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Abstract
A rezoning-type adaptive moving mesh discontinuous Galerkin method is proposed for the
numerical solution of the shallow water equations with non-flat bottom topography. The
well-balance property is crucial to the simulation of perturbation waves over the lake-at-rest
steady state such as waves on a lake or tsunami waves in the deep ocean. To ensure the
well-balance and positivity-preserving properties, strategies are discussed in the use of slope
limiting, positivity-preservation limiting, and data transferring between meshes. Particularly,
it is suggested that a DG-interpolation scheme be used for the interpolation of both the flow
variables and bottom topography from the old mesh to the new one and after each application
of the positivity-preservation limiting on the water depth, a high-order correction be made
to the approximation of the bottom topography according to the modifications in the water
depth. Mesh adaptivity is realized using a moving mesh partial differential equation and a
metric tensor based on the equilibrium variable and water depth. Amotivation for the latter is
to adapt the mesh according to both the perturbations of the lake-at-rest steady state and the
water depth distribution.Numerical examples in one and two spatial dimensions are presented
to demonstrate the well-balance and positivity-preserving properties of the method and its
ability to capture small perturbations of the lake-at-rest steady state. They also show that
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the mesh adaptation based on the equilibrium variable and water depth give more desirable
results than that based on the commonly used entropy function.

Keywords Well-balance · DG-interpolation · High-order · Positivity preservation · Moving
mesh DG method · Shallow water equations

Mathematics Subject Classification 65M50 · 65M60 · 76B15 · 35Q35

1 Introduction

We are interested in the numerical solution of the shallow water equations (SWEs) model-
ing the water flow over a surface that plays an important role in the ocean and hydraulic
engineering, such as hydraulic jumps/shocks, open-channel flows, bore wave propagation,
tidal flows in the estuary and coastal zones. The SWEs can be derived by integrating the
Navier-Stokes equations in depth under the hydrostatic assumption when the depth of the
flow is small compared to its horizontal dimensions. In non-dimensional form they read as

Ut + ∇ · F(U ) = S(h, B), (1.1)

where

U = (h, hu, hv)T = (h,m, w)T ,

F(U ) = (
F(U ),G(U )

)
,

F(U ) = (hu, hu2 + 1

2
gh2, huv)T = (m,

m2

h
+ 1

2
gh2,

mw

h
)T ,

G(U ) = (hv, huv, hv2 + 1

2
gh2)T = (w,

mw

h
,
w2

h
+ 1

2
gh2)T ,

S(h, B) = (
0,−hgBx ,−hgBy

)T
.

Here, h is the depth of water, (u, v) and (m, w) = (hu, hv) are the velocities and discharges
(in x and y directions), respectively, g is the gravitational acceleration constant, and B is the
bottom topography which is a given time-independent function.

A distinct feature of the SWEs is that they admit steady-state solutions in which the flux
gradients are balanced by the source term exactly. An important example is the so-called
“lake at rest” solution,

u = 0, v = 0, h + B = C, (1.2)

whereC is a constant. It is crucial that this solution is preserved by numerical methods for the
SWEs. Indeed, many physical phenomena, such as waves on a lake or tsunami waves in the
deep ocean, can be described as small perturbations of this lake-at-rest steady state, and they
are difficult to capture by a numerical method on an unrefined mesh unless the method can
preserve the steady-state solution. This property is known as the C-property or well-balance.

