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In this paper, we develop the Runge–Kutta discontinuous Galerkin (RKDG) methods with the finite vol-
ume weighted essentially non-oscillatory (WENO) reconstruction as limiters to solve for the unsteady
cavitating flow under the employment of the isentropic one-fluid model. To treat the cavitating flow
and suppress the possible spurious oscillations in the vicinity of the cavitation boundary, the TVB limiter
is used as an indicator to detect the ‘‘troubled cells’’ and hence take the advantage of utilizing the WENO
reconstruction for the freedoms of the RKDG methods. Numerical results are provided to illustrate the
viability of these procedures.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of fluid flow is very important in many fields,
one of which is the occurrence of cavitation when the pressure
in the liquid (such as water) drops below the saturated vapor
pressure. A typical example is the flow generated by an underwa-
ter explosion near a structure or a free surface. The cavitating
flow very often follows such progression: cavitation creation,
evolution and finally collapse. To date, there is no single model
that can be applied to simulate all kinds of cavitation. In general,
there are two different approaches to the cavitation modeling:
one is the two-fluid model and the other is the one-fluid model.
The methodology of the two-fluid model assumes both phases
co-exist at every location of the flow field and each phase is gov-
erned by its specific partial differential equations (PDEs). One of
the representative work is that carried out by Saurel et al. [18].
The one-fluid model treats the cavitating flow as a mixture of
two fluids behaving as one. As such, only one set of PDEs similar
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to the single phase flow is used to govern the whole fluid region.
A baro-tropic or homogeneous assumption [2] can be used to
develop a reasonable constitutive relationships of liquid, vapor
and the mixture medium [11,19,23,25]. The interest of this work
lies in the unsteady (transient) cavitation caused by the pressure
jump across the cavitation boundary. Such unsteady cavitation is
commonly observed in the underwater explosion, where both the
ambient liquid and the mixture have to be considered as com-
pressible. For the simulation of such cavitation, the isentropic
one-fluid model [11] is employed. Besides the modeling of
cavitation, there are other numerical difficulties encountered in
simulation. One of the dominant difficulty is the need to suppress
unwanted/unnatural numerical oscillations. Due to the existence
of cavitation interface, numerical oscillations usually occur at the
interfacial region similar to that found in the simulation of multi-
material flow.

In this work, we intend to take the advantage of the weighted
essentially non-oscillatory (WENO) reconstruction to overcome
the numerical oscillations occurring in the vicinity of cavitation
boundary. The technique of WENO reconstruction was originally
proposed by Qiu et al. [15,29] as a limiter to eliminate the numer-
ical oscillations which occur in the discontinuous Galerkin (DG)
methods. The DG methods was first introduced by Reed and Hill
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in 1973 in the context of neutron transport (steady state linear
hyperbolic equations) [17] and experienced a major development
in 1990s due to Cockburn and Shu [4–8]. One of the more popular
version of DG proposed by Cockburn and Shu is an explicit,
nonlinearly stable high order Runge–Kutta time discretizations
[22] and DG discretization in space with an exact or approximate
Riemann solver as interface fluxes and total variation bounded
(TVB) limiter [20] to achieve non-oscillatory properties for strong
shocks. These schemes have been famously termed as RKDG
methods. An important component of a RKDG method for solving
conservation laws with strong shocks is the employment of
nonlinear limiter. There are various limiters developed in the
literature, and can be categorized as the TVB limiters [4–8], the
moment based limiters [1,3] and the WENO reconstruction based
limiters [15,29,13,14,16,26–28]. Among them, the WENO
reconstruction based limiters are capable of ensuring consistent
accuracy. One major advantage of the RKDG methods over the
finite difference schemes is their compactness and conveni-
ence of implementation to achieve higher order of numerical
accuracy.

The RKDG methods have been very successful in applications
for single phase flow. On the other hand, there is much less
work related to the RKDG methods as applied to the multiphase
flow and in particular unsteady cavitation flow. In this work,
our interest is to develop the RKDG methods to simulate the
compressible unsteady cavitating flow by taking advantage of
the weighted essentially non-oscillatory (WENO) reconstruction.
Because large density jump and fluid properties change occur
across the cavitation interface, it is expected that the major
difficulty may come from the treatment of the cavitation
mixture when the RKDG approach is employed to simulate the
cavitation flow. Firstly, one has to identify the cavitation mix-
ture. Secondly, one has to construct a limiter procedure to sup-
press the numerical oscillations occurring in the region of
cavitation. Lastly, one needs to obtain the flow state in the re-
gion of cavitation. To overcome the above-mentioned difficulties,
it is thought appropriate that we treat the cavitation as a ‘‘trou-
bled’’ region. With this treatment, one will find that the RKDG
with the WENO reconstruction based limiter works specially
well to simulate the cavitation flow constituted with a one-fluid
model.

