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Abstract
In this paper, we propose a high order residual distribution conservative finite difference
scheme for solving steady state conservation laws. A new type of WENO (weighted essen-
tially non-oscillatory) termed as WENO-ZQ integration is used to compute the numerical
fluxes and source term based on the point values of the solution, and the principles of resid-
ual distribution schemes are adapted to obtain steady state solutions. Extensive numerical
examples in both scalar and system test problems in one and two dimensions demonstrate
the efficiency, high order accuracy and the capability of resolving shocks of the proposed
methods.

Keywords Residual distribution · WENO-ZQ integration · High order accuracy ·
Conservation laws

1 Introduction

We consider hyperbolic conservation laws with source terms

ut + ∇ · f (u) = s(u, x), (1.1)

in which the Jacobian matrix f ′(u) is diagonalizable with all the eigenvalues being real
for any u. In recent decades many high order methods, such as finite difference methods,
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finite volume methods and discontinuous Galerkin (DG) methods, have been investigated to
solve for hyperbolic conservation laws.Within these schemes, the essentially non-oscillatory
(ENO) and weighted ENO (WENO) reconstructions [16,18,20,28,30,31] are very successful
in capturing shocks in a sharp, non-oscillatory fashion while maintaining high order accu-
racy in smooth regions. Later on, the various types of ENO and WENO schemes are quite
successful in numerical simulations for steady state and unsteady problems harboring strong
discontinuities and sophisticated smooth structures. Recently, a new type of WENO termed
as WENO-ZQ schemes [36,37] was proposed, which has the advantages of simplicity, high
order accuracy and easy implementation in the computation.

In this paper, we are interested in computing the steady solution of (1.1) and developing
high order conservative schemes which are of finite difference type (the numerical approx-
imations are the point values of the solution) and have a comparable computational cost as
regular finite difference schemes, themeshes are allowed to be arbitrary Cartesian or curvilin-
ear without any smoothness assumption. Many current schemes use ideas for high resolution
schemes developed in the 1970s and 1980s by van Leer, Roe, Osher, Harten, Yee, Sweby and
many others [13–15,21–23,25,33,34]. However, the quality of the solution is still question-
able: some apparently simple problems, such as computing the lift and drag of an airfoil, still
pose difficulties. One reason is that the so-called high resolution schemes suffer a much too
great entropy production. In fact, they have been on one dimensional scalar problems, then
extended to multi-Dimension systems, but their construction relies on “1D ideas”. Another
difficult problem is the sensitivity to the mesh. It is still difficult to construct a 3D mesh of
consequently, the quality of the solution itself may be questionable in many cases. Hence, it
is natural to construct methods that have as little sensitivity as possible to the regularity of
mesh.

For these reasons, decades yearsmany researchers have tried to incorporate ideas contained
in the 1D high-resolution schemes (upwind) into a finite-element-like framework. Some of
the major contributions [10,26,32] have beenmade by P. L. Roe, H. Deconinck, D. Sidilkover
and their coauthors. These residual distribution (RD) or fluctuation splitting schemes, were
first developed for a scalar transport equation, then formally extended to systems. These
schemes share many common features with the streamline upwind Petrov Galerkin (SUPG)
schemes of Hughes [17] or the streamline diffusion methods of Johnson [19], except for
up-winding. A brief view of a RD scheme for (1.1) is given as follows: an approximate
solution of (1.1) is sought on a general triangular or quadrilateral mesh Th . The nodes of
Th are denoted by {Mi } and T is a generic element. On each element T , we define a total
residual �T and also define �T

i as the amount of �T associated with vertex Mi , such that a
conservation property is satisfied

�T =
∫
T
(∇ · f h(uh) − sh(uh, x)) dx,

∑
i,Mi∈T

�T
i = �T . (1.2)

Then the residual distribution scheme is given as

|Ci | u
n+1
i − uni

�tn
+

∑
T ,Mi∈T

�T
i = 0, (1.3)

where |Ci | is the area of the dual element associated with Mi .
Recently, RD schemes have received considerable attention and they are demonstrated to

be robust inmany numerical tests. A Lax–Wendroff type theorem has been provided to ensure
convergence to the weak solution [4], and the stability is established following maximum
principles, see, e.g. [1,2]. The accuracy at steady state is ensured if the scheme satisfies the
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residual property, which is related to the accuracy of approximating the residuals, see [1].
The works mentioned above are mostly for schemes of at most second order accuracy, which
follows the systematic construction from a first order monotone and upwind RD scheme to
a second one. Later on, RD schemes were generalized to high order schemes by Abgrall
and Roe [3] on general triangular meshes. Based on the same distribution principles, Chou
and Shu [9] developed a finite difference method based on RD scheme which works on
curvilinear meshes, and their scheme achieves high order accuracy and low computational
cost as in finite difference methods, but it need add an additional dissipation residual around
the shocks, only in two dimensional cases. Motivated by their work, we are interested in
developing a finite difference method based on RD scheme and use a SUPG-like distribution
properties. Because of the same width of the stencil as the classical WENO reconstruction
when usingWENO-ZQ integration reconstruction, a Lax–Wendroff theorem for convergence
towards weak solutions is the same proof as shown in [9].

This paper is organized as follows: in the Sects. 2 and 3,we describe the residual evaluation
and the residual distribution procedures for one and two-dimensional problems, respectively.
In the Sect. 4, the numerical simulation results for one and two-dimensional scalar and
system steady state problems are shown to demonstrate the good behaviors of our scheme.
Concluding remarks are given in the Sect. 5.

2 HighOrder RD Finite DifferenceWENO-ZQ Schemes inOneDimension

In this section, we design a residual distribution high order WENO-ZQ finite difference
scheme for one-dimensional steady state problems. In the first subsection, we define the total
residual within each cell from the integral form, and then describe the distribution of the
total residual within each cell, complying with the principles of SUPG-like and the residual
property. In the second subsection, we extend the scheme naturally to the one-dimensional
systems, based on a local characteristic field decomposition, and using the principles as in
the scalar case to distribute the total residual within each cell in the characteristic fields.