The “exact C-property” concept was first introduced in 1994 by Bermudez and Vazquez
[4]. Since then, a number of well-balanced numerical methods have been developed
for the SWEs, for example, (Godunov-type) finite volume methods [3,4,25,48], finite
difference/volume WENO methods [38–40], and discontinuous Galerkin (DG) methods
[12,13,27,37,39–42]. DG methods have the advantages of high-order accuracy, high par-
allel efficiency, flexibility for hp-adaptivity and arbitrary geometry and meshes, and these
make them particularly suited for the SWEs.
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It should be pointed out that the SWEs form a nonlinear hyperbolic system and its solution
can develop discontinuities such as hydraulic jumps/shock waves, rarefaction waves, and
stationary state transitions. Small mesh spacings are required in the regions of these structures
in order to resolve them, and mesh adaptation becomes a necessary tool to improve the
computational accuracy and efficiency in the numerical solution of the SWEs. In the past
decades, various work has been done in this direction. For example, Remacle et al. [33]
studied an h-adaptive meshing procedure for the transient computation of the SWEs. Lamby
et al. [24] proposed an adaptive multi-scale finite volume method for the SWEs with source
terms, combining a quadtree grid generation strategy based on B-splines and fully adaptive
multi-resolution methods. Tang [36] developed an adaptive moving structured mesh kinetic
flux-vector splitting (KFVS) scheme for the SWEs without treating the bed slope source
terms in order to balance the source terms and flux gradients. Although the well-balance
is not considered in the work, the numerical results demonstrate that the adaptive moving
mesh method leads to more accurate solutions than methods based on fixed meshes. Donat
et al. [11] presented a well-balanced shock capturing adaptive mesh refinement (AMR)
scheme for shallow water flows. They showed that the use of well-balanced interpolation
operators is essential in order to maintain the well-balance property in the numerical solution
computed with the AMR code. Zhou et al. [47] proposed a well-balanced adaptive moving
mesh generalized Riemann problem (GRP)-based finite volume scheme for the SWEs with
irregular bottom topography. A geometrical conservative interpolation scheme was used to
update the solutions from the old mesh to the new one. Recently, Arpaia and Ricchiuto
[1] considered several arbitrary Lagrangian-Eulerian (ALE) formulations of the SWEs on
movingmeshes and provided a discrete analog in thewell-balanced finite volume and residual
distribution framework.

In this work we study a moving mesh DG (MM-DG) method for the numerical solution of
SWEswith non-flat bottom topography in one and two spatial dimensions.Ourmain objective
is to show that the MM-DG method maintains high-order accuracy of DG discretization
while preserving lake-at-rest steady state solutions and nonnegativity of the water depth. The
method is based on the rezoning approach of moving mesh methods and contains three basic
components at each time step, the adaptive mesh movement, the interpolation of the solution
from the old mesh to the new one, and the numerical solution of the SWEs on the new mesh
that is fixed for the time step. The adaptive mesh movement is based on the moving-mesh-
partial-differential-equation (MMPDE) method [15–21] which is shown analytically and
numerically in [22] to produce meshes free of tangling for any domain in any dimension.
With theMMPDEmethod, the size, shape, and orientation of themesh elements are controlled
through a metric tensor, a symmetric and uniformly positive definite matrix-valued function
defined on the physical domain and computed typically using the recovered Hessian of a DG
solution. Instead of the commonly used entropy/total energy in the context of adaptive mesh
shockwave simulation, we propose to use the equilibriumvariable E = 1

2 (u
2+v2)+g(h+B)

and the water depth h to construct the metric tensor. A motivation for this is that the mesh
is adapted to both the perturbations of the lake-at-rest steady state through E and the water
depth distribution through h.

We use a fixed mesh well-balanced Runge-Kutta DG method [40–42] for the numerical
solution of the SWEs on the new mesh, a DG-interpolation scheme [45] for the interpolation
of the solution and bottom topography from the old mesh to the new one, the TVB slope
limiter [8] to avoid spurious oscillations, and a linear scaling limiter [23,49,50] for positivity
preservation. Although these are existing schemes/techniques, great caution is needed in
their use to warrant the well-balance and positivity-preserving (PP) properties of the overall
MM-DG method.

123



   88 Page 4 of 43 Journal of Scientific Computing            (2021) 87:88 

The interpolation of the solution from the old mesh to the new one is a key component
for the MM-DG method to maintain high-order accuracy, preserve the lake-at-rest steady
state solution, and conserve the mass. Several conservative interpolation schemes between
deforming meshes have been investigated; see, e.g. [26,35]. We use the recently developed
DG-interpolation scheme [45] for the purpose. This scheme is known to work for arbitrary
bounded mesh deformation, has high-order accuracy, conserves the mass, and preserves con-
stant solution, and, with a linear scaling PP limiter [23,49,50], can preserve the nonnegativity
of the function to be interpolated. We also use the same scheme to update the bottom topog-
raphy on the new mesh. This update is necessary due to the movement of the mesh and must
be done using a same scheme as for U to ensure the well-balance property.

Note that we need to ensure the nonnegativity of the water depth in the interpolation for
the dry situation. We use the PP-DG-interpolation scheme (the DG-interpolation scheme
with the linear scaling PP limiter [45]) for the water depth for this purpose. However, the PP
limiter will destroy the well-balance property. In order to restore the property, we apply the
same DG-interpolation scheme to the total surface level and obtain a new approximation for
the bottom topography by subtracting the water depth approximation from the total surface
level approximation. This new approximation of the bottom topography differs from the old
one by a high-order correction that corresponds to the modifications in the water depth due
to the PP limiting.

Since spurious oscillations and even nonlinear instability can occur in numerical solutions
for the SWEs, a nonlinear slope limiter is needed after each Runge-Kutta stage. We apply the
TVB limiter [6–8] to the local characteristic variables based on the variables

(
(h+B),m, w

)
.

Note that
(
(h+ B),m, w

)
, rather the original variables

(
h,m, w

)
, is used to ensure the well-

balance property. Moreover, we need to apply the PP limiter to ensure the nonnegativity of
the water depth every time after we use the TVB limiter. Since the TVB procedure preserves
the cell averages of the water depth, we can use the linear scaling limiter [23,49,50] for
this purpose. Once again, the PP limiter destroys the well-balance property. To recover the
property, we propose to make a high-order correction to the approximation of the bottom
topography according to themodifications in thewater depth due to thePP limiting.Numerical
examples show that this strategy works out well.

The remainder of the paper is organized as follows. sect. 2 is devoted to the description
of the overall procedure of the well-balanced MM-DG method and its DG and Runge-Kutta
discretization for the SWEs. The DG-interpolation scheme and its properties are described
in sect. 3. In sect. 4, the MMPDEmoving mesh method for the generation of the newmesh is
discussed. Numerical results obtained with the MM-DG method for a selection of one- and
two-dimensional examples are presented in sect. 5. Finally, sect. 6 contains conclusions and
further comments.

2 TheWell-BalancedMM-DG Scheme for the SWEs

In this section we describe the well-balanced MM-DG method for the numerical solution
of the SWEs on moving simplicial meshes. We use here a rezoning approach where the
unknown variables are interpolated from the old mesh to the new one and the SWEs are
solved on the new mesh. In this section we focus on the overall description of the method
in two dimensions (the method is similar in one dimension), the discretization of the SWEs
using DG in space and a Runge-Kutta scheme in time, and the well-balance property. A
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DG-interpolation scheme is described in sect. 3 and the generation of the new mesh using
the MMPDE moving mesh method is discussed in sect. 4.

We assume that the numerical solutions Un
h = (hnh,m

n
h, w

n
h )

T at physical time tn on the
mesh T n

h are known. (Notice that, in hh , h is the water depth while the subscript h is used to
indicate that hh is a numerical approximation to the water depth.) We also assume that a new
mesh T n+1

h , which has the same number of vertices and elements and the same connectivity
as T n

h , has been generated based on Un
h and T n

h (cf. sect. 4). We denote an interpolant of
Un
h = (hnh,m

n
h, w

n
h )

T on the new mesh T n+1
h by Ũ n

h = (h̃nh, m̃
n
h, w̃

n
h )

T . As we will see later
in this section, caution is needed in choosing the interpolation scheme to make the MM-DG
method to be conservative, positivity-preserving, and well-balanced.

We now describe the DG discretization of the SWEs on T n+1
h . Let

Vk,n+1
h = {q ∈ L2(�) : q|K ∈ P

k(K ), ∀K ∈ T n+1
h }, (2.1)

where
P
k(K ) = span{φ1

K , φ2
K , ..., φ

nb
K }

is the set of polynomials of degree at most k (k ≥ 1) on element K and φ
j
K = φ

j
K (x), j =

1, ..., nb ≡ (k + 1)(k + 2)/2, denote the basis functions of Pk(K ). Multiplying (1.1) by a
test function φ ∈ Vk,n+1

h , integrating the resulting equation over K ∈ T n+1
h , and using the

divergence theorem, we get

d

dt

∫

K
Uφdx −

∫

K
F(U ) · ∇φdx +

∫

∂K
F(U ) · nKφds =

∫

K
S(h, B)φdx, (2.2)

where nK = (nx , ny)T is the outward unit normal to the boundary ∂K .
Recall that each interior edge is shared by two triangular elements. Thus, on any (interior)

edge of K ,Uh can be defined using its value in K or in the other element sharing the common
edge with K . These values are denoted byUint

h,K andUext
h,K , respectively. Moreover, we define

the global Lax-Friedrichs numerical flux to approximate the flux function F(U ) · nK on the
edge eK ∈ ∂K as

F̂|eK = F̂(Uint
h,K ,Uext

h,K , neK ) = 1

2

((
F(Uint

h,K ) + F(Uext
h,K )

) · neK − α(Uext
h,K −Uint

h,K )
)
, (2.3)

where α = max
K ,e

(
max
s

(|λs(Uint
h,K )|, |λs(Uext

h,K )|)
)
. Here,

λ1(U ) = unx + vny − c, λ2(U ) = unx + vny, λ3(U ) = unx + vny + c, (2.4)

are the eigenvalues of the Jacobian matrix

F′(U ) · nK =
⎛

⎝
0 nx ny

(c2 − u2)nx − uvny 2unx + vny uny
−uvnx + (c2 − v2)ny vnx unx + 2vny

⎞

⎠ , (2.5)

where c = √
gh is the sound speed. The semi-discrete DG scheme is then to findUh ∈ Vk,n+1

h

such that, ∀φ ∈ Vk,n+1
h ,

d

dt

∫

K
Uhφdx +

∑

eK∈∂K

∫

eK
φF̂|eK ds −

∫

K
F(Uh) · ∇φdx =

∫

K
S(hh, Bh)φdx, (2.6)
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where F̂|eK is the numerical flux defined (2.3). Define the residual as

Rh,K (Uh, φ, Bh) =
∫

K
S(hh, Bh)φdx +

∫

K
F(Uh) · ∇φdx

−
∑

eK∈∂K

∫

eK
φF̂|eK ds, ∀K ∈ T n+1

h .
(2.7)

Generally speaking, the residual does not vanish for the lake-at-rest steady state, i.e., the
scheme (2.6) is not well-balanced. Our objective is to find a special numerical flux F̂∗|eK
by modifying F̂|eK so that the residual becomes zero for the lake-at-rest steady state. We
employ the hydrostatic reconstruction technique [3,40–42] to modify F̂|eK . It is noted that
the bottom topography function B(x) needs to be projected into the finite element space
Vk,n+1
h . We denote this approximation by Bn+1

h or Bh without confusion. We will discuss the
projection/interpolation of B(x) later in this section and a DG-interpolation scheme in sect.
3. Let

h∗,int
h,K |eK = max

(
0, hinth,K |eK + Bint

h,K |eK − max
(
Bint
h,K |eK , Bext

h,K |eK
))

,

h∗,ext
h,K |eK = max

(
0, hexth,K |eK + Bext

h,K |eK − max
(
Bint
h,K |eK , Bext

h,K |eK
))

.
(2.8)

Recall that Bh is the DG approximation of B and is discontinuous on element edges. In
(2.8), the value of Bh on eK is taken as max

(
Bint
h,K |eK , Bext

h,K |eK
)
, which was first proposed

by Audusse et al. [3] and is now considered as the standard choice. Some other researchers
suggest to use min

(
Bint
h,K |eK , Bext

h,K |eK
)
[32,43]. The optimal choice of the value of Bh on eK

remains an open problem, which seems to be closely related to the non-uniqueness of the
Riemann problem [10]. With (2.8), we force h∗,int

h,K |eK ≥ 0 and h∗,ext
h,K |eK ≥ 0 while trying to

satisfy
h∗,int
h,K + max

(
Bint
h,K |eK , Bext

h,K |eK
) = hinth,K |eK + Bint

h,K |eK ,

h∗,ext
h,K + max

(
Bint
h,K |eK , Bext

h,K |eK
) = hexth,K |eK + Bext

h,K |eK .

Then, we redefine the interior and exterior values of Uh as

U∗,int
h,K |eK =

⎛

⎜⎜⎜⎜
⎝

h∗,int
h,K |eK

h∗,int
h,K |eK
hinth,K |eK

mint
h,K |eK

h∗,int
h,K |eK
hinth,K |eK

wint
h,K |eK

⎞

⎟⎟⎟⎟
⎠

and U∗,ext
h,K |eK =

⎛

⎜⎜⎜
⎝

h∗,ext
h,K |eK

h∗,ext
h,K |eK
hexth,K |eK

mext
h,K |eK

h∗,ext
h,K |eK
hexth,K |eK

wext
h,K |eK

⎞

⎟⎟⎟
⎠

. (2.9)

The numerical flux on the edge eK ∈ ∂K is modified as

F̂∗|eK = F̂(U∗,int
h,K ,U∗,ext

h,K , neK ) + �∗
eK · neK , (2.10)

where

�∗
eK =

⎛

⎜
⎝

0 0
g
2 (hinth,K |eK )2 − g

2 (h∗,int
h,K |eK )2 0

0 g
2 (hinth,K |eK )2 − g

2 (h∗,int
h,K |eK )2

⎞

⎟
⎠ . (2.11)

The correction term is added to ensure

F̂∗|eK = F
(
Uint
h,K

) · neK (2.12)
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when the lake-at-rest steady state is reached. Replacing F̂|eK by F̂∗|eK in (2.6), we have

d

dt

∫

K
Uhφdx +

∑

eK∈∂K

∫

eK
φF̂∗|eK ds −

∫

K
F(Uh) · ∇φdx

=
∫

K
S(hh, Bh)φdx, ∀φ ∈ Vk,n+1

h . (2.13)

Denote the residual for this scheme as

R∗
h,K (Uh, φ, Bh) =

∫

K
S(hh, Bh)φdx +

∫

K
F(Uh) · ∇φdx

−
∑

eK∈∂K

∫

eK
φF̂∗|eK ds, ∀K ∈ T n+1

h .
(2.14)

From (2.12), it can be shown that this residual vanishes for the lake-at-rest steady state if
Gaussian quadrature rules with a suitable degree of precision are used to calculate all integrals
in the (2.14) exactly. Since hh , Bh and φ are polynomials of degree at most k in each element
K and mh = 0 and wh = 0 for the lake-at-rest steady state, S(hh, Bh)φ and F(Uh) · ∇φ

are polynomials of degree at most (3k − 1) while φF̂∗ is a polynomial of degree at most 3k.
Thus, to ensure that all integrals in (2.14) are calculated exactly for the lake-at-rest steady
state, we should use a Gaussian quadrature rule of degree of precision at least (3k − 1) for
the area integrals and a Gaussian quadrature rule of degree of precision at least 3k for the
line integrals.

As a result, the scheme (2.13) is well-balanced. Moreover, the scheme (2.13) is known
to be (k + 1)-th order in space.

We can rewrite (2.13) into

d

dt

∫

K
Uhφdx = R∗

h,K (Uh, φ, Bh), ∀φ ∈ Vk,n+1
h . (2.15)

A third-order strong stability preserving (SSP)Runge-Kutta scheme is used to integrate (2.15)
in time. We have, for any K ∈ T n+1

h ,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

K
U (1)
h φdx =

∫

K
Ũn
h φdx + �tn R

∗
h,K (Ũ n

h , φ, Bn+1
h ), ∀φ ∈ Vk,n+1

h
∫

K
U (2)
h φdx = 3

4

∫

K
Ũn
h φdx + 1

4

∫

K
U (1)
h φdx

+ �tn
4

R∗
h,K (U (1)

h , φ, Bn+1
h ), ∀φ ∈ Vk,n+1

h
∫

K
Un+1
h φdx = 1

3

∫

K
Ũn
h φdx + 2

3

∫

K
U (2)
h φdx

+ 2�tn
3

R∗
h,K (U (2)

h , φ, Bn+1
h ), ∀φ ∈ Vk,n+1

h

(2.16)

where �tn = tn+1 − tn and Bn+1
h is a polynomial approximation of the bottom topography

on T n+1
h . To ensure stability, we choose �tn according to the CFL condition [9] as

�tn = Ccf l

max
K ,e

(
max
s

(|λs((Ũ n
h,K )int )|, |λs((Ũ n

h,K )ext )|)
) · min

(
anmin, a

n+1
min

)
, (2.17)

where Ccf l is a constant and anmin and an+1
min are the minimum element heights of T n

h and
T n+1
h , respectively.
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We are now ready to discuss the interpolation ofUn
h = (hnh,m

n
h, w

n
h )

T from the old mesh
T n
h to the new one T n+1

h . L2-projection is inconvenient to use here since it requires finding
the intersection between elements in T n

h and T n+1
h and performing numerical integration

thereon, which is known to be a daunting, if not impossible, task in programming. Moreover,
for the dry situation,we need to ensure the nonnegativity of thewater depth in the interpolation
procedure. Thus, we use the PP-DG-interpolation scheme (the DG-interpolation schemewith
the linear scaling PP limiter), see [45] or sect. 3) for the water depth and the DG-interpolation
scheme (without PP limiter) for the water discharges, i.e.,

h̃nh = PP-DGInterp(hnh), m̃n
h = DGInterp(mn

h), w̃n
h = DGInterp(wn

h ). (2.18)

Note that this interpolation scheme does not maintain the well-balance property in general.
To recover the property, we apply the same DG-interpolation scheme to the total surface level
hnh + Bn

h and define the new approximation to the bottom topography on the new mesh as

Bn+1
h = DGInterp(hnh + Bn

h ) − h̃nh . (2.19)

From the fact that the DG-interpolation scheme preserves constant solutions (cf. sect. 3), we
know that this procedure restores the well-balance property. Moreover, from the linearity of
the interpolation scheme, we can rewrite (2.19) into

Bn+1
h = DGInterp(Bn

h ) − (
PP-DGInterp(hnh) − DGInterp(hnh)

)
,

which implies that Bn+1
h differs fromDGInterp(Bn

h ) by a high-order correction corresponding
to the changes in the water depth due to the PP limiting.

It is interesting to point out that the well-balance property cannot be achieved if Bn+1
h

is computed by L2-projecting B into the DG approximation space defined on T n+1
h (cf.

numerical results in sect. 5).
We now show that the fully discrete scheme (2.16) is well-balanced. To this end, we

assume that Ũ n
h satisfies (1.2) (with B replaced by Bn+1

h ). Recall that R∗
h,K vanishes for the

lake-at-rest steady state. Then, scheme (2.16) reduces to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

K
U (1)
h φdx =

∫

K
Ũn
h φdx, ∀φ ∈ Vk,n+1

h
∫

K
U (2)
h φdx = 3

4

∫

K
Ũn
h φdx + 1

4

∫

K
U (1)
h φdx, ∀φ ∈ Vk,n+1

h
∫

K
Un+1
h φdx = 1

3

∫

K
Ũn
h φdx + 2

3

∫

K
U (2)
h φdx, ∀φ ∈ Vk,n+1

h .

(2.20)

This implies that Un+1
h ≡ U (2)

h ≡ U (1)
h ≡ Ũ n

h . Thus, U
n+1
h also satisfies (1.2) (with B

replaced by Bn+1
h ) and (2.16) is well-balanced.

Since spurious oscillations and even nonlinear instability can occur in numerical solu-
tions, we need to apply a nonlinear limiter after each Runge-Kutta stage. However, caution
must be taken since this limiting procedure can destroy the well-balance property and the
nonnegativity of the water depth. Following [3,40–42,48], we use the TVB limiter [8] for
the local characteristic variables based on the variables

(
(hh + Bh),mh, wh

)T (instead of
(
hh,mh, wh

)T ) to obtain
(
(hh+Bh)

mod ,mmod
h , wmod

h

)T . Define hmod
h = (hh+Bh)

mod −Bh .
It is known that this limiting maintains the well-balance property and preserves the cell
averages of hh but does not necessarily preserve the nonnegativity of hh . Thus, after each
application of the TVB limiter, we apply the linear scaling PP limiter of [23,49,50] to hmod

h
and denote the result by PP(hmod

h ). Once again, this PP limiter destroys the well-balance
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property. To restore the property, we make a high-order correction to the approximation of
B according to the changes in the water depth due to the PP limiting, i.e.,

B̂h = Bh − (PP(hmod
h ) − hmod

h ). (2.21)

Notice that B̂h has the same cell averages as Bh .

Remark 2.1 In practical implementationwhen thewater depth is close to zero, large velocities
u = (hu)/h and v = (hv)/h) can result in due to small numerical error in hu and hv, which
in turn can lead to very small time steps with the CFL condition. Following [34,41], we set
u = 0 and v = 0 when h < 10−6 in our computation.

To conclude this section, we summarize the procedure of the MM-DG method in Algo-
rithm 1. From the above discussion, we have seen that the interpolation and the fully discrete
scheme (2.16) are well-balanced. Hence, the MM-DG method is well-balanced.

Algorithm 1 The MM-DG method for the SWEs on moving meshes.

0. Initialization. Project the initial physical variables and bottom topography into the DG space Vk,0
h to

obtain U0
h = (h0h ,m0

h , w0
h)T and B0

h . For n = 0, 1, ..., do

1. Mesh adaptation. Generate the new mesh T n+1
h using an MMPDE-based moving mesh method (cf.

sect. 4).
2. Solution interpolation. Use the DG-interpolation procedure to update Un

h = (hnh ,mn
h , wn

h )T and Bn
h

from T n
h to T n+1

h to obtain Ũn
h = (h̃nh , m̃n

h , w̃n
h )T and Bn+1

h (cf. (2.18) and (2.19)).

3. Solution of the SWEs on the newmesh. Integrate the SWEs from tn to tn+1 on the newmeshT n+1
h using

the MM-DG scheme (2.16) to obtain Un+1
h = (hn+1

h ