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Abstract
In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods 
with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters 
to compute compressible steady-state problems on triangular meshes. A troubled cell indicator 
extended from structured meshes to unstructured meshes is constructed to identify triangular 
cells in which the application of the limiting procedures is required. In such troubled cells, the 
multi-resolution WENO limiting methods are used to the hierarchical L2 projection polyno-
mial sequence of the DG solution. Through using the RKDG methods with multi-resolution 
WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the 
triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-
state simulations on triangular meshes, the numerical residual converges to near machine zero. 
The proposed spatial reconstruction methods enhance the robustness of classical DG methods 
on triangular meshes. The good results of these RKDG methods with multi-resolution WENO 
limiters are verified by a series of two-dimensional steady-state problems.
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1 Introduction

In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) meth-
ods [8–10, 12] with multi-resolution WENO limiters [50] to compute the two-dimensional 
steady-state Euler equation

on triangular meshes. This is a method to compute (1) by solving the two-dimensional 
unsteady Euler equation

We use high-order DG methods for the spatial discretization and the explicit and non-
linearly stable Runge-Kutta methods [13, 40] for the temporal discretization to make the 
numerical residuals converge to near machine zero. The main work is to construct a trou-
bled cell indicator which is extended from structured meshes [51] to unstructured meshes, 
and apply it to identify triangular cells in which the application of the higher-order limiting 
procedures is required, and then use the DG methods with the multi-resolution WENO 
limiters [50] to compute two-dimensional steady-state problems on triangular meshes. The 
troubled cell indicator is needed to obtain steady state convergence to near machine zero.

When the numerical residual of the two-dimensional unsteady Euler equation (2) is 
near machine zero, the numerical solution of the two-dimensional steady-state Euler equa-
tion (1) is achieved. There will be strong discontinuities when solving (1) and (2). In the 
past, many high-resolution numerical schemes have been proposed, mainly using artificial 
viscosities [22, 23] or nonlinear limiters [19, 22, 41] to suppress the oscillations. Jame-
son et al. [21, 24] designed a third-order finite volume method with dissipation terms to 
simulate steady-state problems. But to accurately simulate strong shocks in the numerical 
simulation, they often needed to adjust some parameters in the artificial viscosity. In 1983, 
Harten [19] found that numerical schemes with limiters were very effective in simulating 
supersonic flow problems. However, when the total variation diminishing (TVD) limiters 
[34] were used, it was difficult for the numerical residuals to converge to near machine 
zero. In 1985, Yee et al. [44] proposed the implicit TVD schemes for the steady-state calcu-
lation. Two years later, Yee and Harten [43] proposed an implicit TVD scheme for hyper-
bolic conservation laws in curvilinear coordinates. The researchers found that the numer-
ical residuals could not be reduced to machine zero when the classical WENO scheme 
[25] was used to compute the steady-state problems. In 2004, Serna and Marquina [37] 
designed a fifth-order accurate weighted power ENO method, which significantly improved 
the convergence of the numerical scheme. Three years later, Zhang and Shu [48] proposed 
a new WENO scheme smoothness indicator and analyzed its influence on the convergence 
to the steady-state solution. In 2011, Zhang et  al. [47] proposed the WENO scheme to 
improve the convergence of the steady-state solutions of Euler equations. This new method 
had a good effect. But for several two-dimensional steady-state problems [47], there was 
still the phenomenon that the numerical residuals could not converge to machine zero. Wu 
et  al. [42] designed a fixed-point sweeping WENO method to compute the steady-state 
hyperbolic conservation laws and discussed its convergence. It was found that the numeri-
cal residuals were difficult to approach machine zero for some examples.