The organization of this paper is as follows: in Section 2, we
briefly review and construct the finite volume WENO schemes as
limiters for the RKDG methods with the isentropic one-fluid model
as the cavitation EOS (Equation-of-State) in one and two dimen-
sions. Several one and two dimensional numerical tests for the un-
steady cavitation phenomena are found in Section 3 for verification
and study of the associated flow dynamics. Concluding remarks are
given in Section 4.

2. WENO schemes as limiters for the RKDG methods with
isentropic one-fluid model simulation

In this section, we firstly consider the one dimensional system:

@

@t
q
qu

� �
þ @

@x
qu

qu2 þ p

� �
¼ 0; ð2:1Þ

which can be rewritten as

@U
@t
þ @FðUÞ

@x
¼ 0: ð2:2Þ

Next, we consider the two dimensional system:
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and rewrite it as:

@U
@t
þ @FðUÞ

@x
þ @GðUÞ

@r
¼ SðUÞ: ð2:4Þ

Here, q = aqg + (1 � a)ql is the averaged density, ql is the pure
liquid density, qg is the pure vapor density and the parameter
a 2 [0, 1] is the void fraction, u and v are the averaged velocities
in the x- and r-directions, respectively, and p is the averaged pres-
sure. In this paper, n is set to 2 which is applicable for a 2D axis-
symmetric flow. For closure of the system, the EOS is required. In
the mixture, the vapor component is assumed as homogeneous,
isentropic and compressible. For the pure vaporous medium, we
have

p
p0
¼

qg

qg0

 !c

; ð2:5Þ

with c = 1.4 and qg0 being the vapor density at the pressure p0. We
shall assume the liquid medium and the liquid component in the
cavitation mixture to be compressible and isentropic. The Tait’s
EOS used for the water medium [9,12] is expressed as:

p ¼ B
ql

ql0

� �N

� Bþ A; ð2:6Þ

�p
�p0
¼ ql

ql0

� �N

; ð2:7Þ

where N = 7.15, A = 105 Pa, B = 3.31 � 108 Pa, p0 = A and
ql0 = 1000 kg/m3 are the initial pressure and density for the liquid,
�p ¼ pþ B; �p0 ¼ p0 þ B and B ¼ B� A. The sound speeds associated
with pure vapor and liquid can be expressed as:

ag ¼
dp

dqg

 !1=2

¼ c
p
qg

 !1=2

; ð2:8Þ

and

al ¼
dp
dql

� �1=2

¼ N
�p
ql

� �1=2

: ð2:9Þ

In this paper, we shall use the isentropic one-fluid model as EOS
for the vapor–liquid mixture and described briefly below.

2.1. Isentropic one-fluid model for the cavitation region

In the isentropic one-fluid model [11], the cavitating flow is as-
sumed to be homogenous mixture consisting of isentropic vapor
and liquid components under kinematic and dynamic equilibrium
with the neglect of heat transfer. The evolution of cavitation is fur-
ther assumed to be driven by pressure drop across the cavitation
interface. In this cavitation model, under the homogeneous, isen-
tropic and compressible assumptions, the sound speed can theo-
retically be given [24] as:

a ¼ ½aqg þ ð1� aÞql�
a

qga2
g
þ 1� a

qla
2
l

" #( )�1=2

: ð2:10Þ

By the assumption of cavitation evolution driven by pressure
drop alone, the void fraction a 2 [0, 1] was derived and governed
by [11]:
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da
dp
¼ að1� aÞ 1

qla
2
l

� 1
qga2

g

 !
: ð2:11Þ

Since the vapor and liquid components are assumed to maintain
the isentropic property, the above Eqs. (2.10) and (2.11) can be
integrated as:

a
1� a

¼ k

�p
�pcav

� �1=N

p
pcav

� �1=c ; ð2:12Þ

and

q ¼
kqcav

g þ qcav
l

�p
�pcav

� ��1=N
þ k p

pcav

� ��1=c ; ð2:13Þ

where �p ¼ pþ B� A and �pcav ¼ pcav þ B� A. (2.13) is the density for
the cavitating mixture, and (2.12) is the void fraction formula for
the mass transfer and is directly related to the local pressure. Here
k ¼ a0

1�a0
is a model parameter and can be determined by the proce-

dure developed in [11]. qcav
g and qcav

l are the associated vapor and
liquid densities at the cavitation pressure pcav. The overall EOS for
the vapor–liquid mixture flow can then be summarised as:

q ¼
q0

�p
�p0

� �1=N
; p > psat;

kqcav
g þqcav

l
�p

�pcavð Þ�1=N
þk p

pcavð Þ�1=c ; p 6 psat;

8>><>>: ð2:14Þ

and

a
1� a

¼ k

�p
�pcav

� �1=N

p
pcav

� �1=c : ð2:15Þ

Under the conditions in the absence of large pressure variation
in the flow field, the liquid is sometimes assumed to be isothermal
(as apposed to isentropic) and the sound speed for the surrounding
flow is taken as a constant. The EOS for the liquid is
p� p0 ¼ a2

l ðql � ql0Þ instead of Tait’s EOS, where ql0 is the liquid
density at the pressure p0. Therefore, the following EOS equations
for the cavitation flow are obtained as:

q ¼
kqcav

g þ qcav
l

pcavþB0

pþB0 þ k p
pcav

� ��1=c ; ð2:16Þ

and

a
1� a

¼ k
pþB0

pcavþB0

p
pcav

� �1=c ; ð2:17Þ

where B0 ¼ ql0a2
l � p0. As such, the final EOS for the isothermal va-

por–liquid flow mixture can be written as:

q ¼
q0ð pþB0

p0þB0Þ; p > psat;
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; p 6 psat;