2.1 One-Dimensional Scalar Problems

We consider the one-dimensional scalar steady state problem

f (u)x = s(u, x). (2.1)

We define the grid to be {xi }i=0,...,N , the grid function {ui }i=0,...,N , the interval Ii+ 1
2

=[
xi , xi+1

]
, the step x-direction �xi+ 1

2
, the control volume centered at xi to be Ci (from the

mid-point of the interval Ii− 1
2
to the mid-point of the interval Ii+ 1

2
), and the length of Ci is

denoted by |Ci |.
The total residual in the interval Ii+ 1

2
is defined by

�i+ 1
2

=
∫ xi+1

xi
( f (u)x − s(u, x)) dx = f (ui+1) − f (ui ) −

∫ xi+1

xi
s(u, x) dx . (2.2)

If we can reach the zero residual limit, i.e. if�i+ 1
2

= 0 for all i, the accuracy of the scheme is

determined by the accuracy of the approximation to
∫ xi+1
xi

s(u, x) dx . In our scheme, we use a

fourth order WENO-ZQ integration to approximate the integral
∫ xi+1
xi

s(u, x) dx (leading to a
fifth orderWENO-ZQ approximation to the integral within each cell and hence a fourth order
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approximation to the integral over the whole computational domain), which is described as
follows:

Step 1. Choose the following big stencil: S1 = {xi−1, xi , xi+1, xi+2}, there is an unique
polynomial p1(x) of degree 4 which interpolates s(u, x) at nodes in S1 and satisfying:

p1(x j ) = s(u j , x j ), j = i − 1, i, i + 1, i + 2. (2.3)

Choose another smaller stencil: S2 = {xi , xi+1}, there is an unique linear polynomial p2(x)
which interpolates s(u, x) at nodes in S2 and satisfying:

p2(x j ) = s(u j , x j ), j = i, i + 1. (2.4)

Then, we integrate p1(x) and p2(x) in the interval Ii+ 1
2
, denoted by q1 and q2, respectively.

Step 2. Themain selection principle of the linearweight is solely based on the consideration
of a balance between the accuracy and the ability to achieve essentially non-oscillatory shock
transitions. Here, we rewrite q1 as q1 = γ1(

1
γ1
q1 − γ2

γ1
q2) + γ2q2. In all of our numerical

tests, following the practice in [11,35], we take the positive linear weights as γ1 = 0.99 and
γ2 = 0.01. The linear weights can be chosen to be any set of positive numbers on condition
that the summation is 1 and would not pollute the new scheme’s optimal accuracy.

Step 3. Compute the smoothness indicators βn, n = 1, 2, which measure how smooth the
functions pn(x), n = 1, 2, are in the target cell Ii+ 1

2
. The smaller these smoothness indicators,

the smoother the functions are in Ii+ 1
2
. We use the same recipe for the smoothness indicators

as in [5,18,29];

βn =
r∑

m=1

∫

I
i+ 1

2

(
�xi+ 1

2

)2m−1
(
dm pn
dxm

)2

dx, n = 1, 2, (2.5)

where r is the degree of the corresponding polynomial.
Step 4. Calculate the non-linear weights based on the linear weights and the smoothness

indicators. For instance, as shown in [6,8], we use new τ0 which is simply defined as the
square of the absolute difference between β1 and β2, and is different to the formula specified
in [6,8]. It is defined as follows:

τ0 = |β1 − β2|2 . (2.6)

Then, we define

ωn = ω̄n∑2
l=1 ω̄l

, ω̄n = γn

(
1 + τ0

ε + βn

)
, n = 1, 2, (2.7)

which satisfy the order accuracy ωn = γn + O(�x4
i+ 1

2
), where ε is a small positive number

to prevent the denominator from becoming zero. And we take ε = 10−6 in our computation.
Step 5. The new final reconstruction of the integral

∫ xi+1
xi

s(u, x) dx in Ii+ 1
2
, as shown in

[36], is given by
∫ xi+1

xi
s(u, x) dx = ω1

(
1

γ1
q1 − γ2

γ1
q2

)
+ ω2q2 + O

(
�x5

i+ 1
2

)
. (2.8)

Let us mention that near boundary, one-sided biased rather than central stencils could be
used in WENO-ZQ procedure.

Next, we start to distribute the total residuals. In the interval
[
xi , xi+1

]
, the total residual

is �i+ 1
2
, and it is to be distributed to the nodes xi and xi+1. For simplicity and with no
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ambiguity, we drop the subscript i + 1
2 off for the total residual �i+ 1

2
. Here we denote

the residuals distributed to the points xi and xi+1 as �− and �+, respectively. To have a
SUPG-like scheme, one way to distribute the total residual � is the following:

Step 1. First order Lax–Friedrichs linear distribution is given by

�LxF,− = 1

2
� + α(ui − ū), �LxF,+ = 1

2
� + α(ui+1 − ū), (2.9)

where ū is an average state in the cell taken to be 1
2 (ui + ui+1), and α is determined by

α = �xi+ 1
2

· max
j∈I

i+ 1
2

{∣∣ f ′(u j )
∣∣} . (2.10)

The Struijs’ “limiter” is defined in the following:

β− = max(�LxF,−/�, 0)∑
∗∈{−,+}

max(�LxF,∗/�, 0)
, (2.11)

β+ = max(�LxF,+/�, 0)∑
∗∈{−,+}

max(�LxF,∗/�, 0)
. (2.12)

Step 2. The streamline dissipation term is defined by∫

I
i+ 1

2

(∇u f (u) · ∇ϕ j )τ (∇u f (u) · ∇u − s(u, x)) dx, j = i, i + 1, (2.13)

where ϕ j is the basis function associated to the node j and τ > 0 in the interval Ii+ 1
2
. We

take ϕi = − x−xi+1
xi+1−xi

and ϕi+1 = x−xi
xi+1−xi

, and τ−1 is defined by

τ−1 =
∑

j∈{i,i+1}

∣∣∣ f ′(ū)ϕ′
j (x j )

∣∣∣ .

