ζ,η, t) = et((ζ 2 + η2) + a
)
, (x, y) ∈ ∂Din, (5.13)

where n(x, y) is the unit outward normal vector at the point (x, y) on the boundary x2 + y2 = 1 and vector � = (ζ, η). The 
exact solution can be expressed as:

I(x, y, ζ,η, t) = et((ζ 2 + η2) cos4(π(x2 + y2)) + a
)
. (5.14)

It is a unsteady problem on a circular domain. The final computational time is t = 0.1. We choose the small time step 

t = 10−3 similar as the last example. Similarly, a negative solution will appear if we do not adopt the positivity-preserving 
limiter in the DG schemes, while the DG schemes with the positivity-preserving limiter can always maintain the nonnegative 
solution. Figs. 30(a)(c)(e)(g) plot the contours of the radiative intensity simulated by the {P 1, P 2, P 3, P 4} DG schemes with-
out the positivity-preserving limiters, and the corresponding negative values are shown in Figs. 30(b)(d)(f)(h), respectively. 
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Fig. 18. The comparison of the radiative intensity cut along the line y = 0.5 for the purely absorbing model simulated by the DG schemes without the 
positivity-preserving limiters and with the rotational-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the 
points ( i

39 , 0.5), i = 0, 1, · · · , 39.

Table 6
Errors of the P 1 DG scheme for the two-dimensional unsteady radiative transfer 
equation simulating the absorbing-scattering model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 1.339E-03 1.751E-02
1/20 3.353E-04 1.998 4.813E-03 1.863
1/40 8.390E-05 1.999 1.253E-03 1.941
1/80 2.099E-05 1.999 3.202E-04 1.969

With positivity-preserving limiter (scaling limiter preferred)
1/10 1.367E-03 1.751E-02 36.22 0.0
1/20 3.366E-04 2.022 4.813E-03 1.863 19.63 0.0
1/40 8.394E-05 2.004 1.253E-03 1.941 9.93 0.0
1/80 2.100E-05 1.999 3.202E-04 1.969 5.04 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 1.410E-03 1.751E-02 36.22 9.795E-05
1/20 3.383E-04 2.060 4.813E-03 1.863 19.63 4.338E-06
1/40 8.399E-05 2.010 1.253E-03 1.941 9.92 1.412E-07
1/80 2.100E-05 2.000 3.202E-04 1.969 5.04 4.131E-09
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Fig. 19. The comparison of the radiative intensity cut along the line x = 0.5 for the purely absorbing model simulated by the DG schemes without the 
positivity-preserving limiters and with the rotational-limiter-preferred procedure on the mesh size h = 1

40 . The dots represent the radiative intensity at the 
points (0.5, i

39 ), i = 0, 1, · · · , 39.

Fig. 31 plots the contours of the radiative intensity simulated by the {P 1, P 2, P 3, P 4} DG schemes with the scaling-limiter-
preferred procedure, respectively. Fig. 32 shows the cases with the rotational-limiter-preferred procedure. In the Figs. 31
and 32, we mark the cells where the positivity-preserving limiters have been enacted by discrete white points as well. The 
numerical results verify the positivity-preserving property of our schemes.

6. Conclusion

In this paper, we develop a positivity-preserving limiter which is combined of the scaling positivity-preserving limiter 
[29] and our two-dimensional rotational positivity-preserving limiter to solve the radiative transfer equations on triangular 
meshes by the implicit or iterative DG method with P k polynomials. Our two-dimensional rotational positivity-preserving 
limiter is constructed based on the one-dimensional rotational positivity-preserving limiter for DG schemes in [26]. The 
one difficulty for the extension is how to find a special quadrature rule on the triangular element, which is one of the 
keypoints of this paper, such that the quadrature points can be arranged on certain line segments and on these certain line 
segments we could use the one-dimensional rotational positivity-preserving limiter. Since the number of the quadrature 
points is larger than the number of basis functions of P k polynomial space, the modified polynomial cannot be interpolated 
directly. To solve this problem, we determine a k-th polynomial by a L2-norm Least Square subject to its cell average 
being equal to the weighted average of the values on the quadrature points after using the rotational positivity-preserving 
limiter, whose weights are the quadrature weights, thus the cell average of the modified polynomial is nonnegative. This 



