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Abstract

In this paper, we develop a robust fifth order finite difference Hermite weighted essentially non-oscillatory (HWENO)
cheme for compressible Euler equations following the HWENO with limiter (HWENO-L) scheme (Zhang and Zhao, 2023).
he HWENO-L scheme reduced storage and increased efficiency by using restricted derivatives only for time discretizations.
owever, it cannot control spurious oscillations well when facing strong shocks since the derivatives are directly used in spatial
iscretizations without any restrictions. To address such an issue, our proposed HWENO scheme performs flux reconstructions in
he finite difference framework without using the derivative value of a target cell, which can result in a simpler and more robust
cheme. The resulting scheme is simpler while achieving fifth order accuracy, making it more efficient. Besides, numerically
e find it is very robust for some extreme problems even without positivity-preserving limiters. The proposed scheme also

nherits advantages of previous HWENO schemes, including arbitrary positive linear weights in flux reconstructions, compact
econstructed stencils, and high resolution. Extensive numerical tests are performed to demonstrate the fifth order accuracy,
fficiency, robustness, and high resolution of the proposed HWENO scheme.
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1. Introduction

In this paper, we develop a robust finite difference (FD) Hermite weighted essentially non-oscillatory (HWENO)
cheme to solve compressible Euler equations

∂

∂t

⎡⎣ ρ

ρu
E

⎤⎦+ ∇ ·

⎡⎣ ρu
ρu ⊗ u + p I

(E + p)u

⎤⎦ = 0, (1.1)

with the equation of state p = (γ − 1)ρe, where ρ is the density, u = (u, v)T is the velocity, the superscript
T denotes the transpose of a vector, E is the total energy given by E =

p
γ−1 +

1
2ρ∥u∥

2, p is the pressure, e is
the internal energy, I is the identity matrix, ∥u∥ is the L2 norm of vector u, and γ is the ratio of specific heat
(e.g., γ = 1.4 for the ideal gas). The eigenvalues of Jacobian matrix for the flux functions are u − c, u, and u + c,
which involve the speed of sound c =

√
γ p/ρ. It is important to preserve the positivity of the density ρ and

the pressure p. High order positivity-preserving (PP) schemes are widely studied for solving compressible Euler
equations, including polynomial scaling and parametrized flux limiting approaches. We refer to [1] for reviewing
the two approaches.

In past decades, a variety of high order numerical schemes, such as the finite difference (FD) schemes [2–6],
finite volume (FV) schemes [7–11], and discontinuous Galerkin (DG) methods [12–16], have been developed to
solve hyperbolic conservation laws and related problems. Among them, HWENO schemes are an important type
of WENO schemes based on Hermite interpolations, which have been developed well in the past two decades. The
FV HWENO schemes were first proposed by Qiu and Shu in [17,18] to evolve the Eqs. (1.1) and its first order
derivative equations, simultaneously, which were initially used as limiters for DG methods. However, the two-
dimensional HWENO scheme [18] cannot well control oscillations near strong shocks, such as that in the double
Mach and forward step problems. Since the first order derivative used in the HWENO scheme [18] becomes quite
large around strong shocks, it would lead to numerical oscillations and cause numerical instabilities. To overcome
such an issue, Zhu and Qiu [19] designed another two-dimensional HWENO scheme by choosing a different stencil
to approximate the first order derivative. Later, Capdeville [20] developed a FV Hermite upwind WENO scheme for
solving hyperbolic conservation laws. Liu and Qiu [21] constructed a FD HWENO scheme by using an additional
PP flux limiter [22]. Cai et al. employed a polynomial scaling PP limiter [23] to construct a PP FV HWENO
scheme [24]. Tao et al. [25] constructed a FV central HWENO scheme on staggered meshes. Besides, Zahran
and Abdalla generalized the fifth order FD HWENO scheme [21] to a seventh order FD HWENO scheme [26].
Ma and Wu [27] developed a compact HWENO scheme by using compact difference methods to approximate
derivative values. Inspired from the DG method [12], Zhao et al. [28] proposed a high order FV hybrid HWENO
scheme by updating both cell average values and first order moments with nonlinear HWENO reconstructions around
discontinuities while using linear approximations in smooth regions. It had been extended to a FD framework [29].
Wibisono et al. [30] presented a fifth order FV Hermite targeted ENO scheme for hyperbolic conservation laws. Li
et al. [31] proposed a class of high order FV and FD multi-resolution HWENO schemes from the idea of multi-
resolution WENO methods [6]. Zhang and Zhao [32] developed a HWENO with limiter (HWENO-L) scheme to
reduce storage and increase the efficiency of [29]. More explicitly, the restricted derivatives are both applied to
time stages and flux reconstructions in [29], while they are only used to time discretizations in [32]. However, the
HWENO-L scheme cannot simulate the one-dimensional Sedov and Leblanc problems even using PP limiters. The
reason is that the HWENO-L scheme uses unrestricted derivative values in flux reconstructions, which are quite
large near discontinuities. Compared with WENO schemes, the main advantage of HWENO schemes is that they
are compact with a small stencil due to Hermite reconstructions. For example, a fifth order FD WENO scheme has
full stencils with five points, while are only three for a same order HWENO scheme.

To conquer the shortcomings and retain the merits of the HWENO-L scheme [32], we develop a robust fifth order
FD HWENO (HWENO-R) scheme to solve one- and two-dimensional compressible Euler equations. The derivative
value of a target cell is no longer used in flux reconstructions for the HWENO-R scheme, which results in a simpler
and more robust scheme. Several advantages of the proposed HWENO scheme are given below. Firstly, it still
achieves fifth order accuracy in one- and two-dimensional cases by using less information in flux reconstructions.
Secondly, unlike previous FD HWENO schemes [21,26,29,31,32], the order of accuracy for flux reconstructions is
the same as that of the final scheme, which is more concise and has fewer computation cost. Thirdly, it is more

robust as it performs well for many extreme problems without PP limiters, except for a few two-dimensional high
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extreme problems, such as the 2000 Mach number astrophysical jet problem. Besides, it possesses the advantages
of the HWENO-L scheme, including arbitrary positive linear weights in flux reconstructions, compact reconstructed
stencils, and high resolution. Compared with WENO schemes in the same order, the proposed HWENO-R scheme
has minor numerical errors and higher resolution. However, solving additional derivative equations would require
more storage and computational cost. In the HWENO-R scheme, we use only linear approximations for the derivative
equations to save computational cost while using a HWENO limiter for derivative values that appeared in each time
stage for high order Runge–Kutta time discretizations. Numerically we find that spurious oscillations can be well
controlled. To preserve the positivity of density and pressure, two PP FV HWENO schemes [24,33] were developed
by using polynomial rescaling approaches [23,34]. Here, we take a parametrized PP flux limiting approach in [35]
for two-dimensional high extreme problems since it allows larger time steps in practice and is more convenient for
FD schemes.

The remainder of the paper is organized as follows. In Section 2, we describe detailed implementations of the
WENO-R scheme in one- and two-dimensional cases. In Section 3, numerical tests are performed to verify the fifth
rder accuracy, robustness, and high-resolution of the proposed scheme. Concluding remarks are given in Section 4.

. Robust HWENO scheme

In this section, we present a fifth order FD HWENO-R scheme for one- and two-dimensional compressible Euler
quations. Compared with the previous FD HWENO schemes [21,26,29,31,32], the HWENO-R scheme no longer
ses the derivative of a target cell in flux reconstructions, which is simpler and more efficient as the HWENO-R
cheme still achieves fifth order accuracy even using less information. The HWENO-R scheme is also more robust
s it can simulate many extreme problems without any additional PP limiters.

.1. HWENO-R reconstructions in one dimension

Firstly, a scalar hyperbolic conservation law in the one-dimensional case is considered as

ut + f (u)x = 0, u(x, 0) = u0(x). (2.1)

For the FD HWENO scheme in [21], it introduces an auxiliary variable v = ux , and aims to solve{
ut + f (u)x = 0, u(x, 0) = u0(x),
vt + h(u, v)x = 0, v(x, 0) = v0(x),

(2.2)

here h(u, v) = f (u)x = f ′(u)v and v0(x) = ux (x, 0) = u′

0(x). We consider a uniform mesh of a given spatial
omain [a, b] with grid points {xi }

Nx
i=0, and the mesh size is ∆x = xi+1 − xi . xi and xi+ 1

2
= xi + ∆x/2 are the

center and interface of the cell Ii = [xi − ∆x/2, xi + ∆x/2], respectively. With such, a conservative semi-discrete
FD HWENO scheme for (2.2) is defined as⎧⎪⎨⎪⎩

dui (t)
dt

= −
1
∆x

( f̂i+ 1
2

− f̂i− 1
2
) ≜ Fi (u, v),

dvi (t)
dt

= −
1
∆x

(ĥi+ 1
2

− ĥi− 1
2
) ≜ Hi (u, v),

(2.3)

where Fi (u, v) and Hi (u, v) are right-hand terms, and f̂i+ 1
2

and ĥi+ 1
2

are numerical fluxes given as

f̂ j+ 1
2

= f̂
(
u j−r , . . . , u j+s, v j−r , . . . , v j+s

)
, ĥ j+ 1

2
= ĥ

(
u j−r , . . . , u j+s,v j−r , . . . , v j+s

)
,

with a stencil at {x j−r , . . . , x j+s}. Two implicit functions ξ (x) and η(x) are defined as that in [2,21], having

f (u) =
1
∆x

∫
Ii

ξ (x)dx, h(u, v) =
1
∆x

∫
Ii

η(x)dx .