(1)
{

f x(u) + gy(u) = 0,

u(x, y) = u0(x, y)

(2)
{

ut + fx(u) + gy(u) = 0,

u(x, y, 0) = u0(x, y).
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At present, researchers have proposed many discontinuous Galerkin (DG) methods to 
compute the unsteady and steady-state problems. As early as 1973, Reed and Hill [36] 
innovatively proposed the first DG method in the study of neutron transport equations. The 
hybrid DG/FV methods [15, 16, 31, 45, 46] were designed for various problems. The appli-
cation of a nonlinear limiter in the higher-order RKDG methods can effectively solve the 
problem of pseudo oscillation. Cockburn et al. [8–12] performed extensive research on the 
DG methods and applied the minmod type total variation bounded (TVB) limiters. Now 
many kinds of limiters have been developed, which are mainly divided into two categories: 
the slope-type limiters [2, 3, 5, 8–10, 12, 42] and the WENO limiters [1, 17, 18, 20, 25, 
28–30, 32, 33]. The former can effectively solve the problem of pseudo oscillation, but the 
precision will decrease. When solving steady-state problems, both types have difficulties 
in the RKDG methods. Especially, when solving two-dimensional steady-state Euler equa-
tions on triangular meshes, the numerical residuals often can not converge to near machine 
zero.

It is found that when the third-order TVD Runge-Kutta method [40] and the classical 
finite difference WENO scheme [25, 39] are applied to simulate the steady-state problems, 
there is a problem that the numerical residual can not reduce to near machine zero. With 
further research, the scholars found that the new high-order WENO schemes [49] had a 
good performance. These methods can have the numerical residuals to converge close to 
machine zero, and there are no pseudo oscillations on structured or unstructured meshes. 
These new multi-resolution WENO schemes have a series of spatial templates with differ-
ent sizes, which make the high-order accuracy schemes gradually reduce to the first-order 
accuracy near strong discontinuities. In this paper, the high-order RKDG methods with 
multi-resolution WENO limiters [50] are proposed for the first time to compute the steady-
state problem on triangular meshes.

The rest parts of this paper are as follows. Section  2 introduces the RKDG methods 
to compute (2) on triangular meshes. For simulating two-dimensional steady-state prob-
lems on triangular meshes, a troubled cell indicator for unstructured meshes and high-order 
limiters are designed in Sect. 3. In Sect. 4, several steady-state problems are simulated to 
testify the effectiveness of the designed methods. The conclusions are described in Sect. 5.

2  RKDG Method on Triangular Meshes

Now we introduce the RKDG methods to compute (2) on triangular meshes. The DG 
methods have the numerical solutions on triangle cells △0 . The test function space is 
Vk
h
= {v(x, y)∶ v(x, y)|△

0

∈ ℙ
k(△

0
)} , where ℙk(△0) represents the set of polynomials with 

a total degree at most k on △0 . We select the function uh ∈ Vk
h
 , so that

for all test functions v ∈ Vk
h
 . The outward unit normal of the triangle boundary �△0 is 

n = (nx, ny)
T . (f (uh), g(uh)) ⋅ n is an accurate or approximate Riemann solver in the system 

case, and is a monotone numerical flux in the scalar case. The third-order Runge-Kutta 
method [40]

(3)∫△0

(uh)tv dx dy = ∫△0

(
f (uh)vx + g(uh)vy

)
dx dy − ∫�△0

(f (uh), g(uh)) ⋅ n v ds
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is used to design a fully discrete scheme.

3  Multi‑resolution WENO Limiter

This section briefly describes the construction process of the troubled cell indicator which 
is extended from structured meshes [51] to unstructured meshes and high-order multi-reso-
lution WENO limiters [50] on triangular meshes.

3.1  Troubled Cell Indicator on Triangular Meshes

The objective is to identify the troubled cells on triangular meshes. If the number of trou-
bled cells is too large, the computational cost will increase. But if the number is too small, 
the pseudo oscillation will occur. There have been a lot of discussions on the indicators of 
different troubled cells [35]. The troubled cell indicator in this paper is a generalization of 
the one in [51] to triangular meshes. Referring to Fig. 1, △𝓁 , � = 1, 2, 3 represent the adja-
cent triangular cells of △0 . uh(x, y, t) is the numerical solution of the indicator variable.

If it satisfies

then △0 is considered to be a troubled cell. Here h0 represents the radius of the inscribed 
circle of △0 . We will demonstrate later that this troubled cell indicator is very effective in 
the calculation of steady-state problems on triangular meshes.