32 M. Zhang et al. / Journal of Computational Physics 397 (2019) 108811
Fig. 20. The comparison of the radiative intensity cut along the line y = 0.5 for the purely absorbing model obtained by P 4 DG scheme with the mesh 
sizes h = 1

10 , 1
20 , 1

40 , 1
80 . The dots represent the radiative intensity at the points ( i

39 , 0.5), i = 0, 1, · · · , 39.
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Fig. 21. The comparison of the radiative intensity cut along the line x = 0.5 for the purely absorbing model obtained by P 4 DG scheme with the mesh sizes 
h = 1

10 , 1
20 , 1

40 , 1
80 . The dots represent the radiative intensity at the points (0.5, i

39 ), i = 0, 1, · · · , 39.
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Fig. 22. The contours of the radiative intensity for the purely absorbing model simulating by the DG schemes with the scaling-limiter-preferred procedure 
on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been enacted in the computation.

Table 7
Errors of the P 2 DG scheme for the two-dimensional unsteady radiative transfer 
equation simulating the absorbing-scattering model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 9.327E-05 1.683E-03
1/20 1.174E-05 2.990 2.377E-04 2.824
1/40 1.468E-06 2.999 3.095E-05 2.942
1/80 1.836E-07 2.999 3.940E-06 2.973

With positivity-preserving limiter (scaling limiter preferred)
1/10 9.404E-05 1.683E-03 12.18 0.0
1/20 1.176E-05 3.000 2.377E-04 2.824 5.85 0.0
1/40 1.469E-06 3.001 3.095E-05 2.942 2.88 0.0
1/80 1.836E-07 3.000 3.940E-06 2.973 1.41 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 9.386E-05 1.683E-03 12.18 4.619E-07
1/20 1.175E-05 2.998 2.377E-04 2.824 5.85 1.385E-08
1/40 1.469E-06 3.001 3.095E-05 2.942 2.88 3.591E-10
1/80 1.836E-07 2.999 3.940E-06 2.973 1.41 1.237E-11
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Fig. 23. The contours of the radiative intensity for the purely absorbing model simulating by the DG schemes with the rotational-limiter-preferred procedure 
on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been enacted in the computation.

Table 8
Errors of the P 3 DG scheme for the two-dimensional unsteady radiative transfer 
equation simulating the absorbing-scattering model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 5.074E-06 1.201E-04
1/20 3.193E-07 3.990 7.930E-06 3.920
1/40 2.000E-08 3.997 5.022E-07 3.981
1/80 1.254E-09 3.996 3.164E-08 3.989

With positivity-preserving limiter (scaling limiter preferred)
1/10 9.199E-06 5.309E-04 19.55 0.0
1/20 4.373E-07 4.395 3.652E-05 3.862 9.94 0.0
1/40 2.310E-08 4.242 2.148E-06 4.087 4.91 0.0
1/80 1.353E-09 4.094 1.502E-07 3.839 2.49 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 7.312E-06 5.255E-04 19.55 1.668E-06
1/20 3.895E-07 4.231 3.584E-05 3.874 9.94 5.266E-08
1/40 2.188E-08 4.154 2.037E-06 4.137 4.91 1.465E-09
1/80 1.310E-09 4.062 1.298E-07 3.971 2.49 4.561E-11
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Fig. 24. The contours of the radiative intensity in the direction � = (0.2578, 0.1068) for the purely scattering model simulated by the DG schemes with 
the scaling-limiter-preferred procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been 
enacted in the computation.

Table 9
Errors of the P 4 DG scheme for the two-dimensional unsteady radiative transfer 
equation simulating the absorbing-scattering model on triangular meshes.

h L1-error Order L∞-error Order limiter(%) c_err

Without positivity-preserving limiter
1/10 2.085E-07 6.644E-06
1/20 6.506E-09 5.002 2.070E-07 5.004
1/40 2.031E-10 5.002 7.217E-09 4.842
1/80 6.332E-12 5.003 2.379E-10 4.923

With positivity-preserving limiter (scaling limiter preferred)
1/10 2.534E-07 9.063E-06 15.38 0.0
1/20 6.692E-09 5.243 2.070E-07 5.452 5.21 0.0
1/40 2.034E-10 5.040 7.217E-09 4.842 2.03 0.0
1/80 6.337E-12 5.004 2.379E-10 4.923 0.57 0.0