Since

f (u)x =
ξ (x + ∆x/2) − ξ (x − ∆x/2)

, h(u, v)x =
η(x + ∆x/2) − η(x − ∆x/2)

,

∆x ∆x

3
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f̂i+ 1
2

and ĥi+ 1
2

are the approximations of ξ (xi+ 1
2
) and η(xi+ 1

2
), respectively. If f̂i+ 1

2
and ĥi+ 1

2
are high order

approximations and Lipschitz continuous concerning their arguments, the right sides of (2.3) are high order
approximations to − f (u)x and −h(u, v)x at x = xi , respectively.

For a general flux, an upwind biasing technique is commonly used for stability by splitting the fluxes f (u) and
h(u, v) into two parts: f (u) = f +(u) + f −(u) and h(u, v) = h+(u, v) + h−(u, v), with d f +(u)

du ≥ 0 and d f −(u)
du ≤ 0,

∂h+(u,v)
∂v

≥ 0 and ∂h−(u,v)
∂v

≤ 0, respectively. A global Lax–Friedrichs splitting approach is f ±(u) =
1
2 ( f (u) ± αu)

and h±(u, v) =
1
2 (h(u, v) ± αv), where α = maxu | f ′(u)| and the maximum is taken in the global range of u.

Now we will give detailed HWENO-R reconstructions of f +(u) and h+(u, v) at point xi+1/2, denoted as f̂ +

i+ 1
2

and ĥ+

i+ 1
2
. The reconstructions of f̂ −

i+ 1
2

and ĥ−

i+ 1
2

are in a mirror symmetric with respect to xi+ 1
2
. For simplicity, the

values of f +(u) and h+(u, v) at a point xi+k are denoted as f +

i+k and h+

i+k , respectively.

• Step I. Obtain a quartic polynomial q0(x) based on { f +

i−1, f +

i , f +

i+1, h+

i−1, h+

i+1} by a Hermite reconstruction,
satisfying

1
∆x

∫
Il

q0(x)dx = f +

l , l = i − 1, i, i + 1 and
1
∆x

∫
Il

q ′

0(x)dx = h+

l , l = i − 1, i + 1,

and reconstruct two linear polynomials q1(x) and q2(x) based on { f +

i−1, f +

i } and { f +

i , f +

i+1}, respectively,
satisfying

1
∆x

∫
Il

q1(x)dx = f +

l , l = i − 1, i and
1
∆x

∫
Il

q2(x)dx = f +

l , l = i, i + 1.

The main difference of our stencils as compared to the previous FD HWENO schemes [21,26,29,31,32] is
that the stencils no longer contain the value of h+

i , which will be explained afterward. Then we get the values
of q0(x), q1(x), q2(x), and q ′

0(x) at the point xi+ 1
2
, namely,

q0(xi+ 1
2
) = −

23
120

f +

i−1 +
19
30

f +

i +
67
120

f +

i+1 − ∆x(
3

40
h+

i−1 −
7

40
h+

i+1),

q1(xi+ 1
2
) =

3
2

f +

i −
1
2

f +

i−1,

q2(xi+ 1
2
) =

1
2

f +

i +
1
2

f +

i+1,

and

q ′

0(xi+ 1
2
) =

1
8∆x

(3 f +

i−1 − 16 f +

i + 13 f +

i+1) +
1
8

h+

i−1 −
3
8

h+

i+1.

• Step II. Compute smoothness indicators βk, k = 0, 1, 2 as in [2], which measure the smoothness of the
functions qk(x) in the cell Ii , satisfying

βk =

r∑
ℓ=1

∫
Ii

∆x2ℓ−1(
dℓqk(x)

dxℓ
)dx, k = 0, 1, 2, (2.4)

where r is the degree of the polynomials qk(x). The explicit expressions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 =
1

16

[
3( f +

i−1 − f +

i+1) +
(
h+

i−1 + h+

i+1

)
∆x
]2

+
781
320

[
f +

i−1 − f +

i+1 +
(
h+

i−1 + h+

i+1

)
∆x
]2

+
1

3900

[
131( f +

i−1 − 2 f +

i + f +

i+1) + 33
(
h+

i−1 − h+

i+1

)
∆x
]2

+
1421461

36400

[
2( f +

i−1 − 2 f +

i + f +

i+1) +
(
h+

i−1 − h+

i+1

)
∆x
]2

,

β1 = ( f +

i−1 − f +

i )2,

β2 = ( f +

i − f +

i+1)2.

• Step III. Compute nonlinear weights based on linear weights and smoothness indicators. As in the WENO
scheme denoted by Zhu and Qiu (WENO-ZQ) [5], we also define a new parameter τ to measure the absolute
4
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Fig. 2.1. Comparison of stencils used in HWENO flux reconstructions.

difference between β0, β1, and β2 as

τ = (
|β0 − β1| + |β0 − β2|

2
)2.

Then we compute the nonlinear weights by

ωk =
ω̃k

ω̃1 + ω̃2 + ω̃3
, with ω̃k = γk(1 +

τ

βk + ε
), k = 0, 1, 2,

where ε is a small positive number to prevent zero denominators set to be 10−10 in this paper, and γk, k =

0, 1, 2 are the linear weights. By using Taylor expansions for f + and h+ in βk at smooth regions and the
assumption of ε ≪ βk , we have τ

βk+ε
= O(∆x4), k = 0, 1, 2. So the nonlinear weights ωk = γk +O(∆x4), k =

0, 1, 2 satisfy the accuracy condition to achieve a fifth order scheme [3,4].
• Step IV. Finally, following the idea of the HWENO-L [31,32] and WENO-ZQ [5] schemes, we use a nonlinear

HWENO reconstruction to approximate f̂ +

i+ 1
2
, and adopt a linear approximation for ĥ+

i+ 1
2

by the same quartic
polynomial q0, having⎧⎨⎩ f̂ +

i+1/2 = ω0

(
1
γ0

q0(xi+ 1
2
) −

γ1
γ0

q1(xi+ 1
2
) −

γ2
γ0

q2(xi+ 1
2
)
)

+ ω1q1(xi+ 1
2
) + ω2q2(xi+ 1

2
),

ĥ+

i+ 1
2

= q ′

0(xi+ 1
2
),

(2.5)

where γk, k = 0, 1, 2 can be arbitrary positive linear weights as long as γ0 + γ1 + γ2 = 1. Numerically we
find that the linear reconstruction of ĥ+

i+ 1
2

works well without spurious oscillations.

Remark 2.1. Compared with the most relevant HWENO-L scheme [32], the derivative vi (corresponding to h+

i )
t xi is no longer used in the flux reconstructions of Step I. To distinguish the differences clearly, the sketch of
WENO flux reconstruction stencils is compared in Fig. 2.1. We find that the HWENO-L scheme directly uses
nrestricted h±(ui , vi ), which is a natural idea to use all available information. However, vi might become quite
arge, especially for some extreme problems from our numerical investigations shown in Fig. 3.9, which makes the
WENO-L scheme less robust. Besides, with all available information, a sixth order reconstruction is used but only

chieves fifth order accuracy for the final HWENO-L scheme, which is not optimal. Such shortages also exist in
ther FD HWENO schemes [21,26,29,31]. The proposed HWENO-R reconstruction is more robust, as it can directly
imulate many extreme problems without any PP approaches. It is also optimal since the order of reconstructions
s the same as that of the final scheme.
5
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2.2. Runge–Kutta time discretizations

After spatial discretizations, we solve the semi-discrete scheme (2.3) by the following third order strong stability
reserving (SSP) Runge–Kutta method⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
u(1)

i
v

(1)
i

]
=

[
un

i
v

n,lim
i

]
+ ∆t

[
Fi (un, vn)
Hi (un, vn)

]
,[

u(2)
i

v
(2)
i

]
=

3
4

[
un

i
v

n,lim
i

]
+

1
4

([
u(1)

i

v
(1),lim
i

]
+ ∆t

[
Fi (u(1), v(1))
Hi (u(1), v(1))

])
,[

un+1
i

vn+1
i

]
=

1
3

[
un

i
v

n,lim
i

]
+

2
3

([
u(2)

i

v
(2),lim
i

]
+ ∆t

[
Fi (u(2), v(2))
Hi (u(2), v(2))

])
,

(2.6)

where v
n,lim
i , v

(1),lim
i and v

(2), lim
i are the restricted derivatives of vn

i , v
(1)
i and v

(2)
i by a HWENO limiter described

below. As was shown in previous FD HWENO schemes [29,32], these derivatives might become quite large near
discontinuities. Here following [29,32], we also restrict the derivatives only for the values appeared in the time
stages as shown in (2.6).

In the following, we will briefly introduce the procedures of a HWENO limiter to restrict {vn
i , v

(1)
i , v

(2)
i } and

obtain {v
n,lim
i , v

(1),lim
i , v

(2),lim
i } correspondingly, which are denoted as {u#

i , v
#
i , v

#,lim
i } for # = n, (1), (2). We will

apply a Hermite interpolation based on {u#
i−1, u#

i , u#
i+1, v

#
i−1, v

#
i+1} to obtain a quartic polynomials p0(x), and use

linear interpolations based on {u#
i−1, u#

i } and {u#
i , u#

i+1} to get two linear polynomials p1(x), p2(x), respectively. For
simplicity, we drop the super index # below, and we have⎧⎪⎨⎪⎩

p0(x) : p0(xl) = ul , l = i − 1, i, i + 1, p′

0(xl) = vl , l = i − 1, i + 1,

p1(x) : p1(xl) = ul , l = i − 1, i,
p2(x) : p2(xl) = ul , l = i, i + 1.