3.2  Multi‑resolution WENO Limiter

From now on, uh(x, y, t) is written as uh(x, y) for convenience, if it does not cause confusion. 
Let △0 be the troubled cell determined by the troubled cell indicator. The construction 
process of multi-resolution WENO limiters [50] for the scalar case is briefly described in 
the following. We construct multiple polynomials of various degrees on △0 . We adopt a 
local orthogonal basis over △0 : {v

(0)

l
(x, y), l = 0,⋯ ,K; K = (k + 1)(k + 2)∕2 − 1}:

(4)

⎧
⎪⎨⎪⎩

u
(1) = u

n + ΔtL(un),

u
(2) =

3

4
u
n +

1

4
u
(1) +

1

4
ΔtL(u(1)),

u
n+1 =

1

3
u
n +

2

3
u
(2) +

2

3
ΔtL(u(2))

(5)
max
𝓁=1,2,3

(|||
1

|△0| ∫△0

uh(x, y, t)|△0
dxdy −

1

|△𝓁 | ∫△𝓁
uh(x, y, t)|△𝓁

dxdy
|||
)

h0 min
𝓁=0,1,2,3

(|||
1

|△𝓁 | ∫△𝓁
uh(x, y, t)|△𝓁

dxdy
|||
) ⩾ 1,

Fig. 1  Triangular cells △
0
 , △

1
 , 

△
2
 , and △

3
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where (x0, y0) and |△0 | are the barycenter and the area of △0 , respectively. Then, we 
solve a linear system to obtain the values of a�m by the orthogonality property:

We design q𝓁(x, y),𝓁 = 0,⋯ , k , which satisfy

Then, we set p0,1(x, y) = q0(x, y) . According to [6, 26, 27], we get the polynomials

with ��−1,� + ��,� = 1 and ��,� ≠ 0 , together with the polynomials

with ��−1,� + ��,� = 1 . Here, ��−1,� and ��,� represent the linear weights, and ��−1,� and 
��,� represent the nonlinear weights. We compute the smoothness indicators ��,�2

 . The 
smoothness indicators [25, 39] are constructed as

where � = � , � = (�1, �2) , and |�| = �1 + �2 . Here �0,1 is constructed as specified in [50]. 
Following [4, 7], we define

The nonlinear weights are

Here � is set as 10−6 . The final new polynomial is

v
(0)

0
(x, y) =1,

v
(0)

1
(x, y) =

x − x0√�△0 �
,

v
(0)

2
(x, y) =a21

x − x0√�△0 �
+

y − y0√�△0 �
+ a22,

⋮

(6)
1

∫
△0

(
v
(0)

i
(x, y)

)2

dxdy
�△0

v
(0)

i
(x, y) v

(0)

j
(x, y) dxdy = �ij.

(7)
∫△0

q𝓁(x, y)v
(0)

l
(x, y)dxdy = ∫△0

uh(x, y)v
(0)

l
(x, y)dxdy, l = 0,⋯ ,

(𝓁 + 1)(𝓁 + 2)

2
− 1.

(8)p𝓁,𝓁(x, y) =
1

�𝓁,𝓁
q𝓁(x, y) −

�𝓁−1,𝓁

�𝓁,𝓁
p𝓁−1,𝓁(x, y), 𝓁 = 1,⋯ , k

(9)p𝓁,𝓁+1(x, y) = �𝓁,𝓁p𝓁,𝓁(x, y) + �𝓁−1,𝓁p𝓁−1,𝓁(x, y),𝓁 = 1,⋯ , k − 1

(10)

�𝓁,𝓁2
=

�∑
|�|=1∫△0

△
|�|−1
0

(
�|�|

�x�1�y�2
p𝓁,𝓁2

(x, y)

)2

dxdy, 𝓁 = 𝓁2 − 1,𝓁2; 𝓁2 = 1, 2, 3,

(11)��2
=
(
��2,�2

− ��2−1,�2

)2
, �2 = 1, 2, 3.