With positivity-preserving limiter (rotational limiter preferred)
1/10 2.452E-07 6.644E-06 15.39 2.401E-08
1/20 6.672E-09 5.200 2.070E-07 5.004 5.21 9.710E-11
1/40 2.033E-10 5.037 7.217E-09 4.842 2.03 1.723E-13
1/80 6.335E-12 5.004 2.379E-10 4.923 0.57 2.567E-15
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Fig. 25. The contours of the radiative intensity in the direction � = (0.2578, 0.1068) for the purely scattering model simulated by the DG schemes with 
the rotational-limiter-preferred procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been 
enacted in the computation.

is the other keypoints of this paper. After that, using the two-dimensional scaling positivity-preserving limiter [29] on the 
triangular element, we obtain the final modified polynomial. Our two-dimensional rotational positivity-preserving limiter is 
theoretically proved to keep both high order accuracy and positivity on triangular meshes. The numerical experiments for 
the two-dimensional radiative transfer equations on triangular meshes demonstrate the properties of high order accuracy 
and positivity-preserving of our schemes. The advantage of the triangular meshes on handling the complex domain is also 
presented in our numerical examples.

It is worth pointing out that we prefer to use the “scaling limiter preferred” strategy in the practical computations, since 
the scaling positivity-preserving limiter does not change the cell averages and is relatively simpler to implement, thus the 
scaling-limiter-preferred procedure produces smaller conservation error and is more efficient.

Appendix A. The Orthogonal basis function over the reference element K̂

Assume the reference element K̂ , the vertices (x̂, ŷ) in clockwise order to be {(0, 1), (1, 0), (0, 0)}, then we can define 
the orthogonal basis functions over K̂ , let û = √

2(x̂ − 1
3 ), v̂ = √

2( ŷ − 1
3 ), then

b0(x̂, ŷ) = 1,

b1(x̂, ŷ) = û,

b2(x̂, ŷ) = 1

2
û + v̂,

b3(x̂, ŷ) = û2 − 2
√

2
û − 1

,

15 9
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Fig. 26. The contours of the radiative intensity in the direction � = (0.2578, 0.1068) for the optical thick model (σt = σs = 100) in simulated by the DG 
schemes with the scaling-limiter-preferred procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters 
have been enacted in the computation.
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û2 + 4

√
2

63
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Fig. 27. The contours of the radiative intensity in the direction � = (0.2578, 0.1068) for the optical thick model (σt = σs = 100) simulated by the DG 
schemes with the rotational-limiter-preferred procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving 
limiters have been enacted in the computation.
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Fig. 28. The contours of the radiative intensity in the direction � = (−0.7860, 0.3255) for the absorbing-scattering model simulated by the DG schemes 
with the scaling-limiter-preferred procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have 
been enacted in the computation.
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Fig. 29. The contours of the radiative intensity in the direction � = (−0.7860, 0.3255) for the absorbing-scattering model simulated by the DG schemes 
with the rotational-limiter-preferred procedure on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have 
been enacted in the computation.
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Fig. 30. The contours of the radiative intensity for the purely absorbing model simulated by the DG schemes without the positivity-preserving limiters on 
the mesh size h = 1

40 . The white points represent where the radiative intensity is negative.
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Fig. 30. (continued)

Fig. 31. The contours of the radiative intensity for the purely absorbing model simulated by the DG schemes with the scaling-limiter-preferred procedure 
on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been enacted.
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Fig. 32. The contours of the radiative intensity for the purely absorbing model simulated by the DG schemes with the rotational-limiter-preferred procedure 
on the mesh size h = 1

40 . The white points represent the cells where the positivity-preserving limiters have been enacted.



M. Zhang et al. / Journal of Computational Physics 397 (2019) 108811 45
Appendix B. The specific quadrature points and the corresponding weights on the reference triangular element K̂

Table 10
The quadrature points and corresponding weights 
for the case of k = 1, 2.