8>><>>: ð2:18Þ

and

a
1� a

¼ k
pþB0

pcavþB0

p
pcav

� �1=c : ð2:19Þ

The isentropic one-fluid model has been shown to work well.
One may refer to [11] for the discussions and validations of this
model.
2.2. Description of DG methods

For one dimensional cases, we shall assume that the mesh is
uniformly distributed and denote the cell Ii as Ii = [xi�1/2, xi+1/2],
with the cell size xi+1/2 � xi�1/2 = Dx = h, cell centers
xi ¼ 1

2 ðxiþ1=2 þ xi�1=2Þ. We denote the cell averaged conservative

varible U as: UiðtÞ ¼ 1
h

R
Ii

Uðx; tÞdx. The space of DG solution as well

as test function is given by Vk
h ¼ fp : pjIi

2 PkðIiÞg, which is a poly-
nomial space of degree at most k on the cell Ii. We adopt a local

orthogonal basis over Ii; UðiÞl ðxÞ; ðl ¼ 0;1; . . . ; kÞ
n o

, such as:

UðiÞ0 ðxÞ ¼ 1;UðiÞ1 ðxÞ ¼
x�xi

h ;UðiÞ2 ðxÞ ¼
x�xi

h

� �2 � 1
12 ; . . .. Then the numeri-

cal solution Uh(x, t) of U in the space Vk
h can be written as

Uhðx; tÞ ¼
Pk

l¼0UðlÞi ðtÞU
ðiÞ
l ðxÞ, for x 2 Ii and the degrees of freedom

UðlÞi ðtÞ are the moments defined by

UðlÞi ðtÞ ¼ 1R
Ii

UðiÞ
l
ðxÞð Þ2dx

R
Ii

Uhðx; tÞUðiÞl ðxÞdx; ðl ¼ 0; . . . ; kÞ. In order to

determine the approximate solution, we evolve the degrees of free-

dom UðlÞi ðtÞ:

d
dt

UðlÞi ðtÞ ¼ �
1R

Ii
UðiÞl ðxÞ
� �2

dx
ð�
Z

Ii

FðUhðx; tÞÞ d
dx

UðiÞl ðxÞdx

þ bF U�iþ1=2;U
þ
iþ1=2

� �
UðiÞl ðxiþ1=2Þ

� bF U�i�1=2;U
þ
i�1=2

� �
UðiÞl ðxi�1=2ÞÞ; ðl ¼ 0; . . . ; kÞ; ð2:20Þ

where U�iþ1=2 ¼ Uhðx�iþ1=2; tÞ are the left and right limits of the discon-
tinuous solution Uh(x, t) at the cell interface xiþ1=2; bFðU�;UþÞ is a
monotone flux for the scalar case and an exact or approximate Rie-
mann solver for the system. For simplicity, we shall denote
Uð�Þi ¼ Uð�Þi ðtÞ in the following text.

When there are shock waves, numerical oscillations generally
occur for the method given in (2.20). A special procedure or treat-
ment to restrain the oscillations via say a limiter has to be incorpo-
rated into the method. The limiter adopted here is described below
in some details:

Uiþ1=2� ¼ Uð0Þi þ eUi ¼ Uð0Þi þ
Xk

l¼1

UðlÞi UðiÞl ðxiþ1=2Þ; ð2:21Þ

Uþi�1=2 ¼ Uð0Þi �
eeU i ¼ Uð0Þi � �

Xk

l¼1

UðlÞi UðiÞl ðxi�1=2Þ
 !

: ð2:22Þ

These are modified by the standard minmod limiter:eU ðmodÞ
i ¼ m eUi;DþUð0Þi ; D�Uð0Þi

� �
, eeU ðmodÞ

i ¼ m eeU i; DþUð0Þi ; D�Uð0Þi

� �
,

where m is given by

mða1; � � � ; anÞ ¼
s � min

16j6n
jajj; if signða1Þ ¼ � � � ¼ signðanÞ ¼ s;

0; otherwise;

(
ð2:23Þ

or the TVB modified minmod function:

~mða1; . . . ; anÞ ¼
a1; if ja1j 6 MDx2;

mða1; � � � ; anÞ; otherwise;

(
ð2:24Þ

where M > 0 is a constant. The choice of M depends on the problem.
For scalar problem, it is possible to estimate M by the initial condi-
tion where it is proportional to the second derivative of the initial
condition at smooth extrema; however, it is more difficult to esti-
mate M for the system. If M is chosen to be too small, accuracy
may degenerate at smooth extrema of the solution; if M is chosen
as too large, oscillations will appear.
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In this paper, we also use the limiter described above to identify
the ‘‘troubled cells’’, namely, if one of the minmod functions gets
enacted (returns other than the first argument), this cell is declared
‘‘troubled’’ and marked for further reconstruction. Once a ‘‘troubled
cell’’ is identified, the WENO reconstruction to the numerical solu-
tion is made under the maintenance of conservation and accuracy.
This is done via reconstructing the polynomial solutions while
retaining their cell averages. With the properties of WENO recon-
structions for the ‘‘troubled cells’’, it is much less crucial to choose
an accurate M.