(12)

𝜔�1,�2
=

�̄��1,�2

�2∑
�=1

�̄��,�2

, �̄��1,�2
= 𝛾�1,�2

�
1 +

𝜏�2

𝜀 + 𝛽�1,�2

�
, �1 = �2 − 1,�2; �2 = 1, 2, 3.
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for the second-order, third-order, and fourth-order approximations, respectively.
Then we write (2) as

Here � is the density, � and � are the velocities in x-direction and y-direction, respectively, 
E is the total energy, � = 1.4 , and p =

E

�−1
−

1

2
�(�2 + �2) is the pressure. Let the Jacobian 

be (f �(u), g�(u)) ⋅ �i= f �(u)nix + g�(u)niy , where �i = (nix, niy)
T , i = 1, 2, 3 are the outward 

unit normals of the edges of the target cell. The eigenvectors of the Jacobian matrix [52] are

and

and B1 =
�−1

c2
 , B2 =

B1(�
2+�2)

2
 , c =

√
�p∕� , and H =

E+p

�
 . For the relevant polynomial vec-

tors p0 , p1 , p2 , and p3 on the troubled cell △0 , the construction process of the multi-resolu-
tion WENO limiters [50] for the system case is briefly described in the following. We 
firstly construct the new polynomial vectors pnew

i
 , i = 1, 2, 3, in each �i-direction of the nor-

mal directions of �△0 by applying the multi-resolution WENO limiting and relevant Jaco-
bian f �(u)nix + g�(u)niy , i = 1, 2, 3 . Then, we project p0 , p1 , p2 , and p3 into ̃̃pil = Li ⋅ pl , 
i = 1, 2, 3 , l = 0, 1, 2, 3 . ̃̃pil is a 4-component vector, and every constituent is a polynomial 
to the degree k. For every constituent of ̃̃pil , we execute the scalar case of the multi-resolu-
tion WENO limiting procedure and get the 4-component vectors on △0 as ̃̃pnew

i
 , i = 1, 2, 3 , 

respectively. Then we project ̃̃pnew
i

 into the physical space pnew
i

= Ri ⋅ ̃̃p
new

i
 , i = 1, 2, 3 . 

Finally, the ultimate 4-component vector on △0 is

(13)pnew(x, y) =

�2∑
�=�2−1

��,�2
p�,�2

(x, y), �2 = 1, 2, 3

(14)ut + fx(u) + gy(u) =
�

�t

⎛
⎜⎜⎜⎝

�

��

��

E

⎞
⎟⎟⎟⎠
+

�

�x

⎛
⎜⎜⎜⎝

��

��2 + p

���

�(E + p)

⎞
⎟⎟⎟⎠
+

�

�y

⎛
⎜⎜⎜⎝

��

���

��2 + p

�(E + p)

⎞
⎟⎟⎟⎠
= 0.

(15)Li =

⎛
⎜⎜⎜⎜⎜⎜⎝

B2 + (�nix + �niy)∕c

2
−

B1� + nix∕c

2
−

B1� + niy∕c

2

B1

2
niy� − nix� − niy nix 0

1 − B2 B1� B1� − B1

B2 − (�nix + �niy)∕c

2
−

B1� − nix∕c

2
−

B1� − niy∕c

2

B1

2

⎞⎟⎟⎟⎟⎟⎟⎠

(16)Ri =

⎛
⎜⎜⎜⎜⎝

1 0 1 1

� − cnix − niy � � + cnix
� − cniy nix � � + cniy

H − c(�nix + �niy) − niy� + nix�
�2+�2

2
H + c(�nix + �niy)

⎞
⎟⎟⎟⎟⎠
, i = 1, 2, 3,

(17)pnew =

3∑
i=1

pnew
i

�△i �
3∑
i=1

�△i �
.
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4  Numerical Results

Now, several steady-state problems are applied to testify the effectiveness of the second-
order, third-order, and fourth-order RKDG methods with multi-resolution WENO limit-
ers (termed as the RKDG2-MRWENO, RKDG3-MRWENO, and RKDG4-MRWENO 
methods, respectively) on triangular meshes. For the two two-dimensional accuracy 
examples, the refinement is performed by a structured refinement, and all triangular 
cells are noted as the troubled cells, to verify that the accuracy, as well as the steady 
state convergence, is not affected even if the limiter is over-used in all cells. For the 
other examples, (5) is used to detect the troubled cells. For the RKDG2-MRWENO, 
RKDG3-MRWENO, and RKDG4-MRWENO methods, the CFL numbers are 0.3, 0.18, 
and 0.1, respectively. The numerical residual is given by

in which R1i =
��

�t
|i ≈ �n+1

i
−�n

i

Δt
 , R2i =

�(��)