α (x̂α, ŷα) wα α (x̂α, ŷα) wα

1 (0,0) 1
27 2 (1,0) 1

27
3 (0,1) 1

27 4 ( 1
2 ,0) 4
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2 , 1
2 ) 4

27 6 (0, 1
2 ) 4

27
7 ( 1

4 , 1
2 ) 4

27 8 ( 1
2 , 1

4 ) 4
27

9 ( 1
4 , 1

4 ) 4
27

Table 11
The quadrature points and corresponding weights for the case of k = 3.

α (x̂α, ŷα) wα α (x̂α, ŷα) wα
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Table 12
The quadrature points and corresponding weights for the case of k = 4.

α (x̂α, ŷα) wα α (x̂α, ŷα) wα
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Appendix C. The specific f (K )
α (x, y) for the case of P k

In this appendix, we give the expression of the functions f (K )
α (x, y) for case of Pk on the arbitrary triangular element K . 

Firstly we give the fα(x̂, ŷ) on the reference triangular element K̂ , then we can get f (K )
α (x, y) by the affine transformation 

(2.17) and its inverse transformation (2.18) between the reference triangular element K̂ and the arbitrary triangular element 
K .

For k = 1:
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For k = 2:

f1(x̂, ŷ) = 6496
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For k = 3:
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ŷ + 915902

271470681
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x̂ ŷ +
(

− 130412120

271470681
− 500096

975069

√
5
)

x̂

+
(1075798625 + 2530141√

5
)

ŷ − 714550 + 688 √
5,
542941362 1950138 271470681 57357



48 M. Zhang et al. / Journal of Computational Physics 397 (2019) 108811
f10(x̂, ŷ) =
(

− 659000

975069
+ 433700

975069

√
5
)

x̂3 +
(

− 246000

108341
− 890150

975069

√
5
)

ŷ3

+
(

− 26023771375

6153335436
+ 9837932975

6153335436

√
5
)

x̂2 ŷ +
(

− 41105475875

6153335436
+ 14432094425

18460006308

√
5
)

x̂ ŷ2

+
(9991395275

9230003154
− 6091102075

9230003154

√
5
)

x̂2 +
(30369090125

9230003154
+ 1152541675

1025555906

√
5
)

ŷ2

+
(5919692525

1085882724
− 1711560025

1085882724

√
5
)

x̂ ŷ +
(

− 1423286965

3076667718
+ 746168779

3076667718

√
5
)

x̂

+
(

− 9442745915

9230003154
− 1836000839

9230003154

√
5
)

ŷ + 5121445

180980454
− 2507473

542941362

√
5,

f11(x̂, ŷ) =
(659000

975069
− 433700

975069

√
5
)

x̂3 +
(834875

975069
− 527225

975069

√
5
)

ŷ3

+
(

− 4515861125

2051111812
+ 1627124575

6153335436

√
5
)

x̂2 ŷ +
(1534121125

6153335436
+ 19963078225

18460006308

√
5
)

x̂ ŷ2

+
(

− 8722886725

9230003154
+ 6225110525

9230003154

√
5
)

x̂2 +
(

− 6129041375

4615001577
+ 4424247050

4615001577

√
5
)

ŷ2

+
(1212724025

1085882724
− 295919725

1085882724

√
5
)

x̂ ŷ +
(3001352345

9230003154
− 2372514787

9230003154

√
5
)

x̂

+
(2420167915

4615001577
− 1999938188

4615001577

√
5
)

ŷ − 5007175

180980454
+ 12363613

542941362

√
5,

f12(x̂, ŷ) =
(659000

975069
+ 433700

975069

√
5
)

x̂3 +
(834875

975069
+ 527225

975069

√
5
)

ŷ3

+
(

− 4515861125

2051111812
− 1627124575

6153335436

√
5
)

x̂2 ŷ +
(1534121125

6153335436
− 19963078225

18460006308

√
5
)

x̂ ŷ2

+
(

− 8722886725

9230003154
− 6225110525

9230003154

√
5
)

x̂2 +
(

− 6129041375

4615001577
− 4424247050

4615001577

√
5
)

ŷ2

+
(1212724025

1085882724
+ 295919725

1085882724

√
5
)

x̂ ŷ +
(3001352345

9230003154
+ 2372514787

9230003154

√
5
)

x̂

+
(2420167915

4615001577
+ 1999938188

4615001577

√
5
)