For two dimensional cases, we again assume that the mesh is uni-
formly distributed and denote the cell Iij as Iij = [xi�1/2, xi+1/2] � [rj�1/

2, rj+1/2], with the cell size xi+1/2 � xi�1/2 = Dx = h,rj+1/2 � rj�1/

2 = Dr = h and cell centers ðxi; rjÞ ¼ 1
2 ðxiþ1=2 þ xi�1=2Þ; 1

2

�
ðrjþ1=2þ

rj�1=2ÞÞ. We now give the test function space Vk
h ¼ fp : pjIij

2 PkðIijÞg
as the polynomial spaces of degree of at most k on the cell Iij. We

adopt a local orthogonal basis over Iij; UðijÞl ðx; rÞ; l ¼ 0;1; . . . ;K;
n

K ¼ 1
2 ðkþ 1Þðkþ 2Þ � 1g, such as: UðijÞ0 ðx; rÞ ¼ 1; UðijÞ1 ðx; rÞ ¼

x�xi
h ;

UðijÞ2 ðx; rÞ ¼
r�rj

h ; UðijÞ3 ðx; rÞ ¼
x�xi

h

� �2 � 1
12 ; U

ðijÞ
4 ðx; rÞ ¼

ðx�xiÞðr�rjÞ
h2 ;UðijÞ5

ðx; rÞ ¼ r�rj

h

� �2 � 1
12 ; . . .. Then the numerical solution Uh(x, r, t) of U

in the space Vk
h can be written as Uhðx; r; tÞ ¼

PK
l¼0UðlÞij ðtÞU

ðijÞ
l ðx; rÞ,

for (x, r) 2 Iij and the degrees of freedom UðlÞij ðtÞ are the moments de-

fined by UðlÞij ðtÞ ¼ 1R
Iij
ðUðijÞ

l
ðx;rÞÞ2 dx dr

R
Iij

Uhðx; r; tÞ UðijÞl ðx; rÞ dx dr;

ðl ¼ 0; . . . ;KÞ. In order to determine the approximate solution, we

evolve the degrees of freedom UðlÞij ðtÞ:

d
dt

UðlÞij ðtÞ¼�
1R

Iij
UðijÞl ðx;rÞ
� �2

dxdr
�
Z

Iij

FðUhðx;r;tÞÞ @
@x

UðijÞl ðx;rÞdx dr

�
Z

Iij

GðUhðx;r;tÞÞ @
@r

UðijÞl ðx;rÞdxdrþ
Z rjþ1=2

rj�1=2

F Uhðxiþ1=2;r;tÞUðijÞl ðxiþ1=2;rÞ
� �

�F Uhðxi�1=2;r;tÞUðijÞl ðxi�1=2;rÞ
� �

dr

þ
Z xiþ1=2

xi�1=2

G Uhðx;rjþ1=2;tÞUðijÞl ðx;rjþ1=2Þ
�

�GðUhðx;rj�1=2;tÞUðijÞl ðx;rj�1=2ÞÞdx

�
Z

Iij

SðUhðx;r;tÞÞUðijÞl ðx;rÞdxdr

!
; ðl¼0; .. . ;KÞ: ð2:25Þ

The semi-discrete schemes (2.20) and (2.25) are discretized in
time by a nonlinearly stable Runge–Kutta time discretization
[21]. For example, the second order version:

Uð1Þ ¼ Un þ DtLðUnÞ;
Unþ1 ¼ 1

2 Un þ 1
2 Uð1Þ þ 1

2 DtLðUð1ÞÞ:

(
ð2:26Þ

For simplicity, we shall denote Uð�Þij ¼ Uð�Þij ðtÞ.
The limiter adopted here for the two dimensional formulation is

described below:

U�iþ1=2;j ¼ Uð0Þij þ eUij ¼ Uð0Þij þ
XK

l¼1

UðlÞij UðijÞl ðxiþ1=2; rjÞ; ð2:27Þ

Uþi�1=2;j ¼ Uð0Þij �
eeU ij ¼ Uð0Þij � �

XK

l¼1

UðlÞij UðijÞl ðxi�1=2; rjÞ
 !

; ð2:28Þ

U�i;jþ1=2 ¼ Uð0Þij þ eUij ¼ Uð0Þij þ
XK

l¼1

UðlÞij UðijÞl ðxi; rjþ1=2Þ; ð2:29Þ

Uþi;j�1=2 ¼ Uð0Þij �
eeU ij ¼ Uð0Þij � �

XK

l¼1

UðlÞij UðijÞl ðxi; rj�1=2Þ
 !

: ð2:30Þ

For the ‘‘troubled cells’’, we reconstruct the polynomial solu-
tions while retaining their cell averages. In other words, we will
reconstruct the degrees of freedom, or the moments,
UðlÞij ; ðl ¼ 1; . . . ;KÞ for the ‘‘troubled cells’’ Iij and retain only the cell
averages Uð0Þij through the WENO reconstruction technique to be
given below.
2.3. WENO reconstruction as limiters for the RKDG methods

For one dimensional cases, we summarize the procedure for
reconstructing the moments UðlÞi ; ðl ¼ 1; . . . ; kÞ for the ‘‘troubled
cells’’ Ii by using the WENO reconstructions. The detailed frame
work is given in [15,28].

Step 1. Given the small stencils Sn, (n = 1, . . . , m) and the bigger
stencil C ¼

Sm
n¼1Sn, we construct the lower degree recon-

struction polynomials pn(x), (n = 1, . . . , m) using the cell
averages in the small stencils and a higher degree recon-
struction polynomial q(x) using the cell averages in the
bigger stencil. At the Gaussian or Gauss–Lobatto quadra-
ture points xG, we can gain associated formulas precisely
in [15,28].

Step 2. We find the combination coefficients, also called linear
weights, denoted by cn, (n = 1, . . . , m), which satisfy:
qðxGÞ ¼

Pm
n¼1cnpnðxGÞ. Different quadrature points corre-

spond to different linear weights.
Step 3. We compute the smoothness indicators bn, (n = 1, . . . , m)

[10,21] for stencils Sn, (n = 1, . . . , m). The smoothness indi-
cators are the same as for the reconstruction of all Gauss-
ian or Gauss–Lobatto points in the same cell, thus
significantly reducing the computational cost.

Step 4. We compute the nonlinear weights xn, (n = 1, . . . , m)
based on the smoothness indicators. Then the final WENO
approximations at the quadrature points xG are given by:
UðxG; tÞ �
Xm

n¼1

xnpnðxGÞ: ð2:31Þ
Step 5. We obtain the reconstructed moments based on the recon-
structed point values U(xG, t) at the quadrature points xG

and a numerical integration:
UðlÞi ðtÞ�
1P

G
rG UðiÞl ðxGÞ
� �2

X
G

rGUðxG;tÞUðiÞl ðxGÞ;ðl¼1; . . . ;kÞ: ð2:32Þ
Here rG are the quadrature weights for different points xG. The poly-
nomial solution in this cell Ii is then obtained via
Uhðx; tÞ ¼

Pk
l¼0UðlÞi ðtÞU

ðiÞ
l ðxÞ, for x 2 Ii with the reconstructed mo-

ments UðlÞi ðtÞ; ðl ¼ 1; . . . ; kÞ and the original cell average Uð0Þi ðtÞ.
Step 6. The semi-discrete scheme is then discretized in time by a

TVD Runge–Kutta method [21].

Remarks 1. In this paper, the reconstructions are performed after
each inner stage of the TVD Runge–Kutta method. We define the
time-step size Dt ¼ CFL�h

maxðuÞþc for all the examples in one dimension.

Remarks 2. For two dimensional cases, the reconstruction of
moments UðlÞij ; ðl ¼ 1; . . . ;KÞ for the ‘‘troubled cells’’ Iij is done with
a ‘‘dimension-by-dimension’’ fashion like the steps for 1D as
shown in [15] and thus omitted here.

2.4. Treatment of cavitation

As mentioned in Section 1, special treatment has to be made to
suppress the numerical oscillations occurring in the region of cav-
itation. Firstly, we need to identify the cavitation mixture.
Secondly, we need to construct a limiter procedure to suppress
the numerical oscillations. Lastly, we want to faithfully obtain
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Fig. 1. The Example 3.1. From left to right and top to bottom: density; velocity; pressure; density zoom-in; velocity zoom-in; pressure zoom-in; the time history of the
‘‘troubled cells’’, squares denote cells which are identified as ‘‘troubled cells’’ subject to WENO limiting: WENO3-RKDG2 and WENO5-RKDG3. t = 0.0002. M = 1. Line:
analytical solution; deltas: WENO3-RKDG2 solution, 200 cells; pluses: WENO5-RKDG3 solution, 200 cells; squares: MUSCL solution, 400 cells.
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the flow state in the region of cavitation. Below is the summarized
procedure of treating the region of cavitation.

Step 1. Identify the cavitation region. We treat the cavitation
region as a ‘‘troubled’’ region and employ the TVB limiter
shown in (2.24) as an indicator specially for the density
by taking advantage of local flow physics, in which the
density experiences a large jump across the cavitation
interface (front). Of course, some of the single phase loca-
tions such as near a shock front or a contact discontinuity
might be wrongly identified as cavitation cells. This misi-
dentification does not cause any undesirable consequence
as stated in Step 3.