As for one dimensional scalar case, we have

�−
diss = −1

2

f ′(ū)

| f ′(ū)|�, �+
diss = 1

2

f ′(ū)

| f ′(ū)|�. (2.14)

In order to prevent the absolute
∣∣ f ′(ū)

∣∣ from becoming zero, we take the Roe’s correction

∣∣ f ′(ū)
∣∣ =

{∣∣ f ′(ū)
∣∣ if

∣∣ f ′(ū)
∣∣ > ε,

f ′(ū)2+ε2

2ε else,
(2.15)

where ε is taken to be 10−2 in the computation.
Hence, we get the way to distribute the total residual within each cell as follows:

�− = β−� + �−
diss, �+ = β+� + �+

diss. (2.16)

Finally, the point value ui is updated through sending the distributed residuals to the point
xi , as in a pseudo time-marching scheme, which can be written as a semi-discrete system

dui
dt

+ 1

|Ci |
(

�+
i− 1

2
+ �−

i+ 1
2

)
= 0. (2.17)
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In our numerical experiments, we use a third order TVD Runge–Kutta scheme [31] for the
(pseudo) time discretization. Since the accuracy in time is irrelevant here, any stable time
marching can be used.

We now summarize the procedure of the high order RD finite difference WENO-ZQ
scheme for one-dimensional scalar problems:

1. Compute the total residual defined in Eq. (2.2) usingWENO-ZQ integrationwith a proper
accuracy for the source term.

2. Distribute the total residual within each cell according to the SUPG-like principle, which
is defined in (2.9), (2.11), (2.12), (2.14), (2.16).

3. Update the point values through sending the residuals and forward in pseudo time by a
TVD Runge–Kutta time discretization until the steady state is reached.

2.2 One-Dimensional Systems

Consider a one-dimensional steady state system (2.1) where u, f(u) and s(u, x) are vector-
valued functions in R

m . For hyperbolic systems, we assume that the Jacobian f ′(u) can be
written as R�L , where � is a diagonal matrix with real eigenvalues on the diagonal, and L
and R are matrices of left and right eigenvectors of f ′(u), respectively.

The grid, grid function, step x-direction and control volume are denoted as in the Sect. 2.1.
The total residual �i+ 1

2
in the interval

[
xi , xi+1

]
is again defined by (2.2). As before, the

accuracy of the scheme is determined by the accuracy of the approximation to
∫ xi+1
xi

s(u, x) dx ,
which is again obtained by a fourth order WENO-ZQ integration.

In order to distribute the total residual �i+ 1
2
, we need use a local characteristic decom-

position when we define the Struijs’ “limiter” in the interval
[
xi , xi+1

]
. First, we compute

an average state ū between ui+1 and ui , using either the simple arithmetic mean or Roe’s
average [24], and L̄ and R̄ are the corresponding left and right eigenvectors L and R eval-
uated at the average state ū, and λ̄k is the corresponding kth eigenvalue. In the following,
for simplicity and with no ambiguity, we drop the subscript i + 1

2 off for the total residual
�i+ 1

2
. The first order Lax–Friedrichs linear distribution is again defined by (2.9), then we

project �LxF,− and �LxF,+ to the characteristic fields, namely, �LxF,− = L̄�LxF,− and
�LxF,+ = L̄�LxF,+, respectively, with � = �LxF,− + �LxF,+. And the Struijs’ “limiter” is
obtained in the following:

B− = max(�LxF,−/�, 0)∑
∗∈{−,+}

max(�LxF,∗/�, 0)
, (2.18)

B+ = max(�LxF,+/�, 0)∑
∗∈{−,+}

max(�LxF,∗/�, 0)
. (2.19)

Let us mention that we calculate B− and B+ component by component. Then, we project
the “limiters” B− and B+ back to the physical space

βββ− = R̄B−, βββ+ = R̄B+. (2.20)

As for one dimensional systems dissipation residuals, are given according to (2.13) as follows:

�−
diss = −1

2
R̄

�̄∣∣�̄∣∣ L̄�, �+
diss = 1

2
R̄

�̄∣∣�̄∣∣ L̄�, (2.21)
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where �̄ is the diagonal matrix� evaluated at the average state and
∣∣�̄∣∣ is the diagonal matrix

of the absolutes of all elements in �̄. As before, in order to prevent any element in
∣∣�̄∣∣ from

becoming zero, we also take the Roe’s correction, as defined in (2.15).
Hence, we get same formulation as (2.16) to distribute the total residual within each cell.

Finally, as in the scalar case, the point value ui can be updated in the pseudo time-marching
semi-discrete scheme (2.17), which is again discretized by a third order TVD Runge–Kutta
scheme in our numerical experiments until the steady state is reached.

We now summarize the procedure of the high order RD finite difference WENO-ZQ
scheme for one-dimensional steady state systems:

1. Compute the total residual component by component defined in Eq. (2.2) using WENO-
ZQ integration with a proper accuracy for the source term.

2. Project the residuals obtained by the first order Lax–Friedrichs distribution to local char-
acteristic fields, and then obtain the Struijs’ “limiters” (2.18), (2.19), then project the
“limiters” back to the physical space as in (2.20).

3. Compute the streamline dissipation residuals, then distribute the total residual within
each cell according to the SUPG-like principle, which is defined in (2.16).

4. Update the point values though sending the residuals in the physical space and forward
in pseudo time (2.17) by a TVD Runge–Kutta time discretization until the steady state
is reached.

3 High Order RD Finite DifferenceWENO-ZQ Schemes in Two
Dimension

In this section, we design a high order RD finite difference WENO-ZQ scheme for two-
dimensional steady state problems. We will use Cartesian meshes as examples to describe
our algorithm. In the Sect. 3.1, we define the total residual within each cell from the integral
form, as in Eq. (2.2), and then describe the distribution mechanism. In the Sect. 3.2, we
extend the scheme naturally to two-dimensional systems, based on a local characteristic field
decomposition.