ŷ − 5007175

180980454
− 12363613

542941362

√
5,

f13(x̂, ŷ) =
(

− 659000

975069
− 433700

975069

√
5
)

x̂3 +
(

− 246000

108341
+ 890150

975069

√
5
)

ŷ3

+
(

− 26023771375

6153335436
− 9837932975

6153335436

√
5
)

x̂2 ŷ +
(

− 41105475875

6153335436
− 14432094425

18460006308

√
5
)

x̂ ŷ2

+
(9991395275

9230003154
+ 6091102075

9230003154

√
5
)

x̂2 +
(30369090125

9230003154
− 1152541675

1025555906

√
5
)

ŷ2

+
(5919692525

1085882724
+ 1711560025

1085882724

√
5
)

x̂ ŷ +
(

− 1423286965

3076667718
− 746168779

3076667718

√
5
)

x̂

+
(

− 9442745915

9230003154
+ 1836000839

9230003154

√
5
)

ŷ + 5121445

180980454
+ 2507473

542941362

√
5,

f14(x̂, ŷ) =
(834875

975069
− 527225

975069

√
5
)

x̂3 +
(659000

975069
− 433700

975069

√
5
)

ŷ3

+
(1534121125

6153335436
+ 19963078225

18460006308

√
5
)

x̂2 ŷ +
(

− 4515861125

2051111812
+ 1627124575

6153335436

√
5
)

x̂ ŷ2

+
(

− 6129041375

4615001577
+ 4424247050

4615001577

√
5
)

x̂2 +
(

− 8722886725

9230003154
+ 6225110525

9230003154

√
5
)

ŷ2

+
(1212724025

1085882724
− 295919725

1085882724

√
5
)

x̂ ŷ +
(2420167915

4615001577
− 1999938188

4615001577

√
5
)

x̂

+
(3001352345 − 2372514787√

5
)

ŷ − 5007175 + 12363613 √
5,
9230003154 9230003154 180980454 542941362
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f15(x̂, ŷ) =
(

− 246000

108341
− 890150

975069

√
5
)

x̂3 +
(

− 659000

975069
+ 433700

975069

√
5
)

ŷ3

+
(

− 41105475875

6153335436
+ 14432094425

18460006308

√
5
)

x̂2 ŷ +
(

− 26023771375

6153335436
+ 9837932975

6153335436

√
5
)

x̂ ŷ2

+
(30369090125

9230003154
+ 1152541675

1025555906

√
5
)

x̂2 +
(9991395275

9230003154
− 6091102075

9230003154

√
5
)

ŷ2

+
(5919692525

1085882724
− 1711560025

1085882724

√
5
)

x̂ ŷ +
(

− 9442745915

9230003154
− 1836000839

9230003154

√
5
)

x̂

+
(

− 1423286965

3076667718
+ 746168779

3076667718

√
5
)

ŷ + 5121445

180980454
− 2507473

542941362

√
5,

f16(x̂, ŷ) =
(

− 246000

108341
+ 890150

975069

√
5
)

x̂3 +
(

− 659000

975069
− 433700

975069

√
5
)

ŷ3

+
(

− 41105475875

6153335436
− 14432094425

18460006308

√
5
)

x̂2 ŷ +
(

− 26023771375

6153335436
− 9837932975

6153335436

√
5
)

x̂ ŷ2

+
(30369090125

9230003154
− 1152541675

1025555906

√
5
)

x̂2 +
(9991395275

9230003154
+ 6091102075

9230003154

√
5
)

ŷ2

+
(5919692525

1085882724
+ 1711560025

1085882724

√
5
)

x̂ ŷ +
(

− 9442745915

9230003154
+ 1836000839

9230003154

√
5
)

x̂

+
(

− 1423286965

3076667718
− 746168779

3076667718

√
5
)