Step 2. Carry out the WENO reconstruction for the identified
‘‘troubled cavitation cells’’ by following exactly the same
steps listed in Section 2.3. With this step, the numerical
oscillations occurring to the conservation variables in the
cavitation region was found to be suppressed very well.
Step 3. Recover the cavitation flow state. With the reconstructed
conservation variables, we compute the flow pressure
and void fraction if necessary. In order to do so, we first
assume that the ‘‘troubled cavitation cell’’ is a single phase
cell (pure liquid) and compute the flow pressure with
Tait’s EOS. If the computed pressure is higher than the
given saturated pressure, the ‘‘troubled cavitation cell’’ is
wrongly identified and only exists as a single phase (pure
liquid) cell, and the computed pressure is kept. If the com-
puted pressure is lower than the given saturated pressure,
the ‘‘troubled cavitation cell’’ is truly a cell located in the
cavitation region, and the local pressure is recomputed
using the cavitation EOS (2.14) together with void fraction
calculated with (2.15).

Because the cavitation is modeled as a mixed one-fluid flow, we
found that the WENO reconstruction as a limiter works very well
to eliminate the numerical oscillation occurring in the cavitation
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Fig. 2. The Example 3.2. From left to right and top to bottom: density; velocity; pressure; density zoom-in; velocity zoom-in; pressure zoom-in; the time history of the
‘‘troubled cells’’, squares denote cells which are identified as ‘‘troubled cells’’ subject to WENO limiting: WENO3-RKDG2 and WENO5-RKDG3. t = 0.00025. M = 1. Line:
analytical solution; deltas: WENO3-RKDG2 solution, 400 cells; pluses: WENO5-RKDG3 solution, 400 cells; squares: MUSCL solution, 800 cells.
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region. Although we have separately listed out the procedure of
WENO reconstruction to the single phase flow and the cavitation
flow, this procedure can be done simultaneously without much
modification needed to the single phase code.
3. Numerical tests

Now, we present the results of numerical tests for several prob-
lems by the WENO3-RKDG2 and WENO5-RKDG3 schemes with
isentropic one-fluid model described in Section 2. In this paper,
we choose the CFL numbers to be 0.3 for WENO3-RKDG2 (where
we have used the WENO3 schemes as limiters for the DG methods
by using the second order version of the TVD Runge–Kutta meth-
od) schemes and 0.18 for WENO5-RKDG3 (employing the WENO5
schemes as limiters for the DG methods by using the third order
version of the TVD Runge–Kutta method) schemes in one and
two dimensions. The saturation vapor pressure is set at 62.5 Pa
for the occurrence of cavitation, if any. In these tests, the units
for the density, velocity, pressure, length and time are kg/m3, m/
s, Pa, m and s, respectively. The main purpose of the examples
including cavitation and shock-cavitation interaction is to verify
our proposed schemes in resolving the cavitating regions sharply
without spurious oscillations.

Example 3.1. This is a case of one dimensional cavitating flow in
an open tube in high pressure. It is a Riemann problem of two high
pressure water streams moving with the same magnitude of
velocity in the opposite direction away from the center of the tube.
We consider the one dimensional Eq. (2.1) with initial conditions:

ðq;u;p;NÞT ¼ ð1000;�50;108;7:15ÞT ; 0 6 x 6 0:5;

ð1000;50;108;7:15ÞT ; 0:5 < x 6 1:

(
ð3:1Þ

Because the magnitude of initial two water streams’ velocity
are not so high, two centered rarefaction waves are generated
and expands to the vicinity of the tube’s center. In this way,
we can get the analytical solution by solving a Riemann problem
of double rarefaction waves. The computed density, velocity and
pressure are plotted in Fig. 1 at t = 0.0002 using different numer-
ical schemes together with the time history of the ‘‘troubled
cells’’ with TVB constant of M = 1. (One of the other numerical
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Fig. 3. The Example 3.3. From left to right and top to bottom: density; velocity; pressure; density zoom-in; velocity zoom-in; pressure zoom-in; the time history of the
‘‘troubled cells’’, squares denote cells which are identified as ‘‘troubled cells’’ subject to WENO limiting: WENO3-RKDG2 and WENO5-RKDG3. t = 0.0002. M = 1. Line:
analytical solution; deltas: WENO3-RKDG2 solution, 400 cells; pluses: WENO5-RKDG3 solution, 400 cells; squares: MUSCL solution, 800 cells.
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schemes selected is based on MUSCL-approach taken directly
from [11] for comparison to the present WENO3-RKDG2 and
WENO5-RKDG3 schemes.) The open boundary condition is used.
We can see that the WENO3-RKDG2 and WENO5-RKDG3 scheme
provide for lower quantity of density, a lesser smeared velocity
profile and more accurate pressure level as compared to the
MUSCL scheme vis-a-vis the analytical solution; the present
schemes can provide the physical quantities at the transition
more sharply. The time history of the ‘‘troubled cells’’ shows
the reconstruction procedure is symmetrical and concentrated
on the center region. Overall, the simulation results by the two
present schemes though fairly comparable to the MUSCL scheme
proposed in [11] have enabled sharper distribution profiles with
high accuracy which are closer to the analysis.
Example 3.2. This is a case of one dimension cavitating flow in an
open tube at higher initial velocity magnitude with initial
conditions:
ðq;u;p;NÞT ¼ ð1000;�100;108;7:15ÞT ; 0 6 x 6 0:5;