We compute smoothness indicators β̂k(x) as in (2.4) to measure the smoothness of the functions pk(x), and the
expressions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂0 =
1

1600 [29(ui−1 − ui+1) + 9 (vi−1 + vi+1)∆x]2

+
781
320 [ui−1 − ui+1 + (vi−1 + vi+1)∆x]2

+
1

191100 [787(ui−1 − 2ui + ui+1) + 166 (vi−1 − vi+1)∆x]2

+
1421461
36400 [2(ui−1 − 2ui + ui+1) + (vi−1 − vi+1)∆x]2 ,

β̂1 = (ui − ui−1)2,

β̂2 = (ui − ui+1)2.

e also define a parameter τ̂ to measure the absolute difference between β̂0, β̂1 and β̂2 as

τ̂ =

(
|β̂0 − β̂1| + |β̂0 − β̂2|

2

)2

,

nd the nonlinear weights are defined as

ω̂k =
ωk

ω1 + ω2 + ω3
, with ωk = dk

(
1 +

τ̂

β̂k + ε

)
, k = 0, 1, 2,

here ε is also taken as 10−10. Finally, the restricted derivative v
#,lim
i is obtained from

v
#,lim
i = ω̂0

(
1
d0

p′

0(xi ) −
d1

d0
p′

1(xi ) −
d2

d0
p′

2(xi )
)

+ ω̂1 p′

1(xi ) + ω̂2 p′

2(xi ), (2.7)

here dk, k = 0, 1, 2 are arbitrary positive linear weights as long as their sum equals one, and the explicit
xpressions of p′

k(xi ) can be found in [32]. Note that this limiter is only fifth order accurate, which is why the
WENO-L scheme cannot achieve sixth order accuracy.
6
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2.3. HWENO-R reconstructions in two dimensions

A two-dimensional scalar hyperbolic conservation law is considered as

ut + f (u)x + g(u)y = 0, u(x, y, 0) = u0(x, y). (2.8)

Correspondingly, we introduce two auxiliary variables v = ux and w = u y as in [21], having⎧⎪⎨⎪⎩
ut + f (u)x + g(u)y = 0, u(x, y, 0) = u0(x, y),
vt + h(u, v)x + r (u, v)y = 0, v(x, y, 0) = v0(x, y),
wt + q(u, w)x + s(u, w)y = 0, w(x, y, 0) = w0(x, y),

(2.9)

ith

h(u, v) = f (u)x = f ′(u)v, r (u, v) = g(u)x = g′(u)v, v0(x, y) = ux (x, y, 0),
q(u, w) = f (u)y = f ′(u)w, s(u, w) = g(u)y = g′(u)w, w0(x, y) = wy(x, y, 0).

e consider a uniform mesh of a given domain [a, b] × [c, d] with grid points {(xi , y j )} for i = 0, . . . , Nx , j =

, . . . , Ny with mesh sizes ∆x = xi+1 − xi and ∆y = y j+1 − y j . (xi , y j ) is the center of cell Ii, j = [xi− 1
2
, xi+ 1

2
] ×

[y j− 1
2
, y j+ 1

2
], with interfaces xi+ 1

2
= xi +∆x/2 and y j+ 1

2
= y j +∆y/2. A conservative semi-discrete FD HWENO

scheme for (2.9) is defined as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dui, j (t)
dt

= −
1
∆x

( f̂i+ 1
2 , j − f̂i− 1

2 , j ) −
1
∆y

(ĝi, j+ 1
2

− ĝi, j− 1
2
),

dvi, j (t)
dt

= −
1
∆x

(ĥi+ 1
2 , j − ĥi− 1

2 , j ) −
1
∆y

(r̂i, j+ 1
2

− r̂i, j− 1
2
),

dwi, j (t)
dt

= −
1
∆x

(q̂i+ 1
2 , j − q̂i− 1

2 , j ) −
1
∆y

(ŝi, j+ 1
2

− ŝi, j− 1
2
),

(2.10)

where the numerical fluxes { f̂i± 1
2 , j , ĥi± 1

2 , j } are reconstructed along the x-direction with a fixed y and the
umerical fluxes {ĝi, j± 1

2
, ŝi, j± 1

2
} are reconstructed along the y-direction with a fixed x , by using the same HWENO

reconstruction as described in Section 2.1.
Special attention should be paid to the numerical fluxes q̂i± 1

2 , j and r̂i, j± 1
2
, which approximate the mixed derivative

terms qx = ( f ′(u)w)x = f (u)xy and ry = (g′(u)v)y = g(u)xy , respectively. In [21,31], a third order reconstruction
with a flux splitting is used, making vi, j (t) and wi, j (t) be only third order approximations. Instead, we directly use
fourth order linear approximation to reconstruct q̂i+ 1

2 , j and r̂i, j+ 1
2

as in [29,32], i.e.,{
q̂i+ 1

2 , j = −
1

12 qi−1, j +
7

12 qi, j +
7

12 qi+1, j −
1

12 qi+2, j ,

r̂i, j+ 1
2

= −
1
12ri, j−1 +

7
12ri, j +

7
12ri, j+1 −

1
12ri, j+2.

(2.11)

hen, the HWENO-R scheme achieves a fully fifth order accuracy and is much simpler, and numerically we find
hat such linear reconstructions for q̂i+ 1

2 , j and r̂i, j+ 1
2

also work well.
Similarly to the 1D case, we use the explicit third order SSP Runge–Kutta method (2.6) to solve the semi-discrete

WENO scheme (2.10). To control spurious oscillations, the HWENO limiter (2.7) is also applied to modify v#
i, j

and w#
i, j by a dimension-by-dimension methodology. Finally, v

#,lim
i, j and w

#,lim
i, j are obtained and only acted as time

tage values too.

.4. Algorithms of HWENO-R scheme

emark 2.2. For one- and two-dimensional compressible Euler equations, it is important to perform HWENO
econstructions for numerical fluxes along local characteristic directions to control numerical oscillations around
hocks and contact discontinuities. Besides, linear reconstructions of numerical fluxes in the derivative equations
re implemented in each component.
7
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Algorithm 1: one-dimensional case
Input: {un

i , v
n
i } at time level n.

Output: {un+1
i , vn+1

i } at time level n + 1.
1 Step I. Compute the right-hand terms of (2.3) for spatial discretizations.
2 for i = 0, Nx do
3 Compute f̂ +

i+ 1
2

and ĥ+

i+ 1
2

by (2.5), similarly for f̂ −

i+ 1
2

and ĥ−

i+ 1
2
.

4 Compute f̂i+ 1
2

= f̂ +

i+ 1
2

+ f̂ −

i+ 1
2

and ĥi+ 1
2

= ĥ+

i+ 1
2

+ ĥ−

i+ 1
2
.

5 Step II. Compute restricted derivatives v
#,lim
i by (2.7).

6 Step III. Evolve to time level n + 1 from time level n by (2.6).

Algorithm 2: two-dimensional case
Input: {un

i, j , v
n
i, j , w

n
i, j } at time level n.

Output: {un+1
i, j , vn+1

i, j , wn+1
i, j } at time level n + 1.

1 Step I. Compute the right-hand terms of (2.10) for spatial discretizations.
2 for j = 0, . . . , Ny , do
3 for i = 0, . . . , Nx , do
4 Compute { f̂i+ 1

2 , j , ĥi+ 1
2 , j } by one-dimensional reconstructions in Section 2.1.

5 Compute the mixed derivative term q̂i+ 1
2 , j by (2.11).

6 for i = 0, . . . , Nx , do
7 for j = 0, . . . , Ny , do
8 Compute {ĝi, j+ 1

2
, ŝi, j+ 1

2
} by one-dimensional reconstructions in Section 2.1.

9 Compute the mixed derivative term r̂i, j+ 1
2

by (2.11).

10 Step II. Compute restricted derivatives v
#,lim
i, j and w

#,lim
i, j by a dimension-by-dimension approach, which is

similar to compute v
#,lim
i by (2.7).

11 Step III. Evolve to time level n + 1 from time level n, similarly to (2.6).

Remark 2.3. For a few tough extreme tests of two-dimensional compressible Euler equations, such as Mach 2000
strophysical jet flows and the shock reflection and diffraction problem, the proposed HWENO scheme cannot work
ithout PP limiters due to the appearance of negative density and pressure. Since only a few 2D extreme situations

equire PP limiters, we will utilize a parametrized PP flux limiter [35] for 2D problems, which allows larger time
teps in a relatively large CFL number and does not sacrifice accuracy. The parametrized PP flux limiter is very
onvenient for FD schemes, and the implementations are given in Appendix for 2D FD HWENO schemes.

emark 2.4. For the additional derivative variable v, its boundary treatment depends on the main variable u. For
periodic, reflective, and outflow boundary conditions, v uses the same boundary treatment as u. For other boundary
conditions, such as Dirichlet or inflow boundary condition, we simply set v be 0.

3. Numerical tests

In this section, we will perform numerical tests in one- and two-dimensional cases to verify the fifth order
accuracy, high resolution, and robustness of the proposed HWENO-R scheme. For comparisons, we mainly consider
the HWENO-R, HWENO-L [32] and WENO-ZQ [5] schemes since the three schemes all use arbitrary positive
linear weights in flux reconstructions. The linear weights of the HWENO-L and WENO-ZQ schemes are chosen
as suggested from [5,32]. For the HWENO-R scheme, we take the linear weights {γ0 = 0.99, γ1 = γ2 = 0.005}

in the flux reconstruction (2.5) and {d0 = 0.9, d1 = d2 = 0.05} in the limiter (2.7), based on our investigations in
Example 3.4.
8
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Table 3.1
Example 3.1. The L1 errors, orders, and CPU time of the HWENO-R, HWENO-L, and WENO-ZQ schemes.