ŷ + 5121445

180980454
+ 2507473

542941362

√
5,

f17(x̂, ŷ) =
(834875

975069
+ 527225

√
5

975069

)
x̂3 +

(659000

975069
+ 433700

√
5

975069

)
ŷ3

+
(1534121125

6153335436
− 19963078225

√
5

18460006308

)
x̂2 ŷ +

(
− 4515861125

2051111812
− 1627124575

√
5

6153335436

)
x̂ ŷ2

+
(

− 6129041375

4615001577
− 4424247050

√
5

4615001577

)
x̂2 +

(
− 8722886725

9230003154
− 6225110525

√
5

9230003154

)
ŷ2

+
(1212724025

1085882724
+ 295919725

√
5

1085882724

)
x̂ ŷ +

(2420167915

4615001577
+ 1999938188

√
5

4615001577

)
x̂

+
(3001352345

9230003154
+ 2372514787

√
5

9230003154

)
ŷ − 5007175

180980454
− 12363613

√
5

542941362
,

f18(x̂, ŷ) =
(246000

108341
+ 890150

975069

√
5
)

x̂3 +
(

− 834875

975069
+ 527225

975069

√
5
)

ŷ3

+
(

− 5725637125

9230003154
+ 11294215325

3076667718

√
5
)

x̂2 ŷ +
(

− 26341793725

9230003154
+ 28348193875

9230003154

√
5
)

x̂ ŷ2

+
(

− 3777085625

1025555906
− 14607666875

9230003154

√
5
)

x̂2 +
(553389375

512777953
− 2912851850

4615001577

√
5
)

ŷ2

+
(790693175

542941362
− 1810895575

542941362

√
5
)

x̂ ŷ +
(4355808805

3076667718
+ 6070792639

9230003154

√
5
)

x̂

+
(

− 1271630915

4615001577
+ 488542988

4615001577

√
5
)

ŷ + 8113495

271470681
+ 1731715

271470681

√
5

f19(x̂, ŷ) =
(

− 834875

975069
+ 527225

975069

√
5
)

x̂3 +
(246000

108341
+ 890150

975069

√
5
)

ŷ3,

+
(

− 7233501625

4615001577
+ 3927592600

1538333859

√
5
)

x̂2 ŷ +
(4077776750

4615001577
+ 15553203925

4615001577

√
5
)

x̂ ŷ2

+
(6470193125

4615001577
− 356754400

512777953

√
5
)

x̂2 +
(

− 31014393125

9230003154
− 15203542375

9230003154

√
5
)

ŷ2

+
(24901675

90490227
− 280439825

90490227

√
5
)

x̂ ŷ +
(

− 2761319665

4615001577
+ 262160246

1538333859

√
5
)

x̂

+
(10088048915 + 2222222713√

5
)

ŷ + 5404970 + 2273420 √
5

9230003154 3076667718 271470681 271470681
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f20(x̂, ŷ) =
(

− 834875

975069
− 527225

975069

√
5
)

x̂3 +
(246000

108341
− 890150

975069

√
5
)

ŷ3

+
(

− 4757244125

2051111812
− 49907349325

18460006308

√
5
)

x̂2 ŷ +
( 809972125

6153335436
− 64989053825

18460006308

√
5
)

x̂ ŷ2

+
(5725348750

4615001577
+ 3061820725

4615001577

√
5
)

x̂2 +
(

− 32504081875

9230003154
+ 4968534875

3076667718

√
5
)

ŷ2

+
( 940103225

1085882724
+ 3493534525

1085882724

√
5
)

x̂ ŷ +
(

− 224052810

512777953
− 637511863

4615001577

√
5
)

x̂

+
(11577737665

9230003154
− 6368730389

9230003154

√
5
)

ŷ + 4506155

180980454
− 445015

60326818

√
5,

f21(x̂, ŷ) =
(246000

108341
− 890150

√
5

975069

)
x̂3 +

(
− 834875

975069
− 527225

√
5

975069

)
ŷ3

+
( 809972125

6153335436
− 64989053825

√
5

18460006308

)
x̂2 ŷ +

(
− 4757244125

2051111812
− 49907349325

√
5

18460006308

)
x̂ ŷ2

+
(

− 32504081875

9230003154
+ 4968534875

√
5

3076667718

)
x̂2 +

(5725348750

4615001577
+ 3061820725

√
5

4615001577

)
ŷ2

+
( 940103225

1085882724
+ 3493534525

√
5

1085882724

)
x̂ ŷ +

(11577737665

9230003154
− 6368730389

√
5

9230003154

)
x̂

+
(

− 224052810

512777953
− 637511863

√
5

4615001577

)
ŷ + 4506155

180980454
− 445015

√
5

60326818
.

Because the expression is too tedious for case of k = 4, we are not going to list it here.
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