3.1 Two-Dimensional Scalar Problems

We consider the two-dimensional scalar steady state problem

∇ · F = s(u, x, y), (3.1)

where F = ( f (u), g(u))T . We define the grid to be
{
(xi , y j )

}
, the grid function ui j , the

cell Ii+ 1
2 , j+ 1

2
= [

xi , xi+1
] × [

y j , y j+1
]
, the step x-direction �xi+ 1

2
, the step y-direction

�y j+ 1
2
, the control volume centered at (xi , y j ) to be Ci j (formed by connecting the centers

of the four cells sharing (xi , y j ) as a common node), and the area of Ci j is denoted by
∣∣Ci j

∣∣.
The total residual in the cell Ii+ 1

2 , j+ 1
2
is defined by

�i+ 1
2 , j+ 1

2
= ∫ y j+1

y j

∫ xi+1
xi

( f (u)x + g(u)y − s(u, x, y)) dx dy

= ∫ y j+1
y j

( f (u(xi+1, y)) − f (u(xi , y))) dy + ∫ xi+1
xi

(g(u(x, y j+1)) − g(u(x, y j ))) dx

− ∫ y j+1
y j

∫ xi+1
xi

s(u(x, y), x, y) dx dy.

(3.2)
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If we can reach the zero residual limit, i.e., if �i+ 1
2 , j+ 1

2
= 0 for all i and j, the accuracy

of the scheme is determined by the accuracy of the approximation to the integrations of the
fluxes and the source term.

To approximate the integrations of the fluxes, which are one-dimensional integrals, we
use a fourth order WENO-ZQ integration described in the Sect. 2.1. As for the source term∫ y j+1
y j

∫ xi+1
xi

s(u, x, y) dx dy, we can approximate it in a dimension by dimension fashion,
which is explained as follows:

First, we define

S j+ 1
2
(x) =

∫ yi+1

yi
s(u(x, y), x, y) dy,

and then

∫ y j+1

y j

∫ xi+1

xi
s(u, x, y) dx dy =

∫ xi+1

xi
S j+ 1

2
(x) dx .

The integral
∫ xi+1
xi

S j+ 1
2
(x) dx can be approximated by a fourth order WENO-ZQ integration

in the x-direction, using
{
S j+ 1

2
(xi+k)

}
k=−1,...,2

. By the definition of S j+ 1
2
(x), S j+ 1

2
(xi+k)

can again be approximated by a fourth order WENO-ZQ integration in the y-direction,
using

{
s(ui+k, j+l , xi+k, y j+l)

}
l=−1,...,2. Therefore, the integration of the source term can

be approximated dimension by dimension, and the fourth order accuracy is the zero residual
limit.

Next, we start to distribute the total residuals. In the cell Ii+ 1
2 , j+ 1

2
= [

xi , xi+1
] ×[

y j , y j+1
]
, the total residual is �i+ 1

2 , j+ 1
2
, and it is to be distributed to the vertices of the

cell, which are defined to be M1 = (xi+1, y j+1), M2 = (xi+1, y j ), M3 = (xi , y j+1) and
M4 = (xi , y j ). Here we denote the residuals distributed to the vertices Mk as �k

i+ 1
2 , j+ 1

2
,

k = 1, 2, 3, 4. For simplicity and without ambiguity, we drop the subscript (i + 1
2 , j + 1

2 ) off

in the notations. For the conservation and the residual property, we require � = ∑4
k=1 �k

and
∣∣�k

∣∣ / |�| to be uniformly bounded.
To have a SUPG-like scheme, one way to distribute the total residual � is the following:
Step 1. First order Lax–Friedrichs linear distribution is given by

�LxF,M1 = 1

4
� + α(ui+1, j+1 − ū),

�LxF,M2 = 1

4
� + α(ui+1, j − ū),

�LxF,M3 = 1

4
� + α(ui, j+1 − ū),

�LxF,M4 = 1

4
� + α(ui, j − ū), (3.3)

where ū is an average state in the cell taken to be 1
4 (ui+1, j+1 + ui+1, j + ui, j+1 + ui, j ), and

α is determined by

α = max(�xi+ 1
2
,�y j+ 1

2
) · max

ui j∈Ii+ 1
2 , j+ 1

2

{∣∣ f ′(ui j )
∣∣ + ∣∣g′(ui j )

∣∣} . (3.4)

123



Journal of Scientific Computing

The Struijs’ “limiter” is given by

βMk = max(�LxF,Mk/�, 0)∑
M∗∈I

i+ 1
2 , j+ 1

2

max(�LxF,M∗/�, 0)
, k = 1, . . . , 4. (3.5)

Step 2. The streamline dissipation term is defined by∫
I
i+ 1

2 , j+ 1
2

(∇u F(u) · ∇ϕMk )τ (∇u F(u) · ∇u − s(u, x, y)) dx dy, (3.6)

where ϕMk is the basis function associated to the node Mk , k = 1, . . . , 4 in the cell Ii+ 1
2 , j+ 1

2
,

and we take them as follows:

ϕM1 = x − xi
xi+1 − xi

y − y j
y j+1 − y j

,

ϕM2 = x − xi
xi+1 − xi

(
1 − y − y j

y j+1 − y j

)
,

ϕM3 = y − y j
y j+1 − y j

(
1 − x − xi

xi+1 − xi

)
,

ϕM4 =
(
1 − x − xi

xi+1 − xi

) (
1 − y − y j

y j+1 − y j

)
. (3.7)

And τ−1 is taken to be

τ−1 =
∑

Mk∈Ii+ 1
2 , j+ 1

2

∣∣∣( f ′(ū), g′(ū)) · ∇ϕMk (xMk , yMk )

