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Abstract In this paper, we present a class of finite volume trigonometric weighted essen-
tially non-oscillatory (TWENO) schemes and use them as limiters for Runge-Kutta dis-
continuous Galerkin (RKDG) methods based on trigonometric polynomial spaces to solve
hyperbolic conservation laws and highly oscillatory problems. As usual, the goal is to ob-
tain a robust and high order limiting procedure for such a RKDG method to simultaneously
achieve uniformly high order accuracy in smooth regions and sharp, non-oscillatory shock
transitions. The major advantage of schemes which are based on trigonometric polynomial
spaces is that they can simulate the wave-like and highly oscillatory cases better than the
ones based on algebraic polynomial spaces. We provide numerical results in one and two
dimensions to illustrate the behavior of these procedures in such cases. Even though we do
not utilize optimal parameters for the trigonometric polynomial spaces, we do observe that
the numerical results obtained by the schemes based on such spaces are better than or similar
to those based on algebraic polynomial spaces.

Keywords Finite volume TWENO scheme · Runge-Kutta discontinuous Galerkin
method · Orthogonal trigonometric polynomial space · Limiter

1 Introduction

In this paper, we investigate using trigonometric, instead of the usual algebraic, poly-
nomial reconstruction in finite volume Weighted Essentially Non-Oscillatory (WENO)
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schemes, which we have termed TWENO schemes, and using the new TWENO as lim-
iters for Runge-Kutta Discontinuous Galerkin methods (RKDG) on orthogonal trigono-
metric polynomial spaces to solve hyperbolic conservation laws. The major advantage of
schemes, which are based on trigonometric polynomial spaces, is that they can simulate
wave-like and highly oscillatory cases better than the ones based on algebraic polynomial
spaces [14, 24, 26].

In order to achieve high order of accuracy in smooth regions, Harten and Osher [10]
gave a weaker version of the Total Variation Diminishing (TVD) [9] criterion, and ob-
tained the Essentially Non-Oscillatory (ENO) type schemes. The key idea of ENO schemes
is applying the smoothest stencil among all candidate stencils to approximate appropriate
variables at cell boundaries to a high order of accuracy in smooth regions, avoiding os-
cillations near discontinuities. In 1994, Liu et al. [12] proposed an (r + 2)-th order accu-
rate Weighted ENO (WENO) scheme that was constructed from the (r + 1)-th order ENO
scheme. Then in 1996, Jiang and Shu [11] proposed the framework to construct (2r + 1)-th
order accurate finite difference WENO schemes from the (r + 1)-th order (in the L1 norm
sense) ENO schemes, gave a new way of measuring the smoothness indicators, and em-
ulated the ideas of minimizing the total variation of the approximation. The key idea of
WENO schemes is applying all the stencils to approximate the variables at cell bound-
aries to an even higher order of accuracy in smooth regions while avoiding oscillations
near discontinuities. WENO type schemes have improved ENO type schemes in many as-
pects [18].

Trigonometric Essentially Non-Oscillatory schemes are more appropriate in simulat-
ing the wave-like phenomena or highly oscillatory problems that are encountered in na-
ture. Christofi [3] constructed a trigonometric reconstruction methodology that could add
points to the stencil one at a time that possessed necessary symmetries to be suitable for
the ENO stencil selection idea. In 2010, Zhu and Qiu [25] extended this work that em-
ployed trigonometric basis functions to the more important (finite difference) WENO frame-
work.

Reed and Hill [16] introduced the first discontinuous Galerkin (DG) method in 1973,
in the framework of neutron transport (steady state linear hyperbolic equations). Cockburn
et al. carried out a major development of the DG method in a series of papers [4–8], in which
they established a framework to easily solve nonlinear time dependent hyperbolic conser-
vation laws (2.1). Specifically, to achieve non-oscillatory properties for strong shocks, they
used explicit, nonlinearly stable, high order Runge-Kutta time [20] as well as spatial DG
discretizations along with exact or approximate Riemann solvers as interface fluxes, and a
total variation bounded (TVB) limiter [19]. Such schemes were termed RKDG methods.
In 2006, Yuan and Shu [21] developed DG methods based on non-polynomial approxima-
tion spaces for numerically solving time dependent hyperbolic and parabolic as well as
steady state hyperbolic and elliptic partial differential equations (PDEs). The algorithm was
based on approximation spaces consisting of non-polynomial elementary functions, such
as exponential and trigonometric functions. It relied on optimized best-fitting parameter(s)
with the objective of obtaining better approximations for specific types of PDEs and ini-
tial and boundary conditions. It was shown that L2 stability and error estimates can be
obtained when the approximation space was suitably selected. Numerical examples also
demonstrated that a careful selection of the approximation space to fit individual PDE
and initial and boundary conditions often provides more accurate results than when the
DG methods are based on polynomial approximation spaces of the same order of accu-
racy.
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An important component of RKDG methods for solving the conservation laws (2.1) with
strong shocks in the solutions is a nonlinear limiter, which is applied to both detect disconti-
nuities and control spurious oscillations near these discontinuities. Many such limiters have
been used in the literature for RKDG methods. Examples include the minmod type TVB
limiter [4–8], which is a slope limiter that uses a technique borrowed from the finite volume
methodology, as well as the moment based limiter [1] and an improved moment limiter [2],
which work on the moments of the numerical solution and are specifically designed for DG
methods. These limiters tend to degrade accuracy when mistakenly used in smooth regions
of the solution. In [14, 26], Qiu et al. initiated a study of using the WENO methodology as
limiters for RKDG methods on (un)structured meshes. The following two-step framework
was adopted:

Step 1.1. Identify the “troubled cells”, namely those cells which might need the limiting
procedure.

Step 1.2. Replace the solution polynomials in those “troubled cells” by reconstructed poly-
nomials using the WENO methodology which maintain the original cell averages (con-
servation), have the same orders of accuracy as before, but are less oscillatory.

This technique worked quite well in one and two dimensional test problems in [14] and
in the follow up work [13, 15, 24] where the more compact Hermite WENO reconstruc-
tion [23] was used in the “troubled cells”.

In this continuation paper, following the ideas in [3, 14, 18, 21, 22, 25], we extend the
method to solve hyperbolic conservation laws on trigonometric polynomial spaces. We pro-
pose and use in this paper a different form of trigonometric basis functions than the one
used in [25], as this time orthogonal basis are preferred. The form used in [25] was related
to work done in [3] whereas the current form resembles more the ones in [21]. One differ-
ence between this paper and [21] is that our method does not rely on optimizing best-fitting
parameter(s) to obtain good results in cases which exhibit wave-like and highly oscillatory
features. We use the TWENO reconstruction based on the cell averages of neighboring cells
to reconstruct the moments. This turns out to be a robust way to retain the original high
order accuracy of the DG method. The organization of this paper is as follows: In Sect. 2,
we review and construct finite volume TWENO schemes in detail. In Sect. 3, we investigate
the usage of the finite volume TWENO methodology as limiters for the RKDG method. In
Sect. 4, we present extensive numerical results to verify the accuracy and stability of this
approach. Finally in Sect. 5, we give concluding remarks.

2 The Construction of Finite Volume Trigonometric WENO Scheme

In this section, we first consider one dimensional hyperbolic conservation laws:

⎧
⎪⎨

⎪⎩

∂u

∂t
+ ∂f (u)

∂x
= 0,

u(x,0) = u0(x).

(2.1)

For simplicity of presentation, we assume that the mesh is uniformly distributed into sev-
eral cells Ii = [xi−1/2, xi+1/2], with the cell size xi+1/2 − xi−1/2 = �x = h and cell centers
xi = 1

2 (xi+1/2 + xi−1/2). We denote the cell averages of u as: ūi(t) = 1
h

∫

Ii
u(x, t)dx. Inte-

grating (2.1) over the target cell Ii , we obtain the equivalent formulation of conservation
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laws:

dūi(t)

dt
= − 1

h

(
f

(
u(xi+1/2, t)

) − f
(
u(xi−1/2, t)

))
. (2.2)

We approximate (2.2) by the following conservative scheme:

dūi(t)

dt
= − 1

h

(
f̂i+1/2 − f̂i−1/2

)
, (2.3)

where the numerical flux f̂i+1/2 is defined by:

f̂i+1/2 = ĥ
(
u−

i+1/2, u
+
i+1/2

)
(2.4)

and u±
i+1/2 are numerical approximations to the point values of u(xi+1/2, t) from the left and

right, respectively. In this paper, we use the following Lax-Friedrichs flux:

ĥ(a, b) = 1

2

(
f (a) + f (b) − ᾱ(b − a)

)
, (2.5)

where ᾱ = maxu|f ′(u)| is a constant. The maximum is taken over the relevant range of u.
In this paper, we reconstruct the point values u±

i+1/2 by using the cell averages {ūi} on
trigonometric polynomial spaces. The reconstruction should be both high order accurate and
essentially non-oscillatory. Below, we give the fifth order accurate reconstruction procedures
of u−

i+1/2 and u+
i−1/2:

Step 2.1. We start with the stencil: Γ = {Ii−2, . . . , Ii+2} and construct a fourth-
degree trigonometric polynomial q(x) ∈ span{1, sin(α(x − xi)), cos(α(x − xi)) − sin(hα/2)

hα/2 ,

sin((α + 1)(x − xi)), cos((α + 1)(x − xi)) − sin(h(α+1)/2)

h(α+1)/2 }, such that:

1

h

∫

Ii+j

q(x)dx = ūi+j , j = −2, . . . ,2,

where α is an adjustable parameter. Unless we specify otherwise, we set α = 1.0 in all 1D
examples of Sect. 4. Then, we divide stencil Γ into three smaller stencils that each includes
the target cell Ii : S1 = {Ii−2, Ii−1, Ii}, S2 = {Ii−1, Ii , Ii+1}, S3 = {Ii, Ii+1, Ii+2} and construct
the trigonometric polynomials pn(x) ∈ span{1, sin(α(x − xi)), cos(α(x − xi)) − sin(hα/2)

hα/2 },
for n = 1,2,3, such that:

1

h

∫

Ii+j+n−1

pn(x)dx = ūi+j+n−1, j = −2,−1,0. (2.6)

In the following text, we denote ui = ūi for simplicity. The values of functions pn(x), at
the end points xi+1/2 and xi−1/2 of target cell Ii can be written as linear combinations of {ui}.
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Specifically, we have that:

p1(xi+1/2) = χ

(

(ui−1 − ui−2) cos(hα) + (ui−1 − ui) cos(2hα) + (ui−2 + ui)
sin(hα)

hα

− ui−1
sin(2hα)

hα

)

,

p2(xi+1/2) = −χ

(

ui−1 − ui − (ui − ui+1) cos(hα) − (ui−1 + ui+1)
sin(hα)

hα

+ ui

sin(2hα)

hα

)

,

p3(xi+1/2) = χ

(

ui+1 − ui+2 − (ui − ui+1) cos(hα) + (ui + ui+2)
sin(hα)

hα

− ui+1
sin(2hα)

hα

)

,

(2.7)

p1(xi−1/2) = χ

(

ui−1 − ui−2 + (ui−1 − ui) cos(hα) + (ui−2 + ui)
sin(hα)

hα

− ui−1
sin(2hα)

hα

)

,

p2(xi−1/2) = χ

(

ui − ui+1 − (ui−1 − ui) cos(hα) + (ui−1 + ui+1)
sin(hα)

hα

− ui

sin(2hα)

hα

)

,

p3(xi−1/2) = χ

(

(ui+1 − ui+2) cos(hα) − (ui − ui+1) cos(2hα) + (ui + ui+2)
sin(hα)

hα

− ui+1
sin(2hα)

hα

)

,

(2.8)

where χ = hα

8 sin(hα/2)3 cos(hα/2)
.

Step 2.2. We may now find the linear weights, such that q(xi+1/2) = ∑3
n=1 γnpn(xi+1/2).

Specifically, we have that:

γ1 = (
cos

(
h(−1 + α)

) − cos
(
h(2 + α)

) + cos
(
h(2 + 3α)

) − cos(h + 3hα)

+ 4h sin(hα) + 4hα sin(hα) − 2h sin(2hα) − 2hα sin(2hα) − 4hα sin
(
h(1 + α)

)

+ 2hα sin
(
2h(1 + α)

))/(
χ

(
hα cos(hα) − sin(hα)

))
,

γ2 = 1 − γ1 − γ3,

γ3 = (− cos
(
h(−1 + α)

) + cos
(
h(2 + α)

) − cos
(
h(2 + 3α)

) + cos(h + 3hα)

+ 2h sin(h) + 4hα sin(h) + h sin
(
h(−1 + α)

) + hα sin
(
h(−1 + α)

)

− hα sin
(
h(2 + α)

) − hα sin
(
h(2 + 3α)

) − 2h sin(h + 2hα)

+ h sin(h + 3hα) + hα sin(h + 3hα)
)/(

χ
(−hα cos(hα) + sin(hα)

))
,

(2.9)

where χ = 32 sin((h(1 + α))/2)3 cos((h(1 + α))/2)(− cos(hα) + cos(h(1 + α))).
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And for q(xi−1/2) = ∑3
n=1 γnpn(xi−1/2). Specifically, we have that:

γ1 = (− cos
(
h(−1 + α)

) + cos
(
h(2 + α)

) − cos
(
h(2 + 3α)

) + cos(h + 3hα)

+ 2h sin(h) + 4hα sin(h) + h sin
(
h(−1 + α)

) + hα sin
(
h(−1 + α)

)

− hα sin
(
h(2 + α)

) − hα sin
(
h(2 + 3α)

) − 2h sin(h + 2hα)

+ h sin(h + 3hα) + hα sin(h + 3hα)
)/(

χ
(−hα cos(hα) + sin(hα)

))
,

γ2 = 1 − γ1 − γ3,

γ3 = (
cos

(
h(−1 + α)

) − cos
(
h(2 + α)

) + cos
(
h(2 + 3α)

) − cos(h + 3hα)

+ 4h sin(hα) + 4hα sin(hα) − 2h sin(2hα) − 2hα sin(2hα) − 4hα sin
(
h(1 + α)

)

+ 2hα sin
(
2h(1 + α)

))/(
χ

(
hα cos(hα) − sin(hα)

))
,

(2.10)

where χ is same as above.
Step 2.3. For the smaller stencils Sn, n = 1,2,3, we compute the smoothness indicators,

denoted by βn, which measure how smooth the functions pn(x) are in the target cell Ii . The
smaller these smoothness indicators, the smoother the functions are in the target cell. We
use the same recipe for the smoothness indicators as in [11]:

βn =
2∑

η=1

∫

Ii

h2η−1

(
dηpn(x)

dxη

)2

dx, n = 1,2,3, (2.11)

to obtain the following relations for β1, β2, β3:

β1 = χ
(
2hα

(
2u2

i−1 + u2
i−2 + u2

i − 2ui−1(ui−2 + ui)
)

+ 4hα(ui−1 − ui−2)(ui−1 − ui) cos(hα) + 2(ui−1 − ui−2)(ui−1 − ui) sin(hα)

− (ui−2 − ui)(−2ui−1 + ui−2 + ui) sin(2hα) − 2(ui−1 − ui−2)(ui−1 − ui) sin(3hα)

− (ui−1 − ui)
2 sin(4hα) + h2α2

(
2hα

(
2u2

i−1 + u2
i−2 + u2

i − 2ui−1(ui−2 + ui)
)

+ 4hα(ui−1 − ui−2)(ui−1 − ui) cos(hα) − 2(ui−1 − ui−2)(ui−1 − ui) sin(hα)

+ (ui−2 − ui)(−2ui−1 + ui−2 + ui) sin(2hα)

+ 2(ui−1 − ui−2)(ui−1 − ui) sin(3hα) + (ui−1 − ui)
2 sin(4hα)

))
/256,

β2 = χ
(−4hα

(
1 + h2α2

)
(ui−1 − ui)(ui − ui+1) cos(hα)

− 4
(−1 + h2α2

)
(ui−1 − ui)(ui − ui+1) sin(hα)

+ (
u2

i−1 − 2ui−1ui + 2u2
i − 2uiui+1 + u2

i+1

)(
2hα

(
1 + h2α2

)

+ (−1 + h2α2
)

sin(2hα)
))

/256, (2.12)

β3 = χ
(
2hαu2

i + 2h3α3u2
i − 4hαuiui+1 − 4h3α3uiui+1 + 4hαu2

i+1 + 4h3α3u2
i+1

− 4hαui+1ui+2 − 4h3α3ui+1ui+2 + 2hαu2
i+2 + 2h3α3u2

i+2

− 4hα
(
1 + h2α2

)
(ui − ui+1)(ui+1 − ui+2) cos(hα)

+ 2
(−1 + h2α2

)
(ui − ui+1)(ui+1 − ui+2) sin(hα) + u2

i sin(2hα)
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− h2α2u2
i sin(2hα) − 2uiui+1 sin(2hα) + 2h2α2uiui+1 sin(2hα)

+ 2ui+1ui+2 sin(2hα) − 2h2α2ui+1ui+2 sin(2hα) − u2
i+2 sin(2hα)

+ h2α2u2
i+2 sin(2hα) + 2uiui+1 sin(3hα) − 2h2α2uiui+1 sin(3hα) − 2u2

i+1 sin(3hα)

+ 2h2α2u2
i+1 sin(3hα) − 2uiui+2 sin(3hα) + 2h2α2uiui+2 sin(3hα)

+ 2ui+1ui+2 sin(3hα) − 2h2α2ui+1ui+2 sin(3hα) − u2
i sin(4hα)

+ h2α2u2
i sin(4hα) + 2uiui+1 sin(4hα) − 2h2α2uiui+1 sin(4hα) − u2

i+1 sin(4hα)

+ h2α2u2
i+1 sin(4hα)

)
/256,

where χ = h3α3

sin((hα)/2)6 cos((hα)/2)2 .
Step 2.4. Then we compute the nonlinear weights based on the linear weights and

smoothness indicators [18]:

ωn = ωn
∑3

k=1 ωk

, ωn = γn
∑3

k=1(ε + βk)2
, n = 1,2,3, (2.13)

where γn are the linear weights determined in the above step, and ε is a small positive
number to avoid division by 0. In this paper, we use ε = 10−6 in all the computations. The
final approximations are given by:

u∓
i± 1

2
≈

3∑

n=1

ωnpn(xi± 1
2
).

Step 2.5. The semi-discrete scheme (2.3) is then discretized in time by a Runge-Kutta
method [20], for example the fourth order version given by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(1) = un + 1
2�tL(un),

u(2) = un + 1
2�tL(u(1)),

u(3) = un + �tL(u(2)),

un+1 = − 1
3 un + 1

3u(1) + 2
3u(2) + 1

3u(3) + 1
6�tL(u(3)).

(2.14)

Remark

1. For systems of conservation laws, such as the Euler equations of gas dynamics, all of the
reconstructions are performed in the local characteristic directions to avoid oscillations.

2. For the two dimensional case, we construct the finite volume TWENO schemes on
uniform meshes by a “dimension by dimension” procedure. We consider the quadra-
ture point (xG, yG). First, we perform a one-dimensional TWENO reconstruction in
the y-direction, in order to get the one-dimensional cell averages (in the x-direction)
w(•, yG). Then, we perform another one-dimensional TWENO reconstruction to w in
the x-direction, to obtain the final reconstructed point value at (xG, yG). The details of
“dimension by dimension” procedure of TWENO is similar to that of WENO which can
be found in [22, 23].