ð1000;100;108;7:15ÞT ; 0:5 < x 6 1:

(
ð3:2Þ

The computed density, velocity and pressure are plotted in
Fig. 2 at t = 0.00025 against the analytical solution for the differ-
ent numerical schemes; the time history of the ‘‘troubled cells’’
with TVB constant of M = 1 is also provided. The open boundary
condition is used. It is clear the WENO3-RKDG2 and WENO5-
RKDG3 schemes can provide for a lower quantity of density, a
sharper and less smeared velocity profile and more accurate
pressure quantity in the cavitation region. It is interesting to
note the WENO3-RKDG2 and WENO5-RKDG3 schemes have
enabled the physical quantities of transition to be tracked rela-
tively more sharply near the boundary of the cavitation region
compared to the MUSCL-scheme although the number of the
transition cells is less. The time history of the ‘‘troubled cells’’
shows the reconstruction procedure is symmetrical and concen-
trates on the cavitation region.
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Fig. 4. The Example 3.4. From left to right: density; velocity; pressure. From top to bottom: t = 0.0001; t = 0.0002; t = 0.0003. M = 1. Line and deltas: WENO3-RKDG2 solution;
line and pluses: WENO5-RKDG3 solution; line and squares: MUSCL solution. 400 cells.
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Fig. 5. The Example 3.5. Schematics of the computational domain.
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Example 3.3. This is a case of one dimensional cavitating flow in
an open tube at one atmosphere and is taken from [11]. The initial
conditions are

ðq;u;p;NÞT ¼ ð1000;�100;105;7:15ÞT ; 0 6 x 6 0:5;

ð1000;100;105;7:15ÞT ; 0:5 < x 6 1:

(
ð3:3Þ

The computed density, velocity and pressure are plotted in
Fig. 3 at t = 0.0002 against the analytical solution together with
the time history of the ‘‘troubled cells’’ with TVB constant of
M = 1. The open boundary condition is used. Again, it is found that
the WENO3-RKDG2 and WENO5-RKDG3 schemes can provide for a
lower quantity of density, a sharper and less smeared velocity pro-
file and more accurate pressure quantity in the cavitation region as
compared to the MUSCL scheme.
Example 3.4. We consider the Eq. (2.1) for one dimensional cavi-
tating flow in a closed tube [11] with the following initial flow
conditions
ðq;u;p;NÞT ¼ ð1000;�100;105;7:15ÞT ; 0 6 x 6 0:5;

ð1000;100;105;7:15ÞT ; 0:5 < x 6 1:

(
ð3:4Þ
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Fig. 6. The Example 3.5. From left to right: 30 equally spaced density contours from 97 to 973, density zoom-in, ‘‘Cav’’ indicates the cavitation region; 30 equally spaced void
fraction a contours from 0.1 to 1.1, void fraction a zoom-in; the ‘‘troubled cells’’, squares denote cells which are identified as ‘‘troubled cells’’ subject to WENO limiting. From
top to bottom: t = 0.05; t = 0.1; t = 0.2; t = 0.25. M = 1. WENO3-RKDG2 solution. 200 � 160 cells.
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The main difference between this example and the previous
three case-examples is that the two ends of the tube are closed
and a shock created at each end moves towards the center and
thus results in a shock-cavitation interaction. We set the two
ends are reflective boundary conditions. The computed density,
velocity and pressure are plotted at t = 0.0001, 0.0002, 0.0003
in Fig. 4. We can see the WENO3-RKDG2 and WENO5-RKDG3
schemes can provide for a lower quantity of density calculated,



Fig. 7. The Example 3.5. From left to right: 30 equally spaced density contours from 97 to 973, density zoom-in, ‘‘Cav’’ indicates the cavitation region; 30 equally spaced void
fraction a contours from 0.1 to 1.1, void fraction a zoom-in; the ‘‘troubled cells’’, squares denote cells which are identified as ‘‘troubled cells’’ subject to WENO limiting. From
top to bottom: t = 0.05; t = 0.1; t = 0.2; t = 0.25. M = 1. WENO5-RKDG3 solution. 200 � 160 cells.
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a sharper and less smeared velocity profile with higher magni-
tude reached, and can maintain the same pressure quantity near
zero in the cavitation area. These, we reckoned are more accu-
rate physical feature associated with the cavitation region (there
is no analytical result for this case). Separately the computed
time history of the ‘‘troubled cells’’ indicates symmetrical feature
fairly similar to the previous case-examples (and not shown
here).
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Example 3.5. We use the two dimensional system (2.3). The initial
flow conditions are

ðq;u;v;p;NÞT ¼ ð1000;100;0;105;7:15ÞT ; ðx;yÞ2 ½�30;20��½�20;20�: ð3:5Þ

There is a 2D (cylindrical) object given by [0, 20] � [�1, 1] in the
computational region and placed in a much larger water medium
measuring [�30, 20] � [�20, 20] with flow velocity from left to
right. The schematic of the problem is provided in Fig. 5. The com-
puted density, the ‘‘troubled cells’’ with TVB constant of M = 1 and
the void fraction a are plotted at t = 0.05, 0.1, 0.2, 0.25 in Figs. 6 and
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Fig. 9. The Example 3.6. A 15 equally spaced pressure contours from 343 to 5141, ‘‘Cav
M = 10. WENO3-RKDG2 solution. 140 � 360 cells.
7. The inflow boundary condition is used on the left boundary and
outflow boundary condition is used on the other three boundaries.
On the object, reflective boundary condition is employed. As time
progresses in the calculation, the pressure drops to below the sat-
urated water vapor pressure at 62.5 Pa, a mixture of cavitation
region is generated and can extend to envelop the whole object.
We can see from the density figure that the cavitation region
dimension in the y-direction becomes larger with further down-
stream. The value of the density increases from the surface of the
cylinder to the free stream region both in the x- and y-directions.
The computed result is oscillatory free for the density.
Example 3.6. A spherical underwater explosion in a rigid cylindri-
cal container problem [11]. The diameter and the height of the cyl-
inder are 0.0889 and 0.2286 m. The explosive gas sphere is located
at the center of the cylinder full of water. The diameter of the gas
sphere is 0.03 m. The initial pressure and density inside the gas
sphere are 20,000 bar and 1770 kg/m3, and c = 2 for the explosive
gas. The problem is cast as a 2D cylindrical coordinate system
(2.3). The psat is set to be 0.05 bar. The reflective boundary condi-
tion is used for the cylinder wall. The schematic of the problem
is provided in Fig. 8. The computed pressure and the ‘‘troubled
cells’’ with TVB constant of M = 10 at t = 30 ls, 60 ls, 90 ls,
120 ls, and the pressure history at the center location of the side
wall are plotted from Figs. 9–13, accordingly, for both the
WENO3-RKDG2 and WENO5-RKDG3 solutions. The schemes show
fairly similar results to that found in [11] with essentially the same
physical flow dynamics. The peak value of the pressure at the cen-
ter location of the wall shown in Fig. 13, however, exhibits a little
higher value than that obtained in [11].

In essence, in our proposed approach, we have rebuilt the solu-
tions in the ‘‘troubled cells’’ and retain the original high order accu-
racy of the RKDG methods. In this Example, it is clear that our
approach can successfully capture the phenomena of the underwa-
ter shock reflected from the cylinder wall, the interaction of the re-
flected shock and the expanding gas bubble interface, the shock-
shock interaction and the shock-cavitation interaction.
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Fig. 10. The Example 3.6. A 15 equally spaced pressure contours from 343 to 5141, ‘‘Cav’’ indicates the cavitation region. From left to right: t = 30 ls, 60 ls, 90 ls, 120 ls.
M = 10. WENO5-RKDG3 solution. 140 � 360 cells.

Fig. 11. The Example 3.6. The ‘‘troubled cells’’, squares denote cells which are identified as ‘‘troubled cells’’ subject to WENO limiting. From left to right: t = 30 ls, 60 ls, 90 ls
120 ls. M = 10. WENO3-RKDG2 solution. 140 � 360 cells.
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4. Concluding remarks

We have developed the RKDG methods with the WENO recon-
struction as limiters to solve for the unsteady cavitating flow in one
and two dimensions with the isentropic one-fluid model. To treat
the numerical oscillation occurring in the cavitation region, the
,

cavitation region is reckoned as ‘‘troubled cells’’. For the solution
solvers, the main idea is to first identify the ‘‘troubled cells’’ subject
to the WENO limiting, which uses a TVB minmod-type limiter to be
followed by reconstruction of the polynomial solutions inside the
‘‘troubled cells’’ via WENO reconstructions of conservation vari-
ables. Numerical results in one and two dimensions are provided



Fig. 12. The Example 3.6. The ‘‘troubled cells’’, squares denote cells which are identified as ‘‘troubled cells’’ subject to WENO limiting. From left to right: t = 30 ls, 60 ls, 90 ls,
120 ls. M = 10. WENO5-RKDG3 solution. 140 � 360 cells.
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Fig. 13. The Example 3.6. Pressure history at the center location of the side wall.
M = 10. Line and deltas: WENO3-RKDG2 solution; line and pluses: WENO5-RKDG3
solution. 140 � 360 cells.
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to show that these methods are stable and robust subject to a wide
range of initial conditions. The proposed methods have been found
to be able to provide accurate and sharp vapor–liquid boundary
locations and still with reasonable resolutions for the respective
pure liquid and vapor–liquid mixture regions and very well limited
oscillations.
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