Mesh HWENO-R HWENO-L WENO-ZQ

L1 error Order CPU L1 error Order CPU L1 error Order CPU

10 2.55E−02 – 3.92E−05 1.66E−02 – 4.26E−05 1.67E−02 – 3.18E−05
20 3.24E−03 2.98 1.35E−04 1.13E−03 3.88 1.57E−04 1.47E−03 3.50 1.10E−04
40 1.32E−04 4.61 6.95E−04 2.40E−05 5.55 8.19E−04 7.34E−05 4.33 5.67E−04
80 1.04E−06 6.99 4.14E−03 5.04E−07 5.58 4.91E−03 2.40E−06 4.93 3.33E−03
160 1.47E−08 6.15 2.58E−02 1.07E−08 5.56 3.14E−02 7.15E−08 5.07 2.16E−02
320 3.69E−10 5.32 1.65E−01 3.24E−10 5.05 2.00E−01 2.12E−09 5.08 1.38E−01

10 × 10 2.80E−02 – 2.90E−04 2.34E−02 – 3.56E−04 1.83E−02 – 2.21E−04
20 × 20 4.04E−03 2.79 2.68E−03 6.09E−04 5.26 3.18E−03 1.80E−03 3.34 2.10E−03
40 × 40 4.54E−05 6.48 3.11E−02 1.26E−05 5.59 4.12E−02 7.47E−05 4.59 2.48E−02
80 × 80 1.09E−06 5.38 4.18E−01 5.04E−07 4.64 5.35E−01 2.41E−06 4.95 2.98E−01
160 × 160 1.46E−08 6.22 5.16E+00 1.07E−08 5.56 6.56E+00 7.12E−08 5.08 3.82E−00
320 × 320 3.64E−10 5.33 7.48E+01 3.20E−10 5.06 9.04E+01 2.10E−09 5.08 4.81E+01

To assess the efficiency and performance of these schemes, we first offer the results of accuracy tests. For the
iscontinuous tests, we only concentrate on comparing the HWENO-R and WENO-ZQ schemes in some extreme
roblems since the HWENO-L scheme cannot simulate even using PP limiters. We no longer present the comparative
esults of the classical WENO [2], WENO-ZQ, modified HWENO [29] and HWENO-L schemes, which were given
n [32]. The PP researches of the classical WENO scheme were presented in [22,35,36].

Since HWENO schemes contain additional derivative equations, the boundary treatment of derivative variables
an be seen in Remark 2.4. For time steps, in the one-dimensional case, we take ∆t = CFL (∆x)

5
3 /Λ for smooth

problems to observe the orders of spatial accuracy, and ∆t = CFL /(Λ/∆x) for other problems, where Λ is the
spectral radius over the spatial domain for F(U), respectively. Correspondingly, in two-dimensional case, we take
∆t = CFL/(Λx/(∆x)

5
3 + Λy/(∆y)

5
3 ) for smooth problems and ∆t = CFL/(Λx/∆x + Λy/∆y) for others, where

Λx and Λy are the spectral radiuses over spatial domains for F′(U) and G′(U), respectively. CFL is taken as 0.6 in
our computations. For the comparison of computational cost, we run our simulations based on the programming
language Fortran 95 on the environment Inter(R) Xeon (R) Gold 6130 CPU @ 2.10 GHz.

Example 3.1. We first consider the accuracy test of scalar conservation laws. One- and two-dimensional Burgers’
equations are used to verify the fifth order accuracy and compare computational efficiency for the HWENO-R,
HWENO-L, and WENO-ZQ schemes. In the 1D case, the initial condition is u(x, 0) = 0.5 + sin(πx) with periodic
boundary conditions in the domain [0, 2]. In the 2D case, the initial condition is u(x, y, 0) = 0.5 + sin(π (x + y)/2)
with periodic boundary conditions in the domain [0, 4] × [0, 4]. Their final time T is 0.5/π when the solutions are
smooth. The L1 norm of numerical errors for the three schemes are given in Table 3.1, which shows the schemes
all achieve fifth order accuracy. More explicitly, in the 1D case with denser meshes (e.g., ≥ 160), the CPU time
ratio of HWENO-R/WENO-ZQ is about 1.195, whereas the error ratio is around 1/5.263, and the CPU time ratio
of HWENO-L/WENO-ZQ is around 1.452, but the error ratio is almost 1/6.623. In the 2D case with denser meshes
(e.g., ≥ 160×160), the CPU time ratio of HWENO-R/WENO-ZQ is about 1.453, whereas the error ratio is around
1/5.291, and the CPU time ratio of HWENO-L/WENO-ZQ is almost 1.798, but the error ratio is around 1/6.623.
These data demonstrate that at the same CPU cost, the HWENO schemes are more accurate than the WENO-ZQ
scheme as the product of the CPU time ratio and the error ratio is less than 1. More intuitively, the L1 errors and
CPU time measured in seconds are plotted in Fig. 3.1, which shows that the HWENO-R and HWENO-L schemes
are more efficient than the WENO-ZQ scheme for the HWENO schemes obtain minor errors on the fixed CPU time
as the mesh gets denser. Besides, the HWENO-R scheme is slightly more efficient than the HWENO-L scheme even
though they have similar numerical errors, which illustrates that some numerical wastes exist in flux reconstructions
of the HWENO-L scheme.

Example 3.2. We consider an accuracy test of the HWENO-R, HWENO-L, and WENO-ZQ schemes for

one-dimensional compressible Euler equations to compare computational efficiency. The initial condition is

9
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Fig. 3.1. Comparison of L1 errors and CPU time for Example 3.1.

Table 3.2
Example 3.2. The L1 errors, orders, and CPU time of the HWENO-R, HWENO-L, and WENO-ZQ schemes.

Mesh HWENO-R HWENO-L WENO-ZQ

L1 error Order CPU L1 error Order CPU L1 error Order CPU

10 6.00E−03 – 2.70E−03 1.63E−03 – 3.34E−03 3.47E−03 – 2.34E−03
20 3.57E−04 4.07 1.28E−02 3.50E−05 5.54 1.51E−02 8.72E−05 5.31 9.68E−03
40 1.78E−06 7.65 7.71E−02 6.94E−07 5.65 9.07E−02 2.88E−06 4.92 5.78E−02
80 1.68E−08 6.73 4.80E−01 1.53E−08 5.51 5.71E−01 9.13E−08 4.98 3.71E−01
160 4.80E−10 5.13 3.04E+00 4.80E−10 4.99 3.61E+00 2.87E−09 4.99 2.34E−00
320 1.51E−11 5.00 1.95E+01 1.51E−11 5.00 2.32E+01 9.01E−11 5.00 1.49E+01

(ρ, u, p, γ ) = (1 + 0.2 sin(πx), 1, 1, 1.4) with periodic boundary conditions in the domain [0, 2]. Up to the final
ime T = 2, the exact solutions are (ρ, u, p) = (1 + 0.2 sin(π (x − T )), 1, 1). The numerical errors and CPU
ime of the HWENO-R, HWENO-L, and WENO-ZQ schemes are presented in Table 3.2, which shows the three
chemes all achieve fifth order accuracy. More explicitly, on the denser meshes (e.g., ≥ 80), the CPU time ratio
f HWENO-R/WENO-ZQ is about 1.301, whereas the error ratio is around 1/5.780, and the CPU time ratio of
WENO-L/WENO-ZQ is almost 1.546, but the error ratio is around 1/5.988. These data demonstrate that at the

ame CPU cost, the HWENO schemes are more accurate than the WENO-ZQ scheme, which also can be known
rom Fig. 3.2, where the L1 errors and CPU time measured in seconds are plotted. Obviously, the HWENO schemes
btain minor errors than the WENO-ZQ scheme on the fixed CPU time as the mesh gets denser, and the HWENO-R
cheme is also slightly more efficient than the HWENO-L scheme.

xample 3.3 (Accuracy test for the isentropic vortex evolution problem). We consider the isentropic vortex
roblem [36] for 2D compressible Euler equations to test the order of spatial accuracy with PP limiters. For this
roblem, the background flow is ρ = p = u = v = 1. We add a perturbation of an isentropic vortex centered at
x0, y0) to the velocity field (u, v) and temperature T = p/ρ, with a constant entropy S = p/ργ , that is,

(δu, δv) =
ϵ

2π
e0.5(1−r2)(−ȳ, x̄), δT =

(γ − 1)ϵ2

8γπ2 e1−r2
, (3.1)

where (x̄, ȳ) = (x−x0, y−y0), r2
= x̄2

+ ȳ2. The computational domain is a square of [−5, 15]2 and (x0, y0) = (5, 5),
ith periodic boundary conditions. Here γ = 1.4 and the vortex strength ϵ = 10.0828. The exact solution is a

assive convection of the vortex with respect to the mean velocity. The lowest density and pressure of the exact

10
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Fig. 3.2. Comparison of L1 errors and CPU time for Example 3.2.

Fig. 3.3. Comparison of L1 errors and CPU time for Example 3.3.

olutions are 7.8×10−15 and 1.7×10−20, respectively. The final time is T = 0.01 for the HWENO-R, HWENO-L,
nd WENO-ZQ schemes. The L1 errors, orders of accuracy, and CPU time are presented in Table 3.3, which shows
hat the three schemes achieve desired fifth order accuracy, without or with the PP limiters. More explicitly, on the
enser meshes (e.g., ≥ 320 × 320), the CPU time ratios of HWENO-R/WENO-ZQ without and with PP limiters
re about 1.823 and 1.609, respectively, whereas the error ratios are almost 1/5.524, and the CPU time ratios of
WENO-L/WENO-ZQ without and with PP limiters are almost 1.978 and 1.704, respectively, but the error ratios

re around 1/5.682. These data demonstrate that at the same CPU cost, the HWENO schemes are more accurate than
he WENO-ZQ scheme. From Fig. 3.3, we can see more intuitive results, in which the L1 errors and CPU time are

plotted. Then, we can know that the HWENO-R and HWENO-L schemes are more efficient than the WENO-ZQ
scheme without or with PP limiters as the mesh gets denser. Besides, the HWENO-R scheme is slightly more
efficient than the HWENO-L scheme by using less CPU time.
11
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Table 3.3
Example 3.3. The L1 errors, orders, and CPU time of the HWENO-R, HWENO-L, and WENO-ZQ schemes. WO: without PP limiters; WL:
with PP limiters.

Mesh WO WL

L1 error Order ρmin pmin CPU L1 error Order ρmin pmin CPU

HWENO-R
20 × 20 1.24E−03 – 3.43E−02 9.43E−03 8.00E−02 1.24E−03 – 3.43E−02 9.43E−03 1.43E−01
40 × 40 1.32E−04 3.23 1.94E−03 −1.90E−03 9.30E−02 1.32E−04 3.23 3.33E−03 1.00E−13 1.75E−01
80 × 80 6.58E−06 4.32 8.51E−05 9.82E−06 1.41E−01 6.58E−06 4.32 8.51E−05 9.82E−06 2.74E−01
160 × 160 4.78E−08 7.11 5.39E−06 1.73E−06 5.43E−01 4.78E−08 7.11 5.39E−06 1.73E−06 8.50E−01
320 × 320 4.78E−10 6.64 2.55E−07 2.95E−08 6.33E−00 4.78E−10 6.64 2.55E−07 2.95E−08 8.03E−00
640 × 640 1.34E−11 5.16 1.22E−08 4.67E−10 7.87E+01 1.34E−11 5.16 1.22E−08 4.67E−10 9.66E+01

HWENO-L
20 × 20 3.38E−03 – 3.10E−01 −1.55E+00 8.42E−02 3.51E−03 – 2.14E−01 8.52E−02 1.38E−01
40 × 40 3.40E−05 6.64 1.01E−04 −8.04E−04 9.23E−02 3.40E−05 6.69 8.77E−04 1.00E−13 1.67E−01
80 × 80 1.48E−06 4.52 6.69E−05 9.98E−06 1.48E−01 1.48E−06 4.52 6.69E−05 9.98E−06 2.62E−01
160 × 160 1.87E−08 6.31 1.09E−05 1.83E−06 5.74E−01 1.87E−08 6.31 1.09E−05 1.83E−06 8.48E−01
320 × 320 4.57E−10 5.36 4.81E−07 3.13E−08 6.86E−00 4.57E−10 5.36 4.81E−07 3.13E−08 8.53E−00
640 × 640 1.34E−11 5.09 1.23E−08 4.80E−10 8.55E+01 1.34E−11 5.09 1.23E−08 4.80E−10 1.02E+02

WENO-ZQ
20 × 20 1.01E−04 – 4.99E−04 −4.94E−03 6.14E−02 1.01E−04 – 1.83E−03 9.99E−14 1.46E−01
40 × 40 2.25E−05 2.16 −1.92E−04 5.14E−04 7.03E−02 2.32E−05 2.11 8.86E−04 1.00E−13 1.82E−01
80 × 80 3.47E−06 2.70 3.66E−04 −2.65E−04 1.03E−01 3.46E−06 2.75 2.47E−04 1.68E−05 2.80E−01
160 × 160 7.64E−08 5.50 1.70E−05 1.31E−05 2.96E−01 7.64E−08 5.50 1.70E−05 1.31E−05 6.80E−01
320 × 320 2.48E−09 4.95 1.16E−06 2.80E−07 3.53E−00 2.48E−09 4.95 1.16E−06 2.80E−07 5.17E−00
640 × 640 7.96E−11 4.96 6.93E−08 4.93E−09 4.25E+01 7.96E−11 4.96 6.93E−08 4.93E−09 5.80E+01

Remark 3.1. From Tables 3.1–3.3, we can see that the order of HWENO-R, HWENO-L and WENO-ZQ schemes is
ess or greater than five, or the HWENO-L scheme might have minor errors than the HWENO-R scheme on coarser

eshes. But, the three schemes achieve the designed fifth order accuracy, and the HWENO-R and HWENO-L
chemes have similar numerical errors as the mesh gets denser. The reason is that when we compute the convergence
ates, we usually assume the truncation errors for a fifth order scheme are of the form Ch5, where C is a constant
hat does not depend on the mesh size h. However, this is only true when h is small enough. For coarse meshes,

the truncation errors might not be exactly of the form Ch5, so we could observe those phenomenons above.

Example 3.4. We now solve the blast wave problem modeled by one-dimensional compressible Euler equations.
The initial condition is

(ρ, u, p, γ ) =

⎧⎪⎨⎪⎩
(1, 0, 1000, 1.4), if x ∈ [0, 0.1),
(1, 0, 0.01, 1.4), if x ∈ [0.1, 0.9),
(1, 0, 100, 1.4), if x ∈ [0.9, 1],

(3.2)

with reflective boundary conditions on the left and right. The final time is T = 0.038. The reference solution is
generated by the classical WENO scheme [2] using 2001 points. For the HWENO-R, HWENO-L and WENO-ZQ
schemes, the computational density is plotted in Fig. 3.4, which shows the HWENO-R and HWENO-L schemes
have higher resolution than the WENO-ZQ scheme due to compact spatial stencils. Meanwhile, the HWENO-R
scheme uses less information in flux reconstructions but has slightly better resolution than the HWENO-L scheme.

Next, we will investigate the linear weights {γ0, γ1, γ2} for flux reconstructions in (2.5) and {d0, d1, d2} for
HWENO limiter in (2.7) on how they affect the results of the HWENO-R scheme. For simplicity, the HWENO-R
scheme with those given linear weights in Table 3.4 is denoted as HWENO-R:(Dk,Gk).

Firstly, for the fixed linear weights D1 in the limiter, the comparative results computed by the HWENO-R scheme
ith linear weights {G1, G2, G3, G4} are shown in Fig. 3.5. We can see that the resolution of the solution is affected
y the linear weights in the flux reconstructions, and larger γ0 with the fixed D1 may result in better resolution.
Secondly, for the fixed G1 in the flux reconstructions, we also give the computational results of HWENO-R with

12
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Fig. 3.4. Example 3.4. The results of solution computed by the HWENO-R, HWENO-L and WENO-ZQ schemes for the blast wave problem.

Fig. 3.5. Example 3.4. The results of solution computed by the HWENO-R schemes with different linear weights in the flux reconstructions
and fixed D1 in the limiter.

he linear weights {D1, D2, D3, D4} in Fig. 3.6. Then, we know that the resolution of the solution is also affected
y the linear weights in the limiter, and larger or smaller d0 with the fixed G1 may result in worse resolution.

To control spurious oscillations and obtain better resolutions, γ0 and d0 cannot be set quite large or small in
the flux reconstructions and limiter. By trial and error, if the linear weights γ0

γ1
∈ [100, 300] and d0

d1
∈ [10, 30]

are used in the flux reconstructions and the limiting process, respectively, the results obtained by the HWENO-
R scheme are similar with high resolution and non-oscillation, shown in Fig. 3.7. Taking a compromise option,
we recommend adopting the linear weights {G1, D2} in the flux reconstructions and limiting process, that is
{γ0 = 0.99, γ1 = γ2 = 0.005} in (2.5) and {d0 = 0.9, d1 = d2 = 0.05} in (2.7). For other numerical tests

f this paper, the HWENO-R scheme with the recommended linear weights can control numerical oscillations well,
ehaving with high resolution in simulations.

xample 3.5. We solve the Sedov problem of one-dimensional compressible Euler equations, which involves

ow-density and strong shocks. The computational domain is [−2, 2], the density is ρ(x, 0) = 1, the velocity

13
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Fig. 3.6. Example 3.4. The results of solution computed by the HWENO-R schemes with different linear weights in the limiter and fixed
G1 in the flux reconstructions.

Table 3.4
Example 3.4. The HWENO-R:(Gk,Dk) schemes with different linear weights in the
flux reconstructions and limiter.

In the flux reconstructions In the limiter

G1 : {γ0 = 0.99, γ1 = γ2 = 0.005} D1 : {d0 = 0.99, d1 = d2 = 0.005}

G2 : {γ0 = 0.9, γ1 = γ2 = 0.05} D2 : {d0 = 0.9, d1 = d2 = 0.05}

G3 : {γ0 = γ1 = γ2 = 1/3} D3 : {d0 = d1 = d2 = 1/3}

G4 : {γ0 = 0.1, γ1 = γ2 = 0.45} D4 : {d0 = 0.1, d1 = d2 = 0.45}

G5 : {γ0 = 100/102, γ1 = γ2 = 1/102} D5 : {d0 = 10/12, d1 = d2 = 1/12}

G6 : {γ0 = 150/152, γ1 = γ2 = 1/152} D6 : {d0 = 15/17, d1 = d2 = 1/17}

G7 : {γ0 = 200/202, γ1 = γ2 = 1/202} D7 : {d0 = 20/22, d1 = d2 = 1/22}

G8 : {γ0 = 250/252, γ1 = γ2 = 1/252} D8 : {d0 = 25/27, d1 = d2 = 1/27}

G9 : {γ0 = 300/302, γ1 = γ2 = 1/302} D9 : {d0 = 30/32, d1 = d2 = 1/32}

is u(x, 0) = 0, and the total energy is E(x, 0) = 10−12 everywhere except in the center cell with a constant
E(x, 0) = 3.2 × 106/∆x . We take γ = 1.4, and the final time is T = 0.001. The exact solution is provided
n [37,38]. Outflow boundary conditions are imposed on the left and right. The computational density are shown
n Fig. 3.8, where the HWENO-R scheme with compact reconstructed stencils performs slightly better than the

ENO-ZQ scheme. The HWENO-L scheme cannot simulate this problem even using the parametrized PP flux
imiting approach in [35].

To investigate the reason of the failure in simulations for the HWENO-L scheme, we present the derivatives
f density after marching one time step for the HWENO-R and HWENO-L schemes in Fig. 3.9. We can see
hat the derivatives of the HWENO-L scheme have more dramatic variations than the HWENO-R scheme. More
xplicitly, the maximum value of derivatives for density exceeds 4000 in the HWENO-L scheme, while less than 20
n the HWENO-R scheme. This phenomenon shows that huge numerical oscillations for density are existed in the
WENO-L scheme, leading to the failures of the HWENO-L scheme in the simulation as time evolves. Besides,

his issue cannot be solved by using PP limiters as the PP limiters can keep the positivity of density and pressure
ut cannot control numerical oscillations. Conversely, the proposed HWENO-R scheme can well simulate this test
ithout any PP limiters, which shows the strong robustness of the HWENO-R scheme.
14
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Fig. 3.7. Example 3.4. The results of solution computed by the HWENO-R schemes.

Fig. 3.8. Example 3.5. Sedov problem with 800 meshes.
15
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Fig. 3.9. Example 3.5. The comparison of the derivative of density after marching one time step for Sedov problem with 800 meshes.

Fig. 3.10. Example 3.6. Double rarefaction problem with 400 meshes.

Example 3.6. We solve the double rarefaction problem [39] of one-dimensional compressible Euler equations, which
includes low-density and low-pressure solutions. The initial condition is

(ρ, u, p, γ ) =

{
(7, −1, 0.2, 1.4), if x ∈ [−1, 0),
(7, 1, 0.2, 1.4), if x ∈ [0, 1].

(3.3)

Outflow boundary conditions are imposed on the left and right. The final time is T = 0.6. The results are shown in
ig. 3.10. The HWENO-R and WENO-ZQ schemes work well for this extreme problem without PP limiters, but

he HWENO-R scheme has more compact reconstructed stencils.

xample 3.7. We solve the Leblanc problem of one-dimensional compressible Euler equations. The initial condition
s

(ρ, u, p, γ ) =

{
(2, 0, 109, 1.4), if x ∈ [−10, 0),
(10−3, 0, 1, 1.4), if x ∈ [0, 10].

(3.4)

Outflow boundary conditions are imposed on the left and right. The final time is T = 0.0001. We show the
computational density in Fig. 3.11 for the HWENO-R and WENO-ZQ schemes without PP limiters. They can
perform well in this case and have similar performances. The other FD HWENO schemes [21,26,29,31,32] cannot
simulate the problem directly. The reconstructed stencils of the HWENO-R and HWENO-L schemes are more
compact than the WENO-ZQ scheme, but the HWENO-L scheme also fails to simulate this extreme problem, even
with PP limiters.

Example 3.8. We solve the double Mach reflection problem of two-dimensional compressible Euler equations.

The computational domain is [0, 4] × [0, 1]. The initial condition is a pure right-moving Mach 10 shock, initially

16
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Fig. 3.11. Example 3.7. Leblanc problem with 6400 meshes.

located at x =
1
6 , y = 0, making a 60◦ angle with the x-axis. The left and right boundaries are inflow and outflow,

espectively. The top boundary is the exact motion of a Mach 10 shock. For the bottom boundary, the exact post-
hock condition is posed on [0, 1

6 ] × {0}, and a reflective boundary is used for the rest. The computational density
in the final time T = 0.2 are showed in Fig. 3.12 for the HWENO-R, HWENO-L, and WENO-ZQ schemes. The
HWENO-L and HWENO-R schemes can capture more complicated structures around the double Mach stems than
the WENO-ZQ scheme because of using compact reconstructed stencils. The HWENO-R scheme also has a slightly
higher resolution than the HWENO-L scheme, even using less information in flux reconstructions.

Example 3.9. We solve the forward step problem of two-dimensional compressible Euler equations containing a
Mach 3 wind tunnel with a step. The computational domain is a union of [0, 0.6]× [0, 1] and [0.6, 1]× [0.2, 1]. The
initial condition is a right-going Mach 3 flow. Reflective boundary conditions are used along the wall of the tunnel.
Inflow and outflow boundary conditions are used at the entrance and exit, respectively. The final time is T = 4. The
results of computational density are shown in Fig. 3.13 for the HWENO-R, HWENO-L, and WENO-ZQ schemes.
Due to more compact stencils, the HWENO-R and HWENO-L schemes have better resolution than the WENO-ZQ
scheme, and the HWENO-R scheme has slightly higher resolution than the HWENO-L scheme. The total CPU
time is 29093.92 s for the HWENO-R scheme, 31945.12 s for the HWENO-L scheme, and 20542.55 s for the
WENO-ZQ scheme. Correspondingly, the CPU time ratios of HWENO-R/WENO-ZQ and HWENO-L/WENO-ZQ
are around 1.416 and 1.555, respectively, which also show that the HWENO-R scheme has higher efficiency than
the HWENO-L scheme. Besides, the two HWENO schemes use more CPU cost than the WENO-ZQ scheme, as the
HWENO schemes bring additional derivative equations, but the HWENO schemes have slightly better resolutions
with more compact stencils.

Example 3.10. We now consider a Sedov problem of two-dimensional compressible Euler equations. The compu-
tational domain is [0, 1.1]2. For the initial condition, similarly to the 1D case, the density is ρ(x, y, 0) = 1, the
velocities are u(x, y, 0) = v(x, y, 0) = 0, and the total energy is E(x, y, 0) = 10−12 everywhere except on the
lower left corner with a constant E(x, y, 0) =

0.244816
∆x∆y . γ = 1.4. Reflective boundary conditions are used on the

eft and bottom, while outflow conditions are on the right and upper boundaries. The exact solution is provided
n [37,38]. The final time is T = 1. The computational results of the HWENO-R and WENO-ZQ schemes are
hown in Fig. 3.14. The two schemes without PP limiters work well for this test with capturing the front density
ropagation, and the HWENO-R scheme has slightly better resolution than the WENO-ZQ scheme due to more
ompact stencils. However, other existing FD HWENO schemes [21,26,29,31,32] fail to work for this problem
irectly.

xample 3.11. We solve the Mach 2000 astrophysical jet problem without a radiative cooling, which has been
tudied in [40–42]. The computational domain is [0, 1] × [−0.25, 0.25]. Initially, it is full of an ambient gas with
ρ, u, v, p, γ ) = (0.5, 0, 0, 0.4127, 5/3). We take outflow boundary conditions on the right, top, and bottom. On the

eft boundary, we set (ρ, u, v, p) = (5, 800, 0, 0.4127), y ∈ [−0.05, 0.05] and (ρ, u, v, p) = (0.5, 0, 0, 0.4127) for

17
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1

t

Fig. 3.12. Example 3.8. Double Mach reflection problem. Contour plots of density with 30 equally spaced lines from 1.5 to 22.7. Meshes:
600 × 400.

he rest. The results of computational density in the final time T = 0.001 are shown in Fig. 3.15 for the HWENO-R
and WENO-ZQ schemes, which cannot work without PP limiters. The HWENO-R scheme coupled with PP limiters
18
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Fig. 3.13. Example 3.9. Forward step problem. Contour plots of density with 30 equally spaced lines from 0.32 to 6.15. Meshes: 960 × 320.

erforms well for this problem, and the proportion of cells that used PP limiters is about 0.0146%, which has similar
esolutions with the WENO-ZQ scheme. Besides, the total CPU time for the HWENO-R scheme is 2292.73 s, and
he CPU time ratio of HWENO-R/WENO-ZQ is 1.577. It has an obvious difference compared with Example 3.9
ince the PP limiters are activated in this test.
19
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Fig. 3.14. Example 3.10. 2D Sedov problem. Contour plots of density with 40 equally spaced lines from 0.1 to 5. Meshes: 320 × 320.

Fig. 3.15. Example 3.11. High Mach 2000 problem. Contour plots of density with 40 equally spaced lines from −2 to 3 and scales are
logarithmic. Meshes: 640 × 320.

xample 3.12. We consider a Mach 10 shock problem with shock reflection and diffraction [43]. The computational
domain is a union of [0, 1]× [0, 1] and [−1, 1]× [1, 3]. The initial condition is a pure right-moving Mach 10 shock,
nitially located at x =

1
6 , y = 0, making a 60◦ angle with the x-axis, that is

(ρ, u, v, p, γ ) =

{
(8, 33

4 sin(π
3 ), − 33

4 cos(π
3 ), 116.5, 1.4), x < 1

6 +
y

√
3
,

(1.4, 0, 0, 1, 1.4), otherwise.

The boundary conditions are set as inflow on the left, outflow on the right and bottom, and reflective on the wall
[ 1

6 , 1] × {0} and {1} × [−1, 0]. The exact post-shock condition is posed on [0, 1
6 ] × {0}. The top boundary is the

exact motion of a Mach 10 shock, which is (ρ, u, v, p) = (8, 33
4 sin(π

3 ), − 33
4 cos(π

3 ), 116.5) for 0 ≤ x ≤
1
6 +

1+20t
√

3
and (ρ, u, v, p) = (1.4, 0, 0, 1) for the rest. We show the density at the final time T = 0.2 for the HWENO-R
nd WENO-ZQ schemes in Fig. 3.16. For this challenging test, we stress the importance of PP limiters again. The
WENO-R and WENO-ZQ schemes will blow up without PP limiters. The HWENO-R scheme with PP limiters
orks well, and the proportion of cells that used PP limiters is 0.0012%. The total CPU time for the HWENO-R

cheme is 12902.85 s, and the CPU time ratio of HWENO-R/WENO-ZQ is about 1.496. The ratio is less than
hat in Example 3.11, since the proportion of cells that used PP limiters is much less than that in Example 3.11.
esides, the HWENO-R scheme has more compact stencils than the WENO-ZQ scheme, and it also can capture
ner structures with higher resolution, such as the roll-up phenomenons.

xample 3.13. Finally, we consider the Rayleigh–Taylor instability problem [44,45] modeled by two-dimensional

ompressible Euler equations with source terms, where ρ and ρv are added to the right-hand side of the third and

20
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Fig. 3.16. Example 3.12. Mach 10 shock reflection and diffraction problem. Contour plots of density with 50 equally spaced lines from 0
to 25. Meshes: 960 × 320.

fourth equations, respectively. The computational domain is [0, 0.25] × [0, 1] and the initial condition is

(ρ, u, v, p, γ ) =

{
(2, 0, −0.025c · cos(8πx), 2y + 1, 5

3 ), 0 ≤ y < 1
2 ,

(1, 0, −0.025c · cos(8πx), y +
3
2 , 5

3 ), 1
2 ≤ y ≤ 1,

here the sound speed c =
√

γ p/ρ. Reflective boundary conditions are imposed for the left and right. The
ow values are set as (ρ, u, v, p) = (2, 0, 0, 1) and (ρ, u, v, p) = (1, 0, 0, 2.5) at the bottom and top boundary,

respectively. We compute the time up to T = 1.95 and show the computational results on different meshes in
Fig. 3.17 to compare the numerical dissipation of the HWENO-R and WENO-ZQ schemes. The HWENO-R and
WENO-ZQ scheme capture typical flow structures well for this problem, and the results are similar to that in [46].
We observe that the resolution of solutions computed by the HWENO-R scheme exhibits better performance and
dispersive behavior, having a more subtle roll-up structure than the WENO-ZQ scheme on the same meshes.
Besides, the results are comparable for the HWENO-R scheme with coarser meshes (e.g., 120 × 480) and the
WENO-ZQ scheme with denser meshes (e.g., 240 × 960), which both illustrate that the HWENO-R scheme has low-
dissipation property. This example shows that compact reconstructions have better resolution due to less dissipation
and dispersion. The analysis of spectral property for high order WENO schemes can be seen in [47], and the analysis
of the dispersion and dissipation behavior for HWENO schemes is going on.

Remark 3.2. For two-dimensional high extreme problems, such as the Mach 2000 astrophysical jet flows and the
shock reflection and diffraction problem, a parametrized PP flux limiter [35] is still necessary for the proposed
HWENO-R and WENO-ZQ [5] schemes.

4. Concluding remarks

In this paper, we proposed a robust FD HWENO-R scheme for compressible Euler equations. The main
dea is to avoid the derivative of a target cell in the flux reconstructions compared with existing FD HWENO
chemes [21,26,29,31,32]. To save computational cost and control numerical spurious oscillations, all derivative
alues are restricted only at each Runge–Kutta time stage by a HWENO limiter, while others only use linear
pproximations. The proposed HWENO-R scheme has optimal fifth order accuracy and is more efficient than the
WENO-L [32] and WENO-ZQ [5] schemes. It is also more robust since it can directly simulate many challenging
roblems. In contrast, other HWENO schemes [21,26,29,31] need additional PP technique, and the HWENO-L
cheme cannot simulate the challenging problems even using extra PP limiters in [35]. The HWENO-R scheme
as higher resolutions than the WENO-ZQ scheme due to more compact stencils at the cost of solving additional
erivative equations. Overall, the HWENO-R scheme can be slightly better than the WENO-ZQ scheme for resolving

ome fine structures at the same computational cost. For two-dimensional high extreme problems, such as the Mach
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c

Fig. 3.17. Example 3.13. Rayleigh–Taylor instability problem. Contour plots of density with 15 equally spaced lines from 0.952269 to
2.14589.

2000 astrophysical jet flows and the shock reflection and diffraction problem, the PP limiters were activated for both
the HWENO-R and WENO-ZQ schemes to avoid negative density or pressure. The PP limiters may further increase
computational cost for both schemes, but they make the schemes more robust.
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ppendix

The two-dimensional compressible Euler equations

Ut + F(U)x + G(U)y = 0, (A.1)

with

U =

⎡⎢⎢⎣
ρ

m
n
E

⎤⎥⎥⎦ , F(U) =

⎡⎢⎢⎣
ρu

ρu2
+ p

ρuv

(E + p)u

⎤⎥⎥⎦ , G(U) =

⎡⎢⎢⎣
ρv

ρuv

ρu2
+ p

(E + p)v

⎤⎥⎥⎦ ,

here ρ is the density, m = ρu and n = ρv are the momenta, u and v are velocities along x and y directions,
espectively, p is the pressure, E =

1
2ρ(u2

+ v2) +
p

γ−1 is the total energy. Following [21,29], we introduce two
uxiliary variables V = Ux and W = Uy to solve⎧⎪⎨⎪⎩

Ut + F(U)x + G(U)y = 0,

Vt + H(U, V)x + R(U, V)y = 0,

Wt + Q(U, W)x + S(U, W)y = 0,

(A.2)

here
H(U, V) = F′(U) V and R(U, V) = G′(U) V,

Q(U, W) = G′(U) W and S(U, W) = G′(U) W,

ith Jacobian matrix F′(U) = ∂F(U)/∂U, which has four eigenvalues u − c, u, u, u + c, and Jacobian matrix
′(U) = ∂G(U)/∂U with v − c, v, v, v + c, where the speed of sound c =

√
γ p/ρ. A conservative semi-discrete

FD HWENO scheme for (A.2) is defined as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dUi, j (t)
dt

= −
1
∆x

(̂Fi+ 1
2 , j − F̂i− 1

2 , j ) −
1
∆y

(Ĝi, j+ 1
2

− Ĝi, j− 1
2
),

dVi, j (t)
dt

= −
1
∆x

(Ĥi+ 1
2 , j − Ĥi− 1

2 , j ) −
1
∆y

(R̂i, j+ 1
2

− R̂i, j− 1
2
),

dWi, j (t)
dt

= −
1
∆x

(Q̂i+ 1
2 , j − Q̂i− 1

2 , j ) −
1
∆y

(̂Si, j+ 1
2

− Ŝi, j− 1
2
),

(A.3)

where F̂i+ 1
2 , j , Ĥi+ 1

2 , j , Q̂i+ 1
2 , j , Ĝi, j+ 1

2
, R̂i, j+ 1

2
and Ŝi, j+ 1

2
are numerical fluxes.

For the 2D HWENO scheme (A.3), a parametrized PP flux limiter is applied to the main variable U at the final
stage for a high order multi-stage RK scheme which is rewritten as

Un+1
i, j = Un

i, j − λx (̂FRK
i+ 1

2 , j
− F̂RK

i− 1
2 , j

) − λy(ĜRK
i, j+ 1

2
− ĜRK

i, j− 1
2
), (A.4)

where numerical fluxes F̂RK
i+ 1

2 , j
and ĜRK

i, j+ 1
2

are convex combinations of corresponding numerical fluxes from the

ulti-stage RK method for each component. λx = ∆t/∆x and λy = ∆t/∆y. Denote F̂RK
i+ 1

2 , j
= ( f̂ ρ

i+ 1
2 , j

, f̂ m
i+ 1

2 , j
,

f̂ n
i+ 1

2 , j
, f̂ E

i+ 1
2 , j

)T and ĜRK
i, j+ 1

2
= (̂gρ

i, j+ 1
2
, ĝm

i, j+ 1
2
, ĝn

i, j+ 1
2
, ĝE

i, j+ 1
2
)T . For maintaining the PP property of scheme (A.4),

e modify F̂RK
i+ 1

2 , j
and ĜRK

i, j+ 1
2

by

F̃RK
i+ 1

2 , j
= θi+ 1

2 , j (̂F
RK
i+ 1

2 , j
− f̂i+ 1

2 , j ) + f̂i+ 1
2 , j ,

G̃RK
1 = θ 1 (ĜRK

1 − ĝ 1 ) + ĝ 1 ,
(A.5)
i, j+ 2
i, j+ 2 i, j+ 2

i, j+ 2 i, j+ 2
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such that for the new updated scheme of Un+1
i, j ,

Un+1
i, j = Un

i, j − λx (̃FRK
i+ 1

2 , j
− F̃RK

i− 1
2 , j

) − λy(G̃RK
i, j+ 1

2
− G̃RK

i, j− 1
2
), (A.6)

we have ρn+1
i, j > 0 and pn+1

i, j > 0 for all i, j . Here f̂i+ 1
2 , j = ( f ρ

i+ 1
2 , j

, f m
i+ 1

2 , j
, f n

i+ 1
2 , j

, f E
i+ 1

2 , j
)T and ĝi, j+ 1

2
=

(gρ

i, j+ 1
2
, gm

i, j+ 1
2
, gn

i, j+ 1
2
, gE

i, j+ 1
2
)T similarly can be taken as the first order monotone Lax–Friedrichs fluxes

f̂i+ 1
2 , j = f̂(Ui, j , Ui+1, j ) =

1
2

[f(Ui, j ) + f(Ui+1, j ) − αx (Ui+1, j − Ui, j )],

ĝi, j+ 1
2

= f̂(Ui, j , Ui, j+1) =
1
2

[g(Ui, j ) + g(Ui, j+1) − αy(Ui, j+1 − Ui, j )],

here αx = ∥|u| + c∥∞ and αy = ∥|v| + c∥∞. Let Ûn+1
i, j = (ρ̂n+1

i, j , m̂n+1
i, j , n̂n+1

i, j , Ên+1
i, j )T , which is updated by the

rst order numerical fluxes,

Ûn+1
i, j = Un

i, j − λx (̂fi+ 1
2 , j − f̂i− 1

2 , j ) − λy (̂gi, j+ 1
2

− ĝi, j− 1
2
), (A.7)

then ρ̂n+1
i, j > 0 and p̂n+1

i, j = p(Ûn+1
i, j ) > 0.

Define two small positive numbers ερ = min
i, j

{ρ̂n+1
i, j , 10−13

} > 0 and εp = min
i, j

{ p̂n+1
i, j , 10−13

} > 0. To obtain a PP

scheme (A.6), we look for four parameters (ΛL ,Ii, j ,ΛR,Ii, j ,ΛD,Ii, j ,ΛU,Ii, j ), such that for any θi− 1
2 , j ∈ [0,ΛL ,Ii, j ],

θi+ 1
2 , j ∈ [0,ΛR,Ii, j ], θi, j− 1

2
∈ [0,ΛD,Ii, j ], and θi, j+ 1

2
∈ [0,ΛU,Ii, j ], the scheme (A.6) with updated Un+1

i, j will have

ρn+1
i, j > 0 and pn+1

i, j > 0 for all i, j . The procedure is bellowed.

• Step I. To obtain a positive density. For the density, we consider the first component of (A.6), which requires

ρn+1
i, j = ρn

i, j − λx ( f̃ ρ

i+ 1
2 , j

− f̃ ρ

i− 1
2 , j

) − λy (̃gρ

i, j+ 1
2

− g̃ρ

i, j− 1
2
) ≥ ερ > 0.

It can be revised as

θi− 1
2 , j fi− 1

2 , j + θi+ 1
2 , j fi+ 1

2 , j + θi, j− 1
2

fi, j− 1
2

+ θi, j+ 1
2

fi, j+ 1
2

≥ ερ − ρ̂n+1
i, j , (A.8)

with

fi− 1
2 , j = λx ( f̂ ρ

i− 1
2 , j

− f ρ

i− 1
2 , j

), fi+ 1
2 , j = −λx ( f̂ ρ

i+ 1
2 , j

− f ρ

i+ 1
2 , j

),

fi, j− 1
2

= λy (̂gρ

i, j− 1
2

− gρ

i, j− 1
2
), fi, j+ 1

2
= −λy (̂gρ

i, j+ 1
2

− gρ

i, j+ 1
2
).

(A.9)

First we find (Λρ

L ,Ii, j
,Λ

ρ

R,Ii, j
,Λ

ρ

D,Ii, j
,Λ

ρ

U,Ii, j
), such that (A.8) holds for any θi− 1

2 , j ∈ [0,Λ
ρ

L ,Ii, j
], θi+ 1

2 , j ∈

[0,Λ
ρ

R,Ii, j
], θi, j− 1

2
∈ [0,Λ

ρ

D,Ii, j
], and θi, j+ 1

2
∈ [0,Λ

ρ

U,Ii, j
]. The four parameters (Λρ

L ,Ii, j
,Λ

ρ

R,Ii, j
,Λ

ρ

D,Ii, j
,Λ

ρ

U,Ii, j
)

can be determined by the sign of four local values fi− 1
2 , j , fi+ 1

2 , j , fi, j− 1
2
, and fi, j+ 1

2
, seen in [48]. We omit

them to save space.
• Step II. To obtain a positive pressure. For the pressure, the requirement is

pn+1
i, j = p(Un+1

i, j ) = (γ − 1)

(
En+1

i, j −
1
2

(mn+1
i, j )2

+ (nn+1
i, j )2

ρn+1
i, j

)
≥ εp > 0, (A.10)

pn+1
i, j = pn+1

i, j (θi− 1
2 , j , θi+ 1

2 , j , θi, j− 1
2
, θi, j+ 1

2
). We now look for (ΛL ,Ii, j ,ΛR,Ii, j ,ΛD,Ii, j ,ΛU,Ii, j ), within the regions

Sρ = [0,Λ
ρ

L ,Ii, j
] × [0,Λ

ρ

R,Ii, j
] × [0,Λ

ρ

L ,Ii, j
] × [0,Λ

ρ

D,Ii, j
], such that (A.10) holds for any θi− 1

2 , j ∈ [0,ΛL ,Ii, j ],
θi+ 1

2 , j ∈ [0,ΛR,Ii, j ], θi, j− 1
2

∈ [0,ΛD,Ii, j ], and θi, j+ 1
2

∈ [0,ΛU,Ii, j ]. To find the largest possible value of
(ΛL ,Ii, j ,ΛR,Ii, j ,ΛD,Ii, j ,ΛU,Ii, j ) within the regions Sρ , the procedure is given as follows:

1. We define the 16 vertices of Sρ as Ak1,k2,k3,k4 = (k1Λ
ρ

L ,Ii, j
, k2Λ

ρ

R,Ii, j
, k3Λ

ρ

D,Ii, j
, k4Λ

ρ

U,Ii, j
), with

k1, k2, k3, k4 ∈ {0, 1}. If p(A(k1,k2,k3,k4)) ≥ εp, we let B(k1,k2,k3,k4)
= A(k1,k2,k3,k4); Otherwise, we find

a scaling parameter r , such that p(r A(k1,k2,k3,k4)) ≥ εp and we take B(k1,k2,k3,k4)
= r A(k1,k2,k3,k4). r is
obtained by solving (A.10) as equality, which is still a quadratic equation of r .

24
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Algorithm A.1: Implementation of 2D PP flux limiter

Input: point values λx , λy, γ, Ui, j , f̂i± 1
2 , j , ĝi, j± 1

2
, F̂RK

i± 1
2 , j

, ĜRK
i, j± 1

2
.

Output: θi+ 1
2 , j and θi, j+ 1

2
.

1 Compute Ûi, j and p̂i, j at initial time, and define two small parameters {ϵρ, ϵp}, namely,
2 ϵρ = min{min

i, j
{ρ̂i, j }, 10−13

}, ϵp = min{min
i, j

{ p̂i, j }, 10−13
}, i = 0, . . . , Nx , j = 0, . . . , Ny .

3 for i = 0, . . . , Nx , j = 0, . . . , Ny , do
4 Ûi, j = Ui, j − λx (f̂i+ 1

2 , j − f̂i− 1
2 , j ) − λy(ĝi, j+ 1

2
− ĝi, j− 1

2
),

p̂i, j = p(Ûi, j ) = (γ − 1)(Êi, j −
1
2 (m̂2

i, j + n̂2
i, j )/ρ̂i, j ).

5 Step I. Maintain the positive density.
6 for i = 0, . . . , Nx , j = 0, . . . , Ny , do
7 Let gm(i, j, 1 : 4) = (Λρ

L ,Ii, j
,Λ

ρ

R,Ii, j
,Λ

ρ

D,Ii, j
,Λ

ρ

U,Ii, j
) = (1, 1, 1, 1) and Is(1 : 4) = 0.

f (1) = λx ( f̂ ρ

i− 1
2 , j

− f ρ

i− 1
2 , j

),

8 f (2) = −λx ( f̂ ρ

i+ 1
2 , j

− f ρ

i+ 1
2 , j

),

9 f (3) = λy(ĝρ

i, j− 1
2

− gρ

i, j− 1
2
),

10 f (4) = −λy(ĝρ

i, j+ 1
2

− gρ

i, j+ 1
2
).

11 for k = 1, . . . , 4, do
12 If f (k) < 0, then let Is(k) = 1.

13 fs = Is(1) · f (1) + Is(2) · f (2) + Is(3) · f (3) + Is(4) · f (4).
14 for k = 1, . . . , 4, do
15 If f (k) = 1, then let gm(i, j, k) = min( ϵρ−ρ̂i, j

fs
, 1).

16 Step II. Maintain the positive pressure.
17 for i = 0, . . . , Nx , j = 0, . . . , Ny , do
18 r (0 : 1, 0 : 1, 0 : 1, 0 : 1) = 1.
19 for k1, k2, k3, k4 = 0, 1, do
20 f1 = k1gm(i, j, 1)(̂FRK

i− 1
2 , j

− f̂i− 1
2 , j ),

21 f2 = k2gm(i, j, 2)(̂FRK
i+ 1

2 , j
− f̂i+ 1

2 , j ),

22 f3 = k3gm(i, j, 3)(ĜRK
i, j− 1

2
− ĝi, j− 1

2
),

23 f4 = k4gm(i, j, 4)(ĜRK
i, j+ 1

2
− ĝi, j+ 1

2
),

24 Ûnew
i, j = Ûi, j − λx (f2 − f1) − λy(f4 − f3).

25 Find r (k1, k2, k3, k4), such that pnew
i, j = p(Ûnew

i, j ) ≥ ϵp > 0.

26 gm(i, j, 1) = gm(i, j, 1) · min{1, r (1, 0 : 1, 0 : 1, 0 : 1)},
27 gm(i, j, 2) = gm(i, j, 2) · min{1, r (0 : 1, 1, 0 : 1, 0 : 1)},
28 gm(i, j, 3) = gm(i, j, 3) · min{1, r (0 : 1, 0 : 1, 1, 0 : 1)},
29 gm(i, j, 4) = gm(i, j, 4) · min{1, r (0 : 1, 0 : 1, 0 : 1, 1)}.

30 Step III. Take the limiting parameter as θi+ 1
2 , j = min{gm(i + 1, j, 1), gm(i, j, 2)},

θi, j+ 1
2

= min{gm(i, j + 1, 3), gm(i, j, 4)}.
25
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2. After obtaining B(k1,k2,k3,k4) for k1, k2, k3, k4 ∈ {0, 1}, we let

ΛL ,Ii, j = min
k2,k3,k4∈{0,1}

B(1,k2,k3,k4), ΛR,Ii, j = min
k1,k3,k4∈{0,1}

B(k1,1,k3,k4),

ΛD,Ii, j = min
k1,k2,k4∈{0,1}

B(k1,k2,1,k4), ΛU,Ii, j = min
k1,k2,k3∈{0,1}

B(k1,k2,k3,1).

The four parameters define the largest tesseract within four-dimensional polyhedra formed by the
vertices of {B(k1,k2,k3,k4)

: k1, k2, k3, k4 ∈ {0, 1}}.

• Step III. Finally the local parameters are taken as θi+ 1
2 , j = min{ΛR,Ii, j ,ΛL ,Ii+1, j } and θi, j+ 1

2
= min {ΛU,Ii, j ,

ΛD,Ii, j+1}.

The above procedure can ensure the PP property of density and pressure, but it is a sufficient procedure, so the
PP limiters might be activated even without negative density and pressure. For preserving high order accuracy, it
relies on numerical verification [35]. The simplified implementations of the 2D PP limiters are given in Algorithm
A.1.
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