3. The procedure for construction of any (2r + 1)-th order TWENO scheme is similar to
that for the fifth order scheme.
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3 TWENO Reconstruction as Limiters for the DG Method

In [14, 26], we have started the study of using WENO reconstruction methodology as lim-
iters for the RKDG method with algebraic polynomial basis. The first step in the procedure
is to identify the “troubled cells”, namely those cells which might need the limiting proce-
dure. In this paper, we use the minmod type TVB limiters as in [19] to identify the “troubled
cells”. That is, whenever the minmod limiter changes the slope, the cell is declared to be
a “troubled cell”. The second step is to replace the solution polynomials in the “troubled
cells” by reconstructed polynomials, which maintain the original cell averages (for conser-
vation) and have the same order of accuracy as before, but are less oscillatory. In [14, 26],
finite volume type WENO reconstruction based on cell averages of neighbors is used for
the second step. In this section, we apply the TWENO reconstruction while maintaining the
same high order accuracy.

Given a division of cells Δj (intervals in 1D, quadrilaterals in 2D, etc.), a semi-discrete
discontinuous Galerkin method for solving the conservation law (2.1) is obtained by multi-
plying (2.1) with a test function v(x), integrating over a cell Δj , and integrating by parts:

d

dt

∫

Δj

u(x, t)v(x)dx −
∫

Δj

f (u) · ∇v dx +
∫

∂Δj

f (u) · nv ds = 0 (3.1)

where n is the outward unit normal of the cell boundary ∂Δj . We seek a piecewise trigono-
metric polynomial u in T

k of degree at most k, such that (3.1) holds for any test function v

also in T
k . We could actually change k from cell to cell, but for simplicity we assume it is

constant over the whole division. The boundary integral in (3.1) is typically discretized by a
Gaussian quadrature of sufficiently high order of accuracy:

∫

∂Δj

f · nds ≈ |∂Δj |
q∑

G=1

σGf
(
u(xG, t)

) · n

and f (u(xG, t)) ·n is replaced by a monotone numerical flux (approximate or exact Riemann
solvers in the system case). For example, one could use the simple Lax-Friedrichs flux,
which is given by:

f
(
u(xG, t)

) · n ≈ 1

2

[(
f

(
u−(xG, t)

) + f
(
u+(xG, t)

)) · n − ᾱ
(
u+(xG, t) − u−(xG, t)

)]

where ᾱ is taken as an upper bound for |f ′(u) · n| in the scalar case, or the absolute value
of eigenvalues of the Jacobian in the n direction for the system case. u− and u+ are the
respective values of u inside and outside the cell Δj (i.e the latter refers to the value inside
the neighboring cell) at the Gaussian point xG. The idea of using such a numerical flux is
borrowed from a finite volume methodology. The test function v in the boundary integral
in (3.1) is taken from inside the cell Δj . The volume integral

∫

Δj
f (u) · ∇v dx in (3.1)

is either computed exactly for simple f (u) or by a numerical quadrature with sufficient
accuracy, see [4, 7] for details. The semi-discrete scheme (3.1), written as ut = L(u) is then
discretized in time by a TVB Runge-Kutta method (2.14).

To give the procedure using the TWENO reconstruction as a limiter to the RKDG
method, we start with the description in the one dimensional case. For simplicity of pre-
sentation, we also assume that the mesh is uniformly distributed. The DG solution as well as
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the test function spaces are both given by V k
h = {p : p|Ii ∈ T k(Ii)}, the trigonometric poly-

nomial spaces of degree at most k on the cell Ii . We adopt the following local orthogonal
basis over Ii , {v(i)

l (x), l = 0, . . . , k}:

v
(i)

0 (x) = 1,

v
(i)

1 (x) = sin
(
α(x − xi)

)
,

v
(i)

2 (x) = cos
(
α(x − xi)

) − sin(hα/2)

hα/2
,

... .

Unless we specify otherwise, we set α = 1.0 in all 1D examples of Sect. 4. Then, the numer-
ical solution uh(x, t) in the space V k

h can be written as uh(x, t) = ∑k

l=0 u
(l)
i (t)v

(i)
l (x), for

x ∈ Ii and the degrees of freedom u
(l)
i (t) are the moments defined by u

(l)
i (t) = 1

∫

Ii
(v

(i)
l

(x))2dx
∫

Ii
uh(x, t)v

(i)
l (x)dx, l = 0, . . . , k, due to the local orthogonal basis. In order to determine

the approximate solution, we evolve the degrees of freedom u
(l)
i (t) by using the following

relation:

d

dt
u

(l)
i (t) = − 1

∫

Ii
(v

(i)
l (x))2dx

(

−
∫

Ii

f
(
uh(x, t)

) d

dx
v

(i)
l (x)dx

+ f̂
(
u−

i+1/2, u
+
i+1/2

)
v

(i)
l (xi+1/2)

− f̂
(
u−

i−1/2, u
+
i−1/2

)
v

(i)
l (xi−1/2)

)

, l = 0, . . . , k, (3.2)

which is obtained by substituting the expansion for uh(x, t) and letting v = v(i)
m (x) in (3.1).

u±
i+1/2 = uh(x±

i+1/2, t) are the left and right limits of the discontinuous solution uh(x, t) at

the cell interface xi+1/2, f̂ (u−, u+) is a monotone flux for the scalar case and an exact or
approximate Riemann solver for the system case. The integral term in (3.2) can be computed
either exactly for simple f (u) or by a suitable numerical quadrature accurate to at least
O(hk+l+2). The semi-discrete scheme (3.2) is discretized in time by a nonlinearly stable
Runge-Kutta time discretization, e.g. the fourth order version (2.14). The method described
above can compute solutions to (2.1) which are either smooth or have weak shocks and other
discontinuities without further modification. If the discontinuities are strong, however, the
scheme will generate significant oscillations and even nonlinear instability. To avoid such
difficulties, a limiter is needed.

In this paper, we will use the TVB limiter [7, 14, 19] to identify “troubled cells”:

u−
i+1/2 = u

(0)
i + ũi = u

(0)
i +

k∑

l=1

u
(l)
i v

(i)
l (xi+1/2), (3.3)

u+
i−1/2 = u

(0)
i − ˜̃ui = u

(0)
i −

(

−
k∑

l=1

u
(l)
i v

(i)
l (xi−1/2)

)

. (3.4)



J Sci Comput (2013) 55:606–644 615

These are modified by the standard minmod limiter: ũ
(mod)
i = m(ũi,�+u

(0)
i ,�−u

(0)
i ),

˜̃u(mod)
i = m( ˜̃ui,�+u

(0)
i ,�−u

(0)
i ), where m is given by:

m(a1, . . . , an) =
{

s · min1≤j≤n |aj |, if sign(a1) = · · · = sign(an) = s,

0, otherwise,
(3.5)

or by the TVB modified minmod function:

m̃(a1, . . . , an) =
{

a1, if |a1| ≤ M�x2,

m(a1, . . . , an), otherwise,
(3.6)

where the choice of the constant M > 0 depends on the solution of the problem. How to
choose the optimal TVB constant M for system case is still an open problem. If one of the
minmod functions gets enacted (returns other than the first argument), this cell is declared as
“troubled” and marked for further reconstruction. Since the TWENO reconstruction main-
tains the high order accuracy in the “troubled cells”, it is less crucial to choose an accu-
rate M . Basically, if M is chosen too small, more good cells will be declared as “troubled
cells” and will be subject to unnecessary TWENO reconstructions. This does increase the
computational cost, but does not degrade the order of accuracy in the affected cells. For
the “troubled cells”, we would like to reconstruct the trigonometric polynomial solutions
while retaining their cell averages. In other words, we will reconstruct the degrees of free-
dom, or the moments, u

(l)
i , l = 1, . . . , k for the “troubled cells” Ii and retain only the cell

average u
(0)
i .

We will adopt a similar routine as in [14] to reconstruct the moments. First, we recon-
struct point values of u at the Gauss or Gauss-Lobatto quadrature points in the “troubled
cell” Ii by TWENO reconstruction, then use those reconstructed point values to reconstruct
the moments in the cell.

For (k+1)-th order accuracy, we need a Gauss or Gauss-Lobatto quadrature rule accurate
to at least O(h2k+2) and the order of accuracy for the TWENO reconstruction must be at
least 2k + 1. For this purpose, we would need to use the cell averages of the neighboring
2k + 1 cells Ii−k, . . . , Ii+k to reconstruct the point values of u at the Gauss or Gauss-Lobatto
quadrature points. For example, for k = 2, we use the four-point Gauss-Lobatto quadrature
points xG: xi−1/2, xi−√

5/10, xi+√
5/10 and xi+1/2, respectively. The procedure of reconstructing

point values of u at xG is the same as in Steps 2.1–2.4. In particular, the expressions for the
trigonometric polynomials pn(x), n = 1,2,3 at xG = xi±1/2 are given by (2.7) and (2.8),
and for the linear weights by (2.9) and (2.10). Then, we present the procedure of the other
two Gauss-Lobatto quadrature points xG = xi±√

5/10 in detail:
Step 3.1. The expressions for pn(x), n = 1,2,3 at xG = xi+√

5/10 and xG = xi−√
5/10 are:

p1(xi+√
5/10) = χ

(
(
u

(0)

i−1 − u
(0)

i−2

)
cos

(
(5 + √

5)hα

10

)

+ (
u

(0)

i−1 − u
(0)
i

)
cos

(
(15 + √

5)hα

10

)

+ (
u

(0)

i−2 + u
(0)
i

) sin(hα)

hα
− u

(0)

i−1

sin(2hα)

hα

)

,

p2(xi+√
5/10) = −χ

(
(
u

(0)

i−1 − u
(0)
i

)
cos

(
(−5 + √

5)hα

10

)

− (
u

(0)
i − u

(0)

i+1

)
cos

(
(5 + √

5)hα

10

)

− (
u

(0)

i−1 + u
(0)

i+1 − 2u
(0)
i cos(hα)

) sin(hα)

hα

)

, (3.7)



616 J Sci Comput (2013) 55:606–644

p3(xi+√
5/10) = −χ

(
(
u

(0)
i − u

(0)

i+1

)
cos

(
(−15 + √

5)hα

10

)

− (
u

(0)

i+1 − u
(0)

i+2

)
cos

(
(−5 + √

5)hα

10

)

− (
u

(0)
i + u

(0)

i+2 − 2u
(0)

i+1 cos(hα)
) sin(hα)

hα

)

,

p1(xi−√
5/10) = χ

(
(
u

(0)

i−1 − u
(0)
i

)
cos

(
(−15 + √

5)hα

10

)

+ (
u

(0)

i−1 − u
(0)

i−2

)
cos

(
(−5 + √

5)hα

10

)

+ (
u

(0)

i−2 + u
(0)
i

) sin(hα)

hα
− u

(0)

i−1

sin(2hα)

hα

)

,

p2(xi−√
5/10) = χ

(
(
u

(0)
i − u

(0)

i+1

)
cos

(
(−5 + √

5)hα

10

)

− (
u

(0)

i−1 − u
(0)
i

)
cos

(
(5 + √

5)hα

10

)

+ (
u

(0)

i−1 + u
(0)

i+1

) sin(hα)

hα
− u

(0)
i

sin(2hα)

hα

)

,

p3(xi−√
5/10) = χ

(
(
u

(0)

i+1 − u
(0)

i+2

)
cos

(
(5 + √

5)hα

10

)

− (
u

(0)
i − u

(0)

i+1

)
cos

(
(15 + √

5)hα

10

)

+ (
u

(0)
i + u

(0)

i+2

) sin(hα)

hα
− u

(0)

i+1

sin(2hα)

hα

)

,

(3.8)

where χ = hα

8 sin(hα/2)3 cos(hα/2)
.

Step 3.2. We find the linear weights, such that q(xi+√
5/10) = ∑3

n=1 γnpn(xi+√
5/10).

Specifically, we have that:

γ1 = (
cos

(
h(−1 + α)

) − cos
(
h(2 + α)

) + cos
(
h(2 + 3α)

) − cos(h + 3hα)

+ hα sin
((

h(20 + 25α − √
5α)

)
/10

) + h sin
((

h
(−5 + √

5 + (−25 + √
5)α

))
/10

)

+ hα sin
((

h
(−5 + √

5 + (−25 + √
5)α

))
/10

)

− 2hα sin
(
h
(
1 − (

(−15 + √
5)α

)
/10

))

− 2hα sin
((

h
(
10 + (5 + √

5)α
))

/10
) + 2h sin

((
h
(−5 + √

5 + (5 + √
5)α

))
/10

)

+ 2hα sin
((

h
(−5 + √

5 + (5 + √
5)α

))
/10

) + hα sin
((

h
(
20 + (15 + √

5)α
))

/10
)

− h sin
((

h
(−5 + √

5 + (15 + √
5)α

))
/10

)

− hα sin
((

h
(−5 + √

5 + (15 + √
5)α

))
/10

)

+ 2h sin
(
hα + (

h(1 + α)
)
/2 − (

h(1 + α)
)
/(2

√
5)

) + 2hα sin
(
hα + (

h(1 + α)
)
/2

− (
h(1 + α)

)
/(2

√
5)

))
/
(
χ

(−hα cos
((

(5 + √
5)hα

)
/10

) + sin(hα)
))

,

γ2 = 1 − γ1 − γ3, (3.9)
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γ3 = (− cos
(
h(−1 + α)

) + cos
(
h(2 + α)

) − cos
(
h(2 + 3α)

) + cos(h + 3hα)

+ hα sin
((

h
(−20 + (−15 + √

5)α
))

/10
) − h sin

((
h
(
5 + √

5 + (−15 + √
5)α

))
/10

)

− hα sin
((

h
(
5 + √

5 + (−15 + √
5)α

))
/10

)

− 2hα sin
((

h
(−10 + (−5 + √

5)α
))

/10
)

+ 2h sin
((

h
(
5 + √

5 + (−5 + √
5)α

))
/10

)

+ 2hα sin
((

h
(
5 + √

5 + (−5 + √
5)α

))
/10

)

+ 2hα sin
((

h
(
10 + (15 + √

5)α
))

/10
) − 2h sin

((
h
(
5 + √

5 + (15 + √
5)α

))
/10

)

− 2hα sin
((

h
(
5 + √

5 + (15 + √
5)α

))
/10

) − hα sin
((

h
(
20 + (25 + √

5)α
))

/10
)

+ h sin
((

h
(
5 + √

5 + (25 + √
5)α

))
/10

) + hα sin
((

h
(
5 + √

5 + (25 + √
5)α

))
/10

))

/
(
χ

(
hα cos

((
(−5 + √

5)hα
)
/10

) − sin(hα)
))

,

where χ = 32 sin((h(1 + α))/2)3 cos((h(1 + α))/2)(cos(hα) − cos(h(1 + α))).
And for q(xi−√

5/10) = ∑3
n=1 γnpn(xi−√

5/10). Specifically, we have that:

γ1 = (− cos
(
h(−1 + α)

) + cos
(
h(2 + α)

) − cos
(
h(2 + 3α)

) + cos(h + 3hα)

+ hα sin
((

h
(−20 + (−15 + √

5)α
))

/10
) − h sin

((
h
(
5 + √

5 + (−15 + √
5)α

))
/10

)

− hα sin
((

h
(
5 + √

5 + (−15 + √
5)α

))
/10

)

− 2hα sin
((

h
(−10 + (−5 + √

5)α
))

/10
)

+ 2h sin
((

h
(
5 + √

5 + (−5 + √
5)α

))
/10

)

+ 2hα sin
((

h
(
5 + √

5 + (−5 + √
5)α

))
/10

)

+ 2hα sin
((

h
(
10 + (15 + √

5)α
))

/10
) − 2h sin

((
h
(
5 + √

5 + (15 + √
5)α

))
/10

)

− 2hα sin
((

h
(
5 + √

5 + (15 + √
5)α

))
/10

) − hα sin
((

h
(
20 + (25 + √

5)α
))

/10
)

+ h sin
((

h
(
5 + √

5 + (25 + √
5)α

))
/10

) + hα sin
((

h
(
5 + √

5 + (25 + √
5)α

))
/10

))

/
(
χ

(
hα cos

((
(−5 + √

5)hα
)
/10

) − sin(hα)
))

,

γ2 = 1 − γ1 − γ3, (3.10)

γ3 = (
cos

(
h(−1 + α)

) − cos
(
h(2 + α)

) + cos
(
h(2 + 3α)

) − cos(h + 3hα)

+ hα sin
((

h(20 + 25α − √
5α)

)
/10

) + h sin
((

h
(−5 + √

5 + (−25 + √
5)α

))
/10

)

+ hα sin
((

h
(−5 + √

5 + (−25 + √
5)α

))
/10

)

− 2hα sin
(
h
(
1 − (

(−15 + √
5)α

)
/10

))

− 2hα sin
((

h
(
10 + (5 + √

5)α
))

/10
) + 2h sin

((
h
(−5 + √

5 + (5 + √
5)α

))
/10

)

+ 2hα sin
((

h
(−5 + √

5 + (5 + √
5)α

))
/10

) + hα sin
((

h
(
20 + (15 + √

5)α
))

/10
)
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− h sin
((

h
(−5 + √

5 + (15 + √
5)α

))
/10

)

− hα sin
((

h
(−5 + √

5 + (15 + √
5)α

))
/10

)

+ 2h sin
(
hα + (

h(1 + α)
)
/2 − (

h(1 + α)
)
/(2

√
5)

) + 2hα sin
(
hα + (

h(1 + α)
)
/2

− (
h(1 + α)

)
/(2

√
5)

))/(
χ

(−hα cos
((

(5 + √
5)hα

)
/10

) + sin(hα)
))

,

where χ is same as above.
The latter steps are similar and omitted here for simplicity.
Finally, we obtain the reconstructed moments based on the reconstructed point values

u(xG) at the Gauss-Lobatto quadrature points xG and a numerical integration:

u
(l)
i (t) ≈ 1

∑
G σG(v

(i)
l (xG))2

∑

G

σGu(xG, t)v
(i)
l (xG), l = 1,2, (3.11)

where σG is the Gauss-Lobatto quadrature weight for the point xG ( 1
12 for xi±1/2 and 5

12 for
xi±√

5/10). The trigonometric polynomial solution in this cell Ii is then obtained by uh(x, t) =
∑2

l=0 u
(l)
i (t)v

(i)
l (x), for x ∈ Ii with these reconstructed moments u

(l)
i (t), l = 1,2 and the

original cell average u
(0)
i (t).

Remark: Instead of using the Gauss-Lobatto quadrature based on algebraic polynomi-
als, we also tested using the one based on trigonometric polynomials, which we define
as follows: Let Φ = 1

h

∫ xi+h/2
xi−h/2 φ(x)dx and ΦG = ∑

G σGφ(xG). For k = 2, we define

the four points Gauss-Lobatto quadrature such that 1
h

∫ xi+h/2
xi−h/2 φ(x)dx = ∑

G σGφ(xG), for
φ(x) to be the trigonometric polynomial functions 1, sin(α(x − xi)), cos(α(x − xi)) −
sin(hα/2)

hα/2 , sin((α + 1)(x − xi)), cos((α + 1)(x − xi)) − sin(h(α+1)/2)

h(α+1)/2 , sin((α + 2)(x − xi)), re-
spectively. We observed that numerical results of methods using the Gauss-Lobatto quadra-
ture based on algebraic and trigonometric polynomials are similar to each other. Hence, for
simplicity, we use in this paper the Gauss-Lobatto quadrature based on algebraic polynomi-
als.

So, in this section, we have given the details of the minmod TVB limiters used to identify
“troubled cells” for the one dimensional scalar cases (see also [7]).

For the one dimensional system case, we use the characteristic based limiter proce-
dure [5], and all of the reconstructions are performed in the local characteristic directions to
avoid oscillations.

For the two dimensional case, we adopt uniformly distributed cells Iij = [xi−1/2, xi+1/2]×
[yj−1/2, yj+1/2], with the cell sizes xi+1/2 − xi−1/2 = �x = h, yj+1/2 − yj−1/2 = �y = h and
cell centers (xi, yj ) = ( 1

2 (xi+1/2 +xi−1/2),
1
2 (yj+1/2 +yj−1/2)). The solution and test function

space V k
h = {p : p|Iij ∈ T k(Iij )} is the trigonometric polynomial spaces of degree at most

k on the cell Iij , with a local orthogonal basis over Iij , {v(ij)

l (x, y), l = 0,1, . . . ,K;K =
1
2 (k + 1)(k + 2) − 1}, such as:

v
(ij)

0 (x, y) = 1,

v
(ij)

1 (x, y) = sin
(
α(x − xi)

)
,

v
(ij)

2 (x, y) = sin
(
β(y − yj )

)
,
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v
(ij)

3 (x, y) = cos
(
α(x − xi)

) − sin(hα/2)

hα/2
,

v
(ij)

4 (x, y) = sin
(
α(x − xi)

)
sin

(
β(y − yj )

)
,

v
(ij)

5 (x, y) = cos
(
β(y − yj )

) − sin(hβ/2)

hβ/2
,

... .

Unless we specify otherwise, we set α = 1.0 and β = 1.0 in all 2D examples of Sect. 4.
To identify “troubled cells”, we use the TVB limiter defined in [4] for the two dimensional
scalar case and the characteristic based procedure described in [8] for the two dimensional
system case. For the “troubled cells”, we would like to reconstruct the trigonometric poly-
nomial solutions while retaining their cell averages. In other words, we will reconstruct
the degrees of freedom, or the moments, u

(l)
ij , l = 1, . . . ,K for the “troubled cells” Iij and

retain only the cell averages u
(0)
ij . We choose to reconstruct values of the function u in “trou-

bled cells” at the tensor product Gauss or Gauss-Lobatto points for the rectangular elements
considered in this paper. For the actual TWENO reconstruction, we use a “dimension by
dimension” procedure, which is the same as that in [17, 18] for WENO.

4 Numerical Tests

In this section, we present results of numerical tests using some of the schemes proposed in
the previous sections. We will show the results obtained by the fifth order TWENO scheme
(TWENO5), third order RKDG methods based on trigonometric polynomial space with or
without TWENO limiter (TWENO5-RKDG-T and RKDG-T, respectively), and for com-
parison purposes by the corresponding WENO5, WENO5-RKDG-A or RKDG-A schemes,
which are based on the algebraic polynomial space. We set α = 1.0 and β = 1.0 in all the
examples, unless we specify otherwise. We specifically employ the aforementioned schemes
to solve the 1-D and 2-D Burger’s equation, 1-D and 2-D System of Euler equations, as well
as a particular 2-D Advection equation, all with various appropriate initial conditions. In the
figures we provide, we use “plus” and “square” signs to indicate numerical solutions and a
“solid line” for exact solutions.

Example 4.1 We solve the following nonlinear scalar Burger’s equation:

ut +
(

u2

2

)

x

= 0, (4.1)

with the initial condition u(x,0) = 0.5 + sin(πx), x ∈ [0,2] with periodic boundary condi-
tions. We compute the solution up to t = 0.5/π . The errors and numerical orders of accuracy
associated with the finite volume schemes and DG schemes with TVB constant M = 0.01
are shown in Table 1. And the numerical error against CPU time graphs are shown in Figs. 1,
2 and 3. We observe that all schemes achieve their designed orders of accuracy, as ex-
pected. Also, the numerical errors by the RKDG methods based on trigonometric polyno-
mial spaces and algebraical polynomial spaces are very similar to one another at the same
mesh level.
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Table 1 ut + (u2/2)x = 0. u(x,0) = 0.5+ sin(πx). Periodic boundary conditions. TVB constant M = 0.01.
t = 0.5/π . L1 and L∞ errors and numerical orders of accuracy

Cells TWENO5, α = π

L1 error Order L∞ error Order

10 4.23E−03 1.68E−02

20 6.59E−04 2.68 4.05E−03 2.05

40 6.91E−05 3.25 6.00E−04 2.76

80 3.65E−06 4.24 3.40E−05 4.14

160 1.51E−07 4.59 1.27E−06 4.74

320 4.71E−09 5.01 4.60E−08 4.79

Cells WENO5

L1 error order L∞ error order

10 5.85E−3 1.71E−2

20 9.88E−4 2.57 7.13E−3 1.26

40 8.71E−5 3.50 8.04E−4 3.15

80 4.11E−6 4.40 4.11E−5 4.29

160 1.64E−7 4.64 1.45E−6 4.82

320 5.17E−9 4.99 4.66E−8 4.96

Cells TWENO5-RKDG-T, α = π RKDG-T, α = π

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 6.52E−3 7.05E−2 1.64E−3 2.49E−2

20 6.31E−4 3.37 5.12E−3 3.78 1.94E−4 3.08 3.76E−3 2.73

40 4.67E−5 3.76 6.50E−4 2.98 2.51E−5 2.96 6.50E−4 2.53

80 4.64E−6 3.33 9.14E−5 2.83 3.21E−6 2.97 9.14E−5 2.83

160 5.27E−7 3.14 1.27E−5 2.85 4.08E−7 2.98 1.27E−5 2.85

320 6.24E−8 3.08 1.68E−6 2.92 5.15E−8 2.99 1.68E−6 2.92

Cells WENO5-RKDG-A RKDG-A

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 6.23E−3 7.69E−2 1.76E−3 2.92E−2

20 5.53E−4 3.49 5.50E−3 3.80 2.07E−4 3.08 4.55E−3 2.68

40 4.04E−5 3.77 7.59E−4 2.86 2.67E−5 2.96 7.59E−4 2.58

80 4.31E−6 3.22 1.06E−4 2.84 3.38E−6 2.98 1.06E−4 2.84

160 5.20E−7 3.05 1.46E−5 2.86 4.27E−7 2.99 1.46E−5 2.86

320 6.44E−8 3.01 1.92E−6 2.93 5.37E−8 2.99 1.92E−6 2.93
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Fig. 1 Computing time and error of ut + (u2/2)x = 0. u(x,0) = 0.5 + sin(πx). Periodic boundary condi-
tions. t = 0.5/π . Plus signs and a solid line denote the results of TWENO5, α = π scheme; squares and a
solid line denote the results of WENO5 scheme

Fig. 2 Computing time and error of ut + (u2/2)x = 0. u(x,0) = 0.5 + sin(πx). Periodic bound-
ary conditions. TVB constant M = 0.01. t = 0.5/π . Plus signs and a solid line denote the results of
TWENO5-RKDG-T, α = π scheme; squares and a solid line denote the results of WENO5-RKDG-A scheme

Example 4.2 We solve the one dimensional Euler equations:

∂

∂t

⎛

⎝
ρ

ρu

E

⎞

⎠ + ∂

∂x

⎛

⎝
ρu

ρu2 + p

u(E + p)

⎞

⎠ = 0, (4.2)

in which ρ is density, u is the velocity in the x-direction, E is total energy, and p is pressure.
The initial conditions are: ρ(x,0) = 1 + 0.2 sin(πx), u(x,0) = 1, p(x,0) = 1, x ∈ [0,2]
with periodic boundary conditions. We compute the density solution up to t = 1. Errors and
numerical orders of accuracy achieved by the finite volume and DG schemes with TVB con-
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Fig. 3 Computing time and error of ut + (u2/2)x = 0. u(x,0) = 0.5 + sin(πx). Periodic boundary condi-
tions. t = 0.5/π . Plus signs and a solid line denote the results of RKDG-T, α = π scheme; squares and a
solid line denote the results of RKDG-A scheme

Fig. 4 Computing time and error of 1D Euler equations. ρ(x,0) = 1+0.2 sin(πx), u(x,0) = 1, p(x,0) = 1.
Periodic boundary conditions. t = 1. Plus signs and a solid line denote the results of TWENO5, α = 1
scheme; squares and a solid line denote the results of WENO5 scheme

stant M = 0.01 are shown in Table 2. And the numerical error against CPU time graphs are
shown in Figs. 4, 5 and 6. When we set in this test case the parameter α to be optimal (i.e.
α = π ), we obtain the exact solutions modulo round-off errors. That is because the approx-
imation solution space of the RKDG methods is equal to the space of the exact solution of
the problem. When we use the non-optimal α = 1.0, instead, we observe that all schemes
achieve their designed orders of accuracy, as expected. Moreover the numerical errors by the
RKDG based on trigonometric polynomial spaces are smaller than those by RKDG based
on algebraical polynomial spaces at the same mesh level.
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Table 2 1D Euler equations. ρ(x,0) = 1 + 0.2 sin(πx), u(x,0) = 1, p(x,0) = 1. Periodic boundary condi-
tions. TVB constant M = 0.01. t = 1. L1 and L∞ errors and numerical orders of accuracy

Cells TWENO5, α = π TWENO5, α = 1

L1 error L∞ error L1 error Order L∞ error Order

10 1.71E−13 2.68E−13 5.43E−3 7.81E−3

20 1.29E−14 2.42E−14 2.79E−4 4.28 4.75E−4 4.04

40 5.78E−15 1.22E−14 8.76E−6 5.00 1.65E−5 4.84

80 8.02E−15 2.64E−14 2.73E−7 5.00 5.22E−7 4.98

160 1.45E−14 7.91E−14 8.43E−9 5.02 1.54E−8 5.08

320 1.54E−13 4.37E−13 2.52E−10 5.06 4.32E−10 5.16

Cells WENO5

L1 error Order L∞ error Order

10 7.06E−3 1.01E−2

20 3.62E−4 4.28 5.99E−4 4.08

40 1.14E−5 4.99 2.11E−5 4.82

80 3.55E−7 5.00 6.73E−7 4.98

160 1.09E−8 5.02 1.99E−8 5.08

320 3.29E−10 5.06 5.60E−10 5.15

Cells TWENO5-RKDG-T, α = π RKDG-T, α = π

L1 error L∞ error L1 error L∞ error

10 3.45E−12 1.80E−11 3.34E−12 1.68E−11

20 4.20E−14 1.41E−13 1.31E−14 5.95E−14

40 1.33E−13 1.09E−12 7.69E−15 2.81E−14

80 5.52E−13 8.44E−12 1.08E−14 4.10E−14

160 1.15E−13 2.59E−12 2.75E−14 1.75E−13

320 1.21E−12 5.61E−11 1.71E−13 7.19E−13

Cells TWENO5-RKDG-T, α = 1 RKDG-T, α = 1

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 5.88E−4 1.57E−3 1.14E−4 7.14E−4

20 2.79E−5 4.39 9.11E−5 4.11 1.44E−5 3.00 9.20E−5 2.96

40 2.13E−6 3.71 1.15E−5 2.98 1.79E−6 3.01 1.15E−5 2.99

80 2.34E−7 3.18 1.45E−6 3.00 2.23E−7 3.00 1.45E−6 3.00

160 2.84E−8 3.05 1.81E−7 3.00 2.79E−8 3.00 1.81E−7 3.00

320 3.52E−9 3.01 2.26E−8 3.00 3.49E−9 3.00 2.26E−8 3.00

Cells WENO5-RKDG-A RKDG-A

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 5.99E−4 1.60E−3 1.27E−4 7.94E−4

20 3.09E−5 4.27 1.01E−4 3.98 1.60E−5 3.00 1.02E−4 2.96

40 2.37E−6 3.71 1.28E−5 2.98 1.99E−6 3.01 1.28E−5 3.00

80 2.60E−7 3.18 1.61E−6 3.00 2.48E−7 3.00 1.61E−6 3.00

160 3.15E−8 3.05 2.01E−7 3.00 3.10E−8 3.00 2.01E−7 3.00

320 3.90E−9 3.01 2.52E−8 3.00 3.88E−9 3.00 2.52E−8 3.00
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Fig. 5 Computing time and error of 1D Euler equations. ρ(x,0) = 1+0.2 sin(πx), u(x,0) = 1, p(x,0) = 1.
Periodic boundary conditions. TVB constant M = 0.01. t = 1. Plus signs and a solid line denote the results of
TWENO5-RKDG-T, α = 1 scheme; squares and a solid line denote the results of WENO5-RKDG-A scheme

Fig. 6 Computing time and error of 1D Euler equations. ρ(x,0) = 1+0.2 sin(πx), u(x,0) = 1, p(x,0) = 1.
Periodic boundary conditions. t = 1. Plus signs and a solid line denote the results of RKDG-T, α = 1 scheme;
squares and a solid line denote the results of RKDG-A scheme

Example 4.3 We solve the two dimensional nonlinear scalar Burger’s equation:

ut +
(

u2

2

)

x

+
(

u2

2

)

y

= 0, (4.3)

with the initial condition u(x, y,0) = 0.5 + sin(π(x + y)/2), (x, y) ∈ [0,4] × [0,4] with
periodic boundary conditions. Errors and numerical orders of accuracy achieved by the finite
volume and DG schemes with TVB constant M = 0.01 are shown in Table 3. And the
numerical error against CPU time graphs are shown in Figs. 7, 8 and 9. As in Example 4.1,
we also observe that all schemes achieve their designed orders of accuracy, as expected.
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Table 3 ut + (u2/2)x + (u2/2)y = 0. u(x,0) = 0.5 + sin(π(x + y)/2). Periodic boundary conditions. TVB
constant M = 0.01. t = 0.5/π . L1 and L∞ errors and numerical orders of accuracy

Cells TWENO5, α = π/2, β = π/2

L1 error Order L∞ error Order

10×10 3.90E−03 1.13E−02

20×20 4.72E−04 3.05 2.41E−03 2.23

40×40 6.50E−05 2.86 5.13E−04 2.23

80×80 3.57E−06 4.19 3.21E−05 4.00

160×160 1.50E−07 4.57 1.22E−06 4.71

Cells WENO5

L1 error Order L∞ error Order

10×10 6.26E−3 1.90E−2

20×20 8.76E−4 2.83 5.77E−3 1.72

40×40 8.08E−5 3.43 6.73E−4 3.10

80×80 4.01E−6 4.33 3.90E−5 4.11

160×160 1.63E−7 4.62 1.41E−6 4.78

Cells TWENO5-RKDG-T, α = π/2, β = π/2 RKDG-T, α = π/2, β = π/2

L1 error Order L∞ error Order L1 error Order L∞ error Order

10×10 1.19E−2 1.90E−1 5.10E−3 1.77E−1

20×20 1.45E−3 3.04 3.98E−2 2.26 8.25E−4 2.63 4.01E−2 2.14

40×40 1.43E−4 3.35 5.83E−3 2.77 1.12E−4 2.88 5.83E−3 2.78

80×80 1.69E−5 3.07 9.72E−4 2.58 1.44E−5 2.96 9.72E−4 2.58

160×160 2.00E−6 3.08 1.33E−4 2.86 1.83E−6 2.98 1.33E−4 2.86

Cells WENO5-RKDG-A RKDG-A

L1 error Order L∞ error Order L1 error Order L∞ error Order

10×10 1.17E−2 1.84E−1 5.19E−3 1.82E−1

20×20 1.05E−3 3.47 4.14E−2 2.15 8.29E−4 2.65 4.15E−2 2.14

40×40 1.22E−4 3.11 6.03E−3 2.78 1.12E−4 2.88 6.03E−3 2.78

80×80 1.52E−5 3.01 1.00E−3 2.59 1.44E−5 2.96 1.00E−3 2.59

160×160 1.91E−6 2.99 1.37E−4 2.86 1.83E−6 2.98 1.37E−4 2.86

Moreover the numerical errors and computing times by the RKDG based on trigonometric
polynomial spaces and algebraical polynomial spaces are very similar at the same mesh
level.

Example 4.4 We solve the two dimensional Euler equations:

∂

∂t

⎛

⎜
⎜
⎝

ρ

ρu

ρv

E

⎞

⎟
⎟
⎠ + ∂

∂x

⎛

⎜
⎜
⎝

ρu

ρu2 + p

ρuv

u(E + p)

⎞

⎟
⎟
⎠ + ∂

∂y

⎛

⎜
⎜
⎝

ρv

ρuv

ρv2 + p

v(E + p)

⎞

⎟
⎟
⎠ = 0, (4.4)

in which ρ is density; u and v are the velocities in the x and y-directions, respectively; E is
total energy; and p is pressure. The initial conditions are: ρ(x, y,0) = 1 + 0.2(sin(πx) +
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Fig. 7 Computing time and error of ut + (u2/2)x + (u2/2)y = 0. u(x,0) = 0.5 + sin(π(x + y)/2). Periodic
boundary conditions. t = 0.5/π . Plus signs and a solid line denote the results of TWENO5, α = π/2, β = π/2
scheme; squares and a solid line denote the results of WENO5 scheme

Fig. 8 Computing time and error of ut + (u2/2)x + (u2/2)y = 0. u(x,0) = 0.5 + sin(π(x + y)/2). Pe-
riodic boundary conditions. TVB constant M = 0.01. t = 0.5/π . Plus signs and a solid line denote the
results of TWENO5-RKDG-T, α = π/2, β = π/2 scheme; squares and a solid line denote the results of
WENO5-RKDG-A scheme

sin(πy)), u(x, y,0) = 0.7, v(x, y,0) = 0.3, p(x, y,0) = 1, (x, y) ∈ [0,2] × [0,2] with pe-
riodic boundary conditions in both directions. We compute the density solution up to t = 1.
Errors and numerical orders of accuracy achieved by the finite volume and DG schemes
with TVB constant M = 0.01 are shown in Table 4. And the numerical error against CPU
time graphs are shown in Figs. 10, 11 and 12. As in Example 4.2, the numerical results
show that the right trigonometric space functions with optimal parameter α may lead to
modulo round off errors, with non-optimal parameter α leading to proper order of accuracy.
And at the same time, the computing costs are bigger than those proposed by the WENO5,
WENO5-RKDG-A and RKDG-A schemes.
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Fig. 9 Computing time and error of ut + (u2/2)x + (u2/2)y = 0. u(x,0) = 0.5 + sin(π(x + y)/2). Periodic
boundary conditions. t = 0.5/π . Plus signs and a solid line denote the results of RKDG-T, α = π/2, β = π/2
scheme; squares and a solid line denote the results of RKDG-A scheme

Fig. 10 Computing time and error of 2D Euler equations. ρ(x, y,0) = 1 + 0.2(sin(πx) + sin(πy)),
u(x, y,0) = 0.7, v(x, y,0) = 0.3, p(x, y,0) = 1. Periodic boundary conditions. t = 1. Plus signs and a solid
line denote the results of TWENO5, α = 1, β = 1 scheme; squares and a solid line denote the results of
WENO5 scheme

Example 4.5 We solve the one dimensional Euler equations (4.2) with a moving Mach = 3
shock interacting with sine waves in density:

(ρ,u,p)T =
{

(3.857143,2.629369,10.333333)T , x < −4,

(1 + 0.2 sin(5x),0,1)T , x ≥ −4.
(4.5)

The reference solution is a converged solution computed by the WENO5 scheme with 2000
cells. The computed densities ρ, obtained by the TWENO5 (plusses), WENO5 (squares),
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) schemes, are plotted in
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Table 4 2D Euler equations. ρ(x, y,0) = 1 + 0.2(sin(πx) + sin(πy)), u(x, y,0) = 0.7, v(x, y,0) = 0.3,
p(x, y,0) = 1. Periodic boundary conditions. TVB constant M = 0.01. t = 1. L1 and L∞ errors and numer-
ical orders of accuracy

Cells TWENO5, α = π,β = π TWENO5, α = 1, β = 1

L1 error L∞ error L1 error Order L∞ error Order

10×10 3.24E−15 9.32E−15 5.26E−3 1.24E−2

20×20 3.57E−15 1.42E−14 2.96E−4 4.15 8.09E−4 3.95

40×40 4.18E−15 1.95E−14 9.46E−6 4.97 2.84E−5 4.83

80×80 1.37E−14 1.15E−13 2.88E−7 5.03 9.07E−7 4.97

160×160 3.11E−14 1.58E−13 9.25E−9 4.96 2.79E−8 5.02

Cells WENO5

L1 error Order L∞ error Order

10×10 6.81E−3 1.55E−2

20×20 3.78E−4 4.17 1.02E−3 3.93

40×40 1.22E−5 4.95 3.64E−5 4.81

80×80 3.74E−7 5.03 1.16E−6 4.96

160×160 1.14E−8 5.02 3.46E−8 5.08

Cells TWENO5-RKDG-T, α = π,β = π RKDG-T, α = π,β = π

L1 error L∞ error L1 error L∞ error

10×10 7.93E−12 4.63E−11 7.89E−12 4.58E−11

20×20 3.89E−12 8.82E−12 2.47E−14 1.62E−13

40×40 1.29E−11 4.41E−11 7.75E−15 4.60E−14

80×80 6.51E−12 3.72E−11 4.45E−14 2.12E−13

160×160 3.74E−10 3.23E−9 1.69E−13 7.09E−13

Cells TWENO5-RKDG-T, α = 1, β = 1 RKDG-T, α = 1, β = 1

L1 error Order L∞ error Order L1 error Order L∞ error Order

10×10 5.67E−4 2.10E−3 3.33E−4 2.02E−3

20×20 9.19E−5 2.63 5.04E−4 2.06 6.28E−5 2.41 3.84E−4 2.40

40×40 1.22E−5 2.91 7.58E−5 2.73 9.79E−6 2.68 5.91E−5 2.70

80×80 1.49E−6 3.04 8.59E−6 3.14 1.32E−6 2.88 7.95E−6 2.89

160×160 1.79E−7 3.06 1.01E−6 3.08 1.69E−7 2.97 1.01E−6 2.97

Cells WENO5-RKDG-A RKDG-A

L1 error Order L∞ error Order L1 error Order L∞ error Order

10×10 3.60E−3 1.05E−2 3.71E−4 2.25E−3

20×20 1.40E−4 4.68 6.37E−4 4.05 6.99E−5 2.41 4.27E−4 2.40

40×40 1.28E−5 3.45 6.77E−5 3.23 1.09E−5 2.68 6.57E−5 2.70

80×80 1.64E−6 2.97 8.85E−6 2.94 1.47E−6 2.88 8.84E−6 2.89

160×160 1.98E−7 3.05 1.12E−6 2.97 1.88E−7 2.97 1.12E−6 2.97
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Fig. 11 Computing time and error of 2D Euler equations. ρ(x, y,0) = 1 + 0.2(sin(πx) + sin(πy)),
u(x, y,0) = 0.7, v(x, y,0) = 0.3, p(x, y,0) = 1. Periodic boundary conditions. TVB constant M = 0.01.
t = 1. Plus signs and a solid line denote the results of TWENO5-RKDG-T, α = 1, β = 1 scheme; squares
and a solid line denote the results of WENO5-RKDG-A scheme

Fig. 12 Computing time and error of 2D Euler equations. ρ(x, y,0) = 1 + 0.2(sin(πx) + sin(πy)),
u(x, y,0) = 0.7, v(x, y,0) = 0.3, p(x, y,0) = 1. Periodic boundary conditions. t = 1. Plus signs and a solid
line denote the results of RKDG-T, α = 1, β = 1 scheme; squares and a solid line denote the results of
RKDG-A scheme

Figs. 13 and 14 at t = 1.8 along with the reference solution (solid line). In all the numer-
ical schemes for this example, we use 200 cells and TVB limiter with M = 1.0 as trouble
cell indicator. We observe that the results of TWENO5 are similar to those of WENO5 and
the results of the TWENO5-RKDG-T scheme are better than those of WENO5-RKDG-A
with the same TVB constant in the smooth region while maintaining the essentially non-
oscillatory property nearby the vicinity of the discontinuity.
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Fig. 13 The shock density wave interaction problem. Computed densities at t = 1.8 with 200 cells.
TWENO5 (plusses) and WENO5 (squares) against the reference solution (solid line) (left) and zoom in
(right)

Fig. 14 The shock density wave interaction problem. Computed densities at t = 1.8 with 200 cells.
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) against the reference solution (solid line)
(left) and zoom in (right), M = 1.0

Example 4.6 Shock entropy wave interactions [18]. This is a famous test case for high order
accuracy and shock capturing schemes and the governing equation is the one dimensional
Euler equations (4.2). The initial conditions, which represent a Mach 3 shock, are:

(ρ,u,p)T =
{

(3.85714,2.629369,10.33333)T , 0 ≤ x < 0.5,

(e−ε sin(κx),0,1)T , 0.5 < x ≤ 5.
(4.6)

To further test the resolutions of the TWENO5, WENO5, TWENO5-RKDG-T and WENO5-
RKDG-A schemes in the presence of shock waves, the interaction of shock and entropy
waves is employed. In this test case, small amplitude, low-frequency entropy waves are set
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Fig. 15 The shock entropy wave interactions problem, κ = 13. Computed entropies with 800 cells.
TWENO5 (plusses) and WENO5 (squares) against the reference solution (solid line) (top) and zoom in
(bottom)

in the upstream of a shock. After the interaction with the shock, both the amplitude and fre-
quency of the waves increases. We use a linear analysis to estimate the wave amplitude after
the shock, which depends only on the shock strength and the amplitude before the shock. We
evaluate the performance of the proposed schemes by checking against the linear analysis.
We take ε = 0.01 and κ = 13,26,39, and 52 to be the amplitude and wave-number of the
entropy wave before the shock. Accordingly, the amplitude after the shock is determined to
be 0.08690716 by the linear analysis. The reference entropy solution is a convergent solu-
tion computed by the WENO5 scheme with 5000 cells (for κ = 13 and 26) and 8000 cells
(for κ = 39 and 52). The computed solutions, obtained by the TWENO5 (plusses), WENO5
(squares), TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) schemes with the
same TVB constant M = 10.0, are plotted in Figs. 15–22 for each κ along with the refer-
ence solution (solid line). We observe that the results of TWENO5 are similar to those of
WENO5. Although the trigonometric polynomial space does not include the exponential
polynomial space specified in this problem, we observe that the results of the TWENO5-
RKDG-T schemes are better than those of WENO5-RKDG-A. In particular: (i) there is less
amplitude decrease to the right of the position x = 2.95, and (ii) the trigonometric polyno-
mial basis used in the TWENO5-RKDG-T scheme can retain the high frequency nature of
this case better than the algebraic polynomial basis used in WENO5-RKDG-A.
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Fig. 16 The shock entropy wave interactions problem, κ = 13. Computed entropies with 400 cells.
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) against the reference solution (solid line)
(top) and zoom in (bottom), M = 10.0

Fig. 17 The shock entropy wave interactions problem, κ = 26. Computed entropies with 1800 cells.
TWENO5 (plusses) and WENO5 (squares) against the reference solution (solid line) (top) and zoom in
(bottom)
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Fig. 18 The shock entropy wave interactions problem, κ = 26. Computed entropies with 900 cells.
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) against the reference solution (solid line)
(top) and zoom in (bottom), M = 10.0

Fig. 19 The shock entropy wave interactions problem, κ = 39. Computed entropies with 2800 cells.
TWENO5 (plusses) and WENO5 (squares) against the reference solution (solid line) (top) and zoom in
(bottom)
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Fig. 20 The shock entropy wave interactions problem, κ = 39. Computed entropies with 1400 cells.
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) against the reference solution (solid line)
(top) and zoom in (bottom), M = 10.0

Fig. 21 The shock entropy wave interactions problem, κ = 52. Computed entropies with 3600 cells.
TWENO5 (plusses) and WENO5 (squares) against the reference solution (solid line) (top) and zoom in
(bottom)
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Fig. 22 The shock entropy wave interactions problem, κ = 52. Computed entropies with 1800 cells.
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) against the reference solution (solid line)
(top) and zoom in (bottom), M = 10.0

Example 4.7 We solve the one dimensional Euler equations (4.2) with a moving sine wave
in density:

(ρ,u,p)T =

⎧
⎪⎪⎨

⎪⎪⎩

(1,1,1)T , −1 ≤ x < 0,

(1 + 0.2| sin(κπx)|,1,1)T , 0 ≤ x < 1,

(1,1,1)T , 1 ≤ x ≤ 2.

(4.7)

The computed densities ρ, obtained by the TWENO5 (plusses), WENO5 (squares),
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) schemes with the same
TVB constant M = 1.0, are plotted in Figs. 23 and 24 at t = 6 and for each κ along
with the exact solution (solid line). We observe that the results of TWENO5 are better
than those of WENO5. The exact solution space of this problem is not compatible to the
DG spatial trigonometric polynomial space used in the TWENO5-RKDG-T scheme. De-
spite this, we still observe that the results of TWENO5-RKDG-T are better than those of
WENO5-RKDG-A. This is especially true at the local smooth extremum, where the ampli-
tude decreases much less.

Example 4.8 We solve the one dimensional Euler equations (4.2) with a moving exponential
wave in density:
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Fig. 23 The moving sine wave problem. Computed densities. Left: κ = 3 with 100 cells; right: κ = 5 with
200 cells. t = 6. TWENO5 (plusses) and WENO5 (squares) against the exact solution (solid line)

Fig. 24 The moving sine wave problem. Computed densities. Left: κ = 3 with 100 cells; right: κ = 5 with
200 cells. t = 6. TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) against the exact solution
(solid line), M = 1.0

(ρ,u,p)T =

⎧
⎪⎪⎨

⎪⎪⎩

(1,1,1)T , −1 ≤ x < 0,

(e| sin(κπx)|,1,1)T , 0 ≤ x < 1,

(1,1,1)T , 1 ≤ x ≤ 2,

(4.8)

with boundary conditions and κ = 3 and 5. The computed densities ρ, obtained by
the TWENO5 (plusses), WENO5 (squares), TWENO5-RKDG-T (plusses) and WENO5-
RKDG-A (squares) schemes with the same TVB constant M = 1.0, are plotted in Figs. 25
and 26 at t = 6 and for each κ along with the exact solution (solid line). We observe that
the results of TWENO5 are better than those of WENO5. The exact solution of this prob-
lem consists of an exponential basis in the density field and is not compatible with the DG
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Fig. 25 The moving exponential wave problem. Computed densities. Left: κ = 3 with 100 cells; right: κ = 5
with 200 cells. t = 6. TWENO5 (plusses) and WENO5 (squares) against the exact solution (solid line)

Fig. 26 The moving exponential wave problem. Computed densities. Left: κ = 3 with 100 cells; right: κ = 5
with 200 cells. t = 6. TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) against the exact solu-
tion (solid line), M = 1.0

spatial orthogonal trigonometric polynomial space used in the TWENO5-RKDG-T scheme.
Despite this, we still observe that the results of TWENO5-RKDG-T are better than those of
WENO5-RKDG-A, which uses algebraic polynomials.

Example 4.9 We solve the one dimensional Euler equations (4.2) with two different initial
data and periodic boundary conditions.

(1) Divided the interval [0,1] into 100 cells of equal size. The initial condition for the linear
semi-circle wave problem is:

(ρ,u,p)T =
⎧
⎨

⎩

(1 +
√

1 − ( i−50
15 )2,1,1)T , 35 ≤ i ≤ 65,

(1,1,1)T , otherwise.
(4.9)
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Fig. 27 Left: (1) the linear semi-circle wave problem; right: (2) the highly discontinuous initial data problem.
t = 16. Computed densities with 100 cells. TWENO5 (plusses) and WENO5 (squares) against the exact
solution (solid line)

Fig. 28 Left: (1) the linear semi-circle wave problem; right: (2) the highly discontinuous initial data problem.
t = 16. Computed densities with 100 cells. TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares)
against the exact solution (solid line), M = 1.0

(2) The highly discontinuous initial data is:

(ρ,u,p)T |x+0.5 =

⎧
⎪⎪⎨

⎪⎪⎩

(2 − x sin(1.5πx2),1,1)T , −1 < x < − 1
3 ,

(2 + |sin(2πx)|,1,1)T , |x| < 1
3 ,

(2 + 2x − 1 − sin(3πx)/6,1,1)T , 1
3 < x < 1.

(4.10)

The computed densities ρ, obtained by the TWENO5 (plusses), WENO5 (squares),
TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares) schemes with the same
TVB constant M = 1.0, are plotted in Figs. 27 and 28 at t =16 along with the exact solution
(solid line). We observe that the results of TWENO5 are similar to those of WENO5. Once
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again, we observe that the results of TWENO5-RKDG-T are better than or similar to those
of WENO5-RKDG-A. Although we could not use in this example an optimal parameter α in
the new scheme, we still obtained better resolutions, for example in the smooth extrema and
nearby the contact discontinuity. Given these results, we anticipate that if we were to apply
the new trigonometric polynomial space without choosing a proper parameter α in other
1D test cases, we could still get better results than with the previous RKDG schemes. Nev-
ertheless, it is harder to calculate the linear weights, smoothness indicators, and nonlinear
weights associated with the new schemes.

Example 4.10 We solve the two dimensional advection equation:

ut + (−(y − y0)ωu
)

x
+ (

(x − x0)ωu
)

y
= 0. (4.11)

The exact solution consists of a rotation of the initial values around (x0, y0) = (0,0). We set
the angular velocity at ω = 1 and the initial condition as:

u(x, y,0) =

⎧
⎪⎪⎨

⎪⎪⎩

10 − 10
0.3

√
(x − 0.5)2 + y2, {(x, y)|√(x − 0.5)2 + y2 ≤ 0.3}/

{(x, y)|y ≤ 0.1 ∩ |x − 0.5| ≤ 0.06},
0, otherwise (x, y) ∈ [−1,1] × [−1,1].

(4.12)

This is a computationally challenging test case as the rotating angular velocity is large and
the initial condition contains a smooth region, local extrema, and sharp discontinuity. The
computed variable u is plotted at t = 10π , which corresponds to 5 full rotations of the
initial values. The surface of the solutions, obtained by the TWENO5, WENO5, TWENO5-
RKDG-T and WENO5-RKDG-A schemes with the same TVB constant M = 10, as well
as the exact solution are shown in Fig. 29 as different graphs. The 6-th and 7-th graphs in
Fig. 29 are two 1D cutting plot along the line y = 0, which demonstrate that the TWENO5
scheme can get similar results as WENO5 scheme and TWENO5-RKDG-T scheme can
obtain better results than WENO5-RKDG-A scheme in this two dimensional problem, as
well.

Example 4.11 Double Mach reflection problem. We solve the two dimensional Euler equa-
tions (4.4) in a computational domain of [0,4] × [0,1]. A reflection wall lies at the bot-
tom of the domain starting from x = 1

6 , y = 0, making a 60◦ angle with the x-axis. The
reflection boundary condition is used at the wall, which for the rest of the bottom bound-
ary (the part from x = 0 to x = 1

6 ), the exact post-shock condition is imposed. At the top
boundary is the exact motion of the Mach 10 shock. The results are shown at t = 0.2.
We present the pictures of region [0,3] × [0,1], the blow-up region around the double
Mach stems in Figs. 30 and 31. The schemes proposed here can obtain high order of ac-
curacy in smooth region and retain essentially non-oscillatory property nearby the vicinity
of significant shock or contact discontinuities robustly by using the trigonometric poly-
nomial basis during the TWENO reconstruction and the DG spatial discretization proce-
dures.

Example 4.12 A Mach 3 wind tunnel with a step. The setup of the problem is as follows:
The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length units
high and is located 0.6 length units from the left end of the tunnel. Initially, a right going
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Fig. 29 The advection problem. t = 10π . From left to right and top to bottom: (1) surface of the exact solu-
tion; (2) surface of TWENO5 solution; (3) surface of WENO5 solution; (4) surface of TWENO5-RKDG-T
solution; (5) surface of WENO5-RKDG-A solution; (6) 1D cutting plot along the line y = 0 with TWENO5
(plusses) and WENO5 (squares) against the exact solution (solid line); (7) 1D cutting plot along the line
y = 0 with TWENO5-RKDG-T (plusses) and WENO5-RKDG-A (squares). M = 10.0. 100 × 100 cells
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Fig. 30 Double Mach reflection problem. Top to bottom: WENO5; TWENO5; WENO5-RKDG-A;
TWENO5-RKDG-T. t = 0.2. 30 equally spaced density contours from 1.5 to 21.5. M = 100.0. 1600 × 400
cells
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Fig. 31 Double Mach reflection problem, zoom in. Left to right and top to bottom: WENO5; TWENO5;
WENO5-RKDG-A; TWENO5-RKDG-T. t = 0.2. 30 equally spaced density contours from 1.5 to 21.5.
M = 100.0. 1600 × 400 cells

Mach 3 flow is used. Reflective boundary conditions are applied along the walls of the tunnel
and in flow and out flow boundary conditions are applied at the entrance and the exit. The
results are shown at t = 4. We present the pictures of whole region [0,3] × [0,1] in Fig. 32.
In this case, the TWENO5 and TWENO5-RKDG-T schemes using the trigonometric poly-
nomial basis can retain the same features as those of the WENO5 and WENO5-RKDG-A
schemes.

5 Concluding Remarks

We have developed new trigonometric WENO schemes and applied them as limiters for the
RKDG methods on orthogonal trigonometric polynomial spaces to solve hyperbolic con-
servation laws by using finite volume high order TWENO reconstructions. The idea is to
first identify “troubled cells” subject to the TWENO limiting using a TVB minmod-type
limiter, then reconstruct the trigonometric polynomial solution inside the “troubled cells”
by TWENO reconstruction using the cell averages of neighboring cells, while maintain-
ing the original cell averages of the “troubled cells”. We provide numerical results to show
that the methods are stable, accurate in smooth regions, robust in maintaining accuracy, and
sharp, non-oscillatory shock transition for RKDG methods. Numerical results demonstrate
advantage of schemes based on trigonometric polynomial spaces over the schemes based on
algebraic polynomial spaces when they are used to simulate the wave-like and highly oscil-
latory cases. We also observed that numerical results by the schemes based on trigonometric
polynomial spaces were better than or similar to those by the schemes based on algebraic
polynomial spaces even though we do not take optimal parameter for trigonometric polyno-
mial spaces.
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Fig. 32 Forward step problem. TWENO5-RKDG-T. t = 4.0. 30 equally spaced density contours from 0.32
to 6.15. Top to bottom: WENO5; TWENO5; WENO5-RKDG-A; TWENO5-RKDG-T. t = 0.2. 30 equally
spaced density contours from 1.5 to 21.5. M = 100.0. 600 × 200 cells
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