�t
|i ≈ (��)n+1

i
−(��)n

i

Δt
 , R3i =

�(��)

�t
|i ≈ (��)n+1

i
−(��)n

i

Δt
 , and 

R4i =
�E

�t
|i ≈ En+1

i
−En

i

Δt
 . N is the total number of all triangular cells inside the computational 

field. The linear weights are set as ��−1,�=0.01 and ��,�=0.99, � = 1, 2, 3 , respectively.

Example 1 We compute the two-dimensional Euler equation (14). The calculation range 
is (x, y) ∈ [0, 2] × [0, 2] . �(x, y,∞) = 1 + 0.2 sin(x − y) , �(x, y,∞) = 1 , �(x, y,∞) = 1 , and 
p(x, y,∞) = 1 are exact steady-state solutions. Figure 2 shows a sample mesh. The numeri-
cal residual is demonstrated in Fig. 3, in which the numerical residual is reduced to the 
minimum value of machine zero. The numerical errors and orders for the density at steady 
state are shown in Table 1. It is seen that the RKDG2-MRWENO, RKDG3-MRWENO, 
and RKDG4-MRWENO methods are performing well for this steady-state test case: the 

(18)ResA =

N∑
i=1

|R1i| + |R2i| + |R3i| + |R4i|
4 × N

,

Fig. 2  Two-dimensional Euler 
equations for the steady-state 
problem. Sample mesh

x

Y



1582 Communications on Applied Mathematics and Computation (2024) 6:1575–1599

1 3

numerical residual settles to near machine zero, and the designed order of the accuracy is 
achieved.

Example 2 The shock reflection problem. The calculation range is (x, y) ∈ [0, 4] × [0, 1] . 
The Dirichlet conditions are applied on the other two sides

Table 1  Two-dimensional Euler 
equations for the steady-state 
problem. Case (1). L1 - and 
L
∞-errors for density

RKDG2-MRWENO method
h L

1-error Order L
∞-error Order

2

5

9.20E−4 4.08E−3
2

10

2.14E−4 2.10 1.05E−3 1.96
2

20

4.91E−5 2.13 2.44E−4 2.10
2

40

1.19E−5 2.05 6.33E−5 1.95
2

80

2.93E−6 2.02 1.61E−5 1.97

RKDG3-MRWENO method
h L

1-error Order L
∞-error Order

2

5

1.77E−4 7.24E−4
2

10

2.16E−5 3.03 1.19E−4 2.60
2

20

2.86E−6 2.92 1.68E−5 2.83
2

40

3.79E−7 2.92 2.26E−6 2.89
2

80

4.93E−8 2.94 2.92E−7 2.96

RKDG4-MRWENO method
h L

1-error Order L
∞-error Order

2

5

1.91E−6 6.43E−6
2

10

1.13E−7 4.08 5.17E−7 3.64
2

20

5.73E−9 4.30 3.34E−8 3.95
2

40

3.16E−10 4.18 2.33E−9 3.84
2

80

1.99E−11 3.99 1.33E−10 4.13

Fig. 3  Two-dimensional Euler equations for the steady-state problem. Case (1). Left: RKDG2-MRWENO 
method; middle: RKDG3-MRWENO method; right: RKDG4-MRWENO method. Diverse numbers repre-
sent different mesh levels of boundary points uniformly distributed from 2

5
 to 2

80
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Figure 4 shows a sample mesh. Figure 5 shows the density contours of 15 equidistant con-
tours from 1.14 to 2.60. Figure  6 shows the troubled cells identified in the termination 
time. It is observed that the RKDG4-MRWENO method has better resolution than that of 
the RKDG2-MRWENO method and RKDG3-MRWENO method, especially for the accu-
rate capture of strong shocks. The numerical residual is shown in Fig. 7. It is found that 
the average residual of the RKDG-MRWENO methods can reduce to about 10−12 , near 
machine zero.