∣∣∣ . (3.8)

As for two dimensional scalar case, we take

�k
diss = ( f ′(ū), g′(ū)) · ∇ϕMk (xMk , yMk )τ�, k = 1, . . . , 4. (3.9)

Hence, we get the way to distribute the total residual within each cell as follows:

�k = βMk� + �k
diss, k = 1, . . . , 4. (3.10)

The point value ui j is then updated through sending the distributed residuals to the point
(xi , y j ), as in a pseudo time-marching scheme,which can bewritten as a semi-discrete system

dui j
dt

+ 1∣∣Ci j
∣∣
(
�1

i− 1
2 , j− 1

2
+ �2

i− 1
2 , j+ 1

2
+ �3

i+ 1
2 , j− 1

2
+ �4

i+ 1
2 , j+ 1

2

)
= 0. (3.11)

We again use a third order TVD Runge–Kutta scheme for the pseudo time discretization, as
in the one-dimensional case.

We now summarize the procedure of the high order RD finite difference WENO-ZQ
scheme for two dimensional scalar steady state problems:

1. Compute the total residual defined in Eq. (3.2) using WENO-ZQ intergration dimension
by dimension with a proper accuracy for the source term.

2. Distribute the total residual within each cell according to the SUPG-like principle, which
is defined in (3.3), (3.5), (3.9), (3.10).

3. Update the point values through sending the residuals and forward in pseudo time (3.11)
by a TVD Runge–Kutta time discretization until the steady state is reached.
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3.2 Two-Dimensional Systems

Consider a two-dimensional steady state system (3.1) where u, f(u), g(u) and s(u, x, y)
are vector-valued functions in R

m . For hyperbolic systems, we assume that any real linear
combination of the Jacobians nx f ′(u) + nyg′(u) is diagonalizable with real eigenvalues. In
particular, we assume f ′(u) and g′(u) can be written as Rx�x Lx and Ry�y L y , respectively,
where �x and �y are diagonal matrices with real eigenvalues on the diagonal, and Lx , Rx

and Ly , Ry are matrices of left and right eigenvectors for the corresponding Jacobians.
The grid, grid function, step x-direction, step y-direction and control volume are denoted

as in the Sect. 3.1. The total residual in the cell Ii+ 1
2 , j+ 1

2
= [

xi , xi+1
] × [

y j , y j+1
]
is still

defined by (3.2). As before, if we can reach the zero residual limit of the scheme, the accuracy
of the scheme is determined by the accuracy of the approximations to the integrations of the
fluxes and the source term. We again use a fourth order WENO-ZQ integration described in
the Sect. 2.1. For simplicity and without ambiguity, we drop the subscript (i + 1

2 , j + 1
2 ) off

in the notations in the following.
We distribute the total residual � to the four vertices {Mk}k=1,...,4, which is defined in the

Sect. 3.1 and the corresponding residuals are still denoted by
{
�k

}
k=1,...,4, where �k ∈ R

m .

We also require� = ∑4
k=1 �k and the residual property that

∣∣�k
∣∣ / |�| should be uniformly

bounded. First, we compute an average state ū in Ii+ 1
2 , j+ 1

2
, using either arithmetic mean or

Roe’s average [24]. And then denote L̄ and R̄ as the matrices with left and right eigenvectors
L and R of nx f ′(u) + nyg′(u) evaluated at the average state, where n = (nx , ny) can be
any direction. The first order Lax–Friedrichs linear distribution is again defined by (3.3).
Then we project �LxF,Mk , k = 1, . . . , 4 to the characteristic fields, namely, �LxF,Mk =
L̄�LxF,Mk , k = 1, . . . , 4, with � = ∑4

k=1 �LxF,Mk . The Struijs’ “limiter” is obtained in the
following:

BMk = max(�LxF,Mk /�, 0)∑
M∗∈Ii+ 1

2 , j+ 1
2

max(�LxF,M∗/�, 0)
, k = 1, . . . , 4. (3.12)

Let us mention that we compute BMk component by component. Then, we project the “lim-
iters” BMk , k = 1, . . . , 4 back to the physical space, we obtain

βββMk = R̄BMk , k = 1, . . . , 4. (3.13)

As for two dimensional systems streamline dissipation residuals, are given according to (3.6)
as follows:

�k
diss = (f ′(ū), g′(ū)) · ∇ϕMk (xMk , yMk )τ�, k = 1, . . . , 4. (3.14)

Here τ−1 is taken to be

τ−1 =
∑

Mk∈Ii+ 1
2 , j+ 1

2

∣∣∣(f ′(ū), g′(ū)) · ∇ϕMk (xMk , yMk )

∣∣∣ . (3.15)

Hence, we get same formulation as (3.10) to distribute the total residual within each cell.
Finally, as in the two-dimensional scalar case, the point value ui j can be updated in the pseudo
time-marching semi-discrete scheme (3.11), which is again discretized by a third order TVD
Runge–Kutta scheme in our numerical experiments until the steady state is reached.

We now summarize the procedure of the high order RD finite difference WENO-ZQ
scheme for two-dimensional steady state systems:
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1. Compute the total residual component by component defined in Eq. (3.2) using WENO-
ZQ integration dimension by dimension with a proper accuracy for the source term.

2. Project the residuals obtained by the first order Lax–Friedrichs distribution to local char-
acteristic fields, then obtain the Struijs’ “limiters”, then project the “limiters” back to the
physical space as in (3.13).

3. Compute dissipation residuals, then distribute the total residualwithin each cell according
to the SUPG-like principle, which is defined in (3.14).

4. Update the point values though sending the residual in the physical space and forward
in pseudo time (3.11) by a TVD Runge–Kutta time discretization until the steady state
is reached.

4 Numerical Results

In this section, we present the numerical results of the proposed fourth order residual dis-
tribution finite difference WENO-ZQ method for hyperbolic conservation laws with source
terms in scalar and system test problems in one and two dimensions. Pseudo time discretiza-
tion towards steady state is by the third order TVD Runge–Kutta method in all numerical
simulations.

All the spatial discretizations in our numerical results are uniform. And the CFL numbers
are taken to be 0.3 in all problems. We remark here that the choice of the CFL number
certainly affects the number of iteration to reach a steady state, but here we choose it to be
sufficiently large while maintaining stability for all cases.

4.1 The One-Dimensional Scalar Problems

In this section, all numerical steady state is obtained with L1 residue reduced to the round-off
level.

Example 4.1 We solve the steady state solution of the one-dimensional Burgers equation with
a source term:

ut +
(
u2

2

)
x

= sin x cos x (4.1)

with the initial condition
u(x, 0) = β sin x (4.2)

and the boundary condition u(0, t) = u(π, t) = 0. This problem was studied in [27] as
an example of multiple steady state solutions for characteristic initial value problems. The
steady state solution to this problem depends on the value of β: if −1 < β < 1, a shock will
form within the domain [0, π ]; otherwise, the solution will be smooth at first, followed by a
shock forming at the boundary x = π (β ≥ 1) or x = 0 (β ≤ −1), and later converge to a
smooth steady state u(x,∞) = sin x (β ≥ 1) or u(x,∞) = − sin x (β ≤ −1), respectively.
In order to test the order of accuracy, we take β = 2 to have a smooth stationary solution.
The numerical results are shown in the Table 1. We can see clearly that the fourth order is
reached on the uniform meshes.

Example 4.2 Weconsider the same problemas the 4.1, but takeβ = 0.5 in the initial condition
(4.2). As mentioned in the previous example, when −1 < β < 1, a shock will form within
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Table 1 Errors and numerical
orders of accuracy for the fourth
order SUPG-like RD finite
difference WENO-ZQ scheme
for the 4.1 on uniform meshes
with N cells

N L1 error Order L∞ error Order

20 3.96E−05 6.45E−05

40 2.77E−06 3.84 4.49E−06 3.84

80 1.81E−07 3.94 2.88E−07 3.96

160 1.15E−08 3.98 1.81E−08 3.99

320 7.21E−10 3.99 1.13E−09 4.00

640 4.52E−11 4.00 7.10E−11 4.00

Fig. 1 The numerical solution
(symbols) versus the exact
solution (solid line) for the 4.2
with 80 cells

x

u
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-0.5

0

0.5

1

exact
numerical

the domain, which separates two branches (sin x and− sin x) of the steady state. The location
of the shock is determined by the parameter β through conservation of mass (

∫ π

0 u dx = 2β),

and can be derived to be π − arcsin
√
1 − β2. For the case β = 0.5, the shock location is

approximately 2.0944. The numerical solution on the uniform meshes is shown in the Fig. 1.
We can see that the numerical shock is at the correct location and is resolved well. We also
observe the convergence histories by different CFL numbers and the results are shown in
Fig. 2. We can see that the CFL number influences the convergence history, the larger CFL
number and the faster convergence. When CFL number is 0.7, the L1 residue stagnates only
at 10−7 level.

Example 4.3 We consider the steady state solutions of the Burgers equation with a different
source term, which depends on the solution itself:

ut +
(
u2

2

)
x

= −π cos(πx)u, x ∈ [0, 1] (4.3)

equipped with the boundary conditions u(0, t) = 1 and u(1, t) = −0.1. This problem has
two steady state solutions with shocks

u(x,∞) =
{
u+ = 1 − sin(πx) if 0 ≤ x < xs,

u− = −0.1 − sin(πx) if xs ≤ x ≤ 1,

where xs = 0.1486 or xs = 0.8514. Both solutions satisfy the Rankine–Hugoniot jump
condition and the entropy conditions, but only the one with the shock at 0.1486 is stable for a
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Fig. 2 The convergence histories of L1 residue for the 4.2

Fig. 3 The numerical solution
(symbols) versus the exact
solution (solid line) for the 4.3
with 80 cells
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small perturbation. This problem was studied in [12] as an example of multiple steady states
for one-dimensional transonic flows. This case is tested to demonstrate that starting with a
reasonable perturbation of the stable steady state, the numerical solution converges to the
stable one.

The initial condition is given by

u(x, 0) =
{
1 if 0 ≤ x < 0.5,

−0.1 if 0.5 ≤ x ≤ 1,

where the initial jump is located in the middle of the position of the shocks in the two
admissible steady state solution. The numerical result and the exact solution are displayed
in the Fig. 3. We can see the correct shock location and good resolution of the shock. We
also observe the convergence histories by different CFL numbers and the results are shown
in Fig. 4. We can see that the CFL number influences the convergence history, the larger CFL
number and the faster convergence. When CFL number is 0.7, the L1 residue stagnates only
at 10−12 level.
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Fig. 4 The convergence histories of L1 residue for the 4.3

Table 2 Errors and numerical
orders of accuracy for the water
height h of the fourth order
SUPG-like RD finite difference
WENO-ZQ scheme for the 4.4 on
uniform meshes with N cells

N L1 error Order L∞ error Order

20 3.43E−02 1.08E−02

40 9.02E−03 1.93 3.28E−03 1.72

80 2.89E−04 4.96 1.08E−04 4.92

160 6.38E−05 2.18 2.37E−05 2.19

320 9.04E−07 6.14 3.29E−07 6.17

640 7.60E−08 3.57 2.78E−08 3.56

1280 1.25E−09 5.93 4.36E−10 6.00

2560 7.72E−11 4.01 2.70E−11 4.02

4.2 The One-Dimensional Systems

Example 4.4 We solve the steady state solutions of the one-dimensional shallow water equa-
tion (

h
hu

)
t
+

(
hu

hu2 + 1
2 gh

2

)
x

=
(

0
−ghbx

)
, (4.4)

where h denotes the water height, u is the velocity of the fluid, b(x) represents the bottom
topography and g is the gravitational constant.

Starting from a stationary initial condition, which itself is a steady state solution, we can
check the order of accuracy. The smooth bottom topography is given by

b(x) = 5 exp− 2
5 (x−5)2 , x ∈ [0, 10].

The initial condition is the stationary solution

h + b = 10, hu = 0

and the exact steady state solution is imposed as the boundary condition.
We test our scheme on uniform meshes. The numerical results are shown in the Table 2.

We can clearly see the order of accuracy and the errors.
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Example 4.5 We test our scheme on the steady state solution of the one-dimensional nozzle
flow problem

⎛
⎝ ρ

ρu
E

⎞
⎠

t

+
⎛
⎝ ρu

ρu2 + p
u(E + p)

⎞
⎠

x

= − A′(x)
A(x)

⎛
⎝ ρu

ρ2u2/ρ
u(E + p)

⎞
⎠ , x ∈ [0, 1] , (4.5)

where ρ denotes the density, u is the velocity of the fluid, E is the total energy, γ is the gas
constant, which is taken as 1.4, p = (γ − 1)(E − 1

2ρu
2) is the pressure, and A(x) represents

the area of the cross-section of the nozzle.
We start with an isentropic initial condition, with a shock at x = 0.5. The density ρ and

pressure p at −∞ are 1, and the inlet Mach number at x = 0 is 0.8. The outlet Mach number
at x = 1 is 1.8, with linear Mach number distribution before and after the shock. The area of
the cross-section A(x) is then determined by the relation

A(x) f (Mach number at x) = constant, ∀ x ∈ [0, 1],
where

f (w) = w

(1 + δw2)p
, δ = 1

2
(γ − 1), p = 1

2
· γ + 1

γ − 1
.

From the Fig. 5, we can clearly see that the shock is resolved well. We also observe the
convergence histories by different CFL numbers and the results are shown in Fig. 6. We can
see that the CFL number influences the convergence history, the larger CFL number and the
faster convergence. When CFL number is 0.8 or 0.9, the L1 residue stagnates only at 10−6

level.

4.3 The Two-Dimensional Scalar Problems

In this section, the numerical steady state is obtained with L1 residue reduced to the round-off
level.

Example 4.6 We solve the steady state problem of two-dimensional Burgers equation with a
source term

ut +
(

1√
2

u2

2

)
x

+
(

1√
2

u2

2

)
y

= sin

(
x + y√

2

)
cos

(
x + y√

2

)
, (4.6)

where (x, y) ∈
[
0, π√

2

]
×

[
0, π√

2

]
with the initial condition given by

u(x, y, 0) = β sin

(
x + y√

2

)
. (4.7)

This is the one-dimensional problem studied in the 4.1 along the northeast-southwest diago-
nal. Since our grids are not alignedwith the diagonal, this is a truly two-dimensional test case.
Here we take the boundary conditions to be the exact solution of the steady state problem.

For this example, we take β = 1.2, which gives a smooth steady state solution

u(x, y,∞) = sin
(
x+y√

2

)
. The errors and numerical orders are shown in the Table 3. It

can be seen clearly that the fourth order accuracy is achieved.
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Fig. 5 The Nozzle flow problem on uniform meshes with 81 cells. Solid lines: exact solution; symbols:
numerical solution. Top left: density; top right: momentum; bottom left: pressure; bottom right: total energy
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Fig. 6 The convergence histories of L1 residue for the Nozzle flow problem
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Table 3 Errors and numerical
orders of accuracy for the fourth
order SUPG-like RD finite
difference WENO-ZQ scheme
for the 4.6 on uniform meshes
with N × N cells

N × N L1 error Order L∞ error Order

20 × 20 7.35E−06 4.29E−06

40 × 40 5.61E−07 3.71 2.85E−07 3.91

80 × 80 3.86E−08 3.86 1.81E−08 3.98

160 × 160 2.53E−09 3.93 1.13E−09 3.99

320 × 320 1.62E−10 3.97 7.09E−11 4.00

Example 4.7 We consider the steady state solution of the following problem:

ut +
(

1√
2

u2

2

)
x

+
(

1√
2

u2

2

)
y

= −π cos(π
x + y√

2
)u, (4.8)

where (x, y) ∈
[
0, 1√

2

]
×

[
0, 1√

2

]
. This is the one-dimensional problem in the 4.3 along

the northeast-southwest diagonal line. Inflow boundary conditions are given by the exact
solution of the steady state problem. Again, since our grids are not aligned with the diagonal
line, this is a truly two-dimensional test case. As before, this problem has two steady state
solutions with shocks

u(x, y,∞) =
⎧⎨
⎩
1 − sin

(
π

x+y√
2

)
if 0 ≤ x+y√

2
< xs,

−0.1 − sin
(
π

x+y√
2

)
if xs ≤ x+y√

2
≤ 1,

where xs = 0.1486 or xs = 0.8514. Both solutions satisfy the Rankine–Hugoniot jump
condition and the entropy conditions, but only the one with the shock at x+y√

2
= 0.1486 is

stable for a small perturbation.
The initial condition is given by

u(x, y, 0) =
{
1 if 0 ≤ x+y√

2
< 0.5,

−0.1 if 0.5 ≤ x+y√
2

≤ 1,

where the initial jump is located in the middle of the positions of the shocks in the two
admissible steady state solutions. From the Fig. 7, we can see the correct shock location and
a good resolution of the solution. We also observe the convergence histories by different
CFL numbers and the results are shown in Fig. 8. We can see that the CFL number influences
the convergence history, the larger CFL number and the faster convergence.

Example 4.8 Weconsider the one-dimensionalBurgers equationviewedas a two-dimensional
steady state problem

ut +
(
u2

2

)
x

+ uy = 0, (x, y) ∈ [0, 1] × [0, 1] (4.9)

with the boundary conditions

u(x, 0, t) = 1.5 − 2x, u(0, y, t) = 1.5, u(1, y, t) = −0.5.
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Fig. 7 The 4.7 on uniform meshes with 80 × 80 cells. Left: 25 equally spaced contours of the solution from
−1.2 to 1.1; right: the numerical solution (symbols) versus the exact solution (solid line) along the cross-section
through the northeast to southwest diagonal

Fig. 8 The convergence histories
of L1 residue for the 4.7
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The exact solution consists in a fan that merges into a shock which foot is located at (x, y) =( 3
4 ,

1
2

)
. More precisely, the exact solution is

u(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
if y ≥ 0.5

{
−0.5 if − 2(x − 3/4) + (y − 1/2) ≤ 0,

1.5 else,

else max
(
−0.5,min

(
1.5, x−3/4

y−1/2

))
.

This problem was studied in [7] as a prototype example for shock boundary layer interac-
tion. The initial condition is taken to be u(x, y, 0) = u(x, 0, 0) = 1.5 − 2x . The isolines of
the numerical solution and the cross-sections for y = 0.25 across the fan, for y = 0.5 right
at the junction where the fan becomes a single shock, and at y = 0.75 across the shock, are
displayed in the Fig. 9. We can clearly observe good resolution of the numerical scheme for
this example.
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Fig. 9 The 4.8 on uniform meshes with 80 × 80 cells. Top left: 25 equally spaced contour lines from −0.6
to 1.6. Top right: cross section at y = 0.25; bottom left: cross section y = 0.5; bottom right: cross section at
y = 0.75. For the cross section, the solid lines are for the exact solution and symbols are for the numerical
solution

4.4 The Two-Dimensional Systems

Example 4.9 We consider a Cauchy–Riemann problem

∂W

∂t
+ A

∂W

∂x
+ B

∂W

∂ y
= 0, (x, y) ∈ [−2, 2] × [−2, 2], t > 0, (4.10)

where

A =
(
1 0
0 −1

)
and B =

(
0 1
1 0

)
(4.11)

with the following Riemann data W = (u, v)T :

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x > 0 and y > 0

−1 if x < 0 and y > 0

−1 if x < 0 and y < 0

1 if x < 0 and y < 0

and v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x > 0 and y > 0

−1 if x < 0 and y > 0

−1 if x > 0 and y < 0

2 if x < 0 and y < 0

. (4.12)
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Fig. 10 The 4.9 on uniform meshes with 80× 80 cell. 20 Equally spaced contours for u from −3 to 1.6 (left)
and 20 equally spaced contour for v from −1.6 to 3.5 (right)

The solution is self-similar, and therefore W (x, y, t) = W̃
( x
t ,

y
t

)
. Let ξ = x

t , η = y
t ,

then W̃ satisfies

(−ξ I + A)
∂W̃

∂ξ
+ (−ηI + B)

∂W̃

∂η
= 0, (4.13)

which can be written as

∂

∂ξ
[(−ξ I + A)W̃ ] + ∂

∂η
[(−ηI + B)W̃ ] = −2W̃ (4.14)

with the boundary conditions at infinity given by the Riemann data in (4.11) and (4.12) at
time t = 1. Equation (4.14) can be solved by RD method with boundary conditions set as
the exact solution and the same initial condition as in (4.15).

u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x > 1 and y > 1

−1 if x > 1 and y < 1

−1 if x < 1 and y > 1

1.5 if x < 1 and − 1 < y < 1

1 if x < 1 and y < −1

and v =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x > −1 and y > 1

−1 if x < −1 and y < 1

−1 if x > −1 and y < 1

1.5 if x < −1 and − 1 < y < 1

2 if x < −1 and y < −1

.

(4.15)

The numerical results are shown in the Fig. 10. From Fig. 11, we can see L1 residue stagnates
at 10−6 level.

Example 4.10 We consider a regular shock reflection problem of the steady state solution of
the two-dimensional Euler equations

ut + f(u)x + g(u)y = 0, (x, y) ∈ [0, 4] × [0, 1], (4.16)

where u = (ρ, ρu, ρv, E)T , f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T , and g(u) =
(ρv, ρuv, ρv2 + p, v(E + p))T . Here ρ is the density, (u, v) is the velocity, E is the total
energy and p = (γ − 1)(E − 1

2 (ρu
2 + ρv2)) is the pressure. γ is the gas constant which is

again taken as 1.4 in our numerical tests.
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Fig. 11 The convergence history
of L1 residue for the 4.9
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Fig. 12 Shock reflection on 160× 40 uniform meshes. Left: 23 equally spaced contours from 0.94 to 2.72 for
the density; right: 25 equally spaced contours from 5 to 15.2 for the energy

Fig. 13 The convergence history
of L1 residue for the shock
reflection
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The initial condition is taken to be

(ρ, u, v, p) =
{

(1.69997, 2.61934,−0.50632, 1.52819) on y = 1,(
1, 2.9, 0, 1

γ

)
otherwise.

The boundary conditions are given by

(ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on y = 1
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and reflective boundary condition on y = 0. The left boundary at x = 0 is set as inflow with
(ρ, u, v, p) = (1, 2.9, 0, 1

γ
), and the right boundary at x = 4 is set to be an outflow with

no boundary conditions prescribed. The numerical results are shown in the Fig. 12. We can
clearly see a good resolution of the incident and reflected shocks. From Fig. 13, we can see
the L1 residue stagnates at 10−4 level.

5 Concluding Remarks

In this paper, we proposed a high order residual distribution conservative finite difference
WENO-ZQ scheme for solving steady state hyperbolic equations with source terms on uni-
form meshes. The method is based on the WENO-ZQ integration reconstruction to achieve
high order accuracy. The idea of residual distribution is adapted and allows us to obtain high
order accuracy for steady state problems. We applied this proposed method to both scalar
and system test problems including Burgers equation, shallow water equations, nozzle flow
problem, Cauchy Riemann problem and Euler equations. In all simulations, we observed that
we get the fourth order in smooth cases, and clearly see the high resolution around a shock.
Future work includes using triangle meshes and extend to unsteady problems.
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