(19)(�,�, �, p)T =

{
(1.0, 2.9, 0, 1.0∕1.4)T|(0,y,t)T ,
(1.699 97, 2.619 34,−0.506 32, 1.528 19)T|(x,1,t)T .

1.0

x

Y

Fig. 4  The shock reflection problem. Sample mesh

x

x

x

Y
Y

Y

1.0

1.0

1.0

Fig. 5  The shock reflection problem. Fifteen equally spaced density contours from 1.14 to 2.60. Top: 
RKDG2-MRWENO method; middle: RKDG3-MRWENO method; bottom: RKDG4-MRWENO method. 
Boundary points are h =

1

30
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Example 3 Two transonic steady-state problems of NACA0012 airfoil [38] with M∞ = 0.8 , 
� = 1.25◦ and M∞ = 0.85 , � = 1◦ . The calculation range is [−15, 15] × [−15, 15] . Figure 8 
shows a sample mesh. Thirty equally spaced pressure contours are shown in Figs. 9 and 
10. We observe that the average residual of the RKDG-MRWENO methods can reduce to 
about 10−12.5 , near machine zero via time advancing.

Y
Y

Y

x

x

x

1.0

1.0

1.0

Fig. 6  The shock reflection problem. The square represents the cells identified as troubled cells at the 
end of time. Top: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; bottom: RKDG4-
MRWENO method. Boundary points are h =

1

30

Fig. 7  The shock reflection problem. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO 
method; right: RKDG4-MRWENO method. Boundary points are h =

1

30
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Fig. 8  NACA0012 airfoil sample mesh. Left: whole region; right: zoomed-in figure near the airfoil

Fig. 9  NACA0012 airfoil. M∞ = 0.8 and � = 1.25
◦ . Top: 30 equally spaced pressure contours from 0.50 to 

1.46; middle: troubled cells are mainly in [−3, 3] × [−3, 3]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Example 4 Two supersonic steady-state problems of NACA0012 airfoil [38] with M∞ = 2 , 
� = 1◦ and M∞ = 3 , � = 1.5◦ . Figure  8 is also a computational mesh for this example. 
Thirty equally spaced pressure contours are demonstrated in Figs. 11 and 12, respectively. 
It is again observed that the average residual of the RKDG-MRWENO methods can reduce 
to about 10−12 , near machine zero.

Fig. 10  NACA0012 airfoil. M∞ = 0.85 and � = 1
◦ . Top: 30 equally spaced pressure contours from 0.49 to 

1.54; middle: troubled cells are mainly in [−3, 3] × [−3, 3]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Fig. 11  NACA0012 airfoil. M∞ = 2 and � = 1
◦ . Top: 30 equally spaced pressure contours from 0.76 to 

5.35; middle: troubled cells are mainly in [−3, 7] × [−5, 5]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Example 5 Two transonic steady-state problems of NACA001035 airfoil [14] with M∞ = 0.8 , 
� = 1.25◦ and M∞ = 0.9 , � = 0.5◦ . The calculation range is [−16, 16] × [−16, 16] . Figure 13 
shows a sample mesh containing 5 593 triangles. Equally spaced pressure contours are demon-
strated in Figs. 14 and 15. It is found that the residual of the RKDG-MRWENO methods can 
reduce to about 10−14.5 , near machine zero.

Fig. 12  NACA0012 airfoil. M∞ = 3 and � = 1.5
◦ . Top: 30 equally spaced pressure contours from 0.76 to 

11.35; middle: troubled cells are mainly in [−3, 7] × [−5, 5]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Fig. 13  NACA001035 airfoil sample mesh. Left: whole region; right: zoomed-in figure near the airfoil

Fig. 14  NACA001035 airfoil. M∞ = 0.8 and � = 1.25
◦ . Top: 30 equally spaced pressure contours from 0.67 

to 1.43; middle: troubled cells are mainly in [−3, 3] × [−3, 3]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Example 6 Two supersonic steady-state problems of NACA001035 airfoil [14] with 
M∞ = 1.5 , � = 1.5◦ and M∞ = 2 , � = 1◦ . The calculation range is [−16, 16] × [−16, 16] . 
Figure  13 is also a sample mesh containing 5 593 triangles for this example. Equally 
spaced pressure contours are shown in Figs. 16 and 17. It is found that the average residual 
of the RKDG-MRWENO methods can reduce to about 10−14 , near machine zero.

Fig. 15  NACA001035 airfoil. M∞ = 0.9 and � = 0.5
◦ . Top: 30 equally spaced pressure contours from 0.46 

to 1.58; middle: troubled cells are mainly in [−3, 3] × [−3, 3]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Fig. 16  NACA001035 airfoil. M∞ = 1.5 and � = 1.5
◦ . Top: 30 equally spaced pressure contours from 0.51 

to 3.21; middle: troubled cells are mainly in [−3, 7] × [−5, 5]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Example 7 Two transonic steady-state problems of CAST7 airfoil [14] with M∞ = 0.8 , 
� = 1.25◦ and M∞ = 0.85 , � = 1◦ . The calculation range is [−16, 16] × [−16, 16] . Fig-
ure  18 shows a sample mesh containing 5 593 triangles. Equally spaced pressure con-
tours are shown in Figs. 19 and 20. It is observed that the average residual of the RKDG-
MRWENO methods can reduce to about 10−14.5 , near machine zero once again.

Fig. 17  NACA001035 airfoil. M∞ = 2 and � = 1
◦ . Top: 60 equally spaced pressure contours from 0.54 to 

5.15; middle: troubled cells are mainly in [−3, 7] × [−5, 5]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Fig. 18  CAST7 airfoil sample mesh. Left: whole region; right: zoomed-in figure near the airfoil

Fig. 19  CAST7 airfoil. M∞ = 0.8 and � = 1.25
◦ . Top: 30 equally spaced pressure contours from 0.41 to 

1.46; middle: troubled cells are mainly in [−3, 3] × [−3, 3]; bottom: the evolution of the average numeri-
cal residual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-
MRWENO method
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Example 8 Two supersonic steady-state problems of CAST7 airfoil [14] with M∞ = 2 , 
� = 1◦ and M∞ = 2 , � = 2◦ . The calculation range is [−16, 16] × [−16, 16] . Figure 18 is 
also the sample mesh containing 5 593 triangles for this example. Equally spaced pres-
sure contours are shown in Figs. 21 and 22. It is observed that the average residual of the 
RKDG-MRWENO methods can reduce to about 10−14 , near machine zero once again.

Fig. 20  CAST7 airfoil. M∞ = 0.85 and � = 1
◦ . Top: 30 equally spaced pressure contours from 0.42 to 1.53; 

middle: troubled cells are mainly in [−3, 3] × [−3, 3]; bottom: the evolution of the average numerical resid-
ual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-MRWENO 
method
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Fig. 21  CAST7 airfoil. M∞ = 2 and � = 1
◦ . Top: 60 equally spaced pressure contours from 0.65 to 5.17; 

middle: troubled cells are mainly in [−3, 7] × [−5, 5]; bottom: the evolution of the average numerical resid-
ual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-MRWENO 
method
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5  Conclusions

In this article, a troubled cell indicator for unstructured meshes is designed and high-
order multi-resolution WENO schemes [50] are served as limiters for the RKDG meth-
ods to simulate steady-state problems on triangular meshes. The main objective is to 
apply the modified troubled cell indicator to detect troubled cells subject to the multi-
resolution WENO limiting procedure, and construct a sequence of hierarchical L2 pro-
jection polynomial solutions of the DG methods over triangular troubled cell itself. 
Using the second-order, third-order, and fourth-order RKDG-MRWENO methods, the 
spurious oscillations can be well suppressed and the average residual can reduce to near 
machine zero. Extensive examples are applied to verify that such high-order RKDG-
MRWENO methods have good effectiveness when calculating steady-state problems.

Fig. 22  CAST7 airfoil. M∞ = 2 and � = 2
◦ . Top: 60 equally spaced pressure contours from 0.62 to 5.24; 

middle: troubled cells are mainly in [−3, 7] × [−5, 5]; bottom: the evolution of the average numerical resid-
ual. Left: RKDG2-MRWENO method; middle: RKDG3-MRWENO method; right: RKDG4-MRWENO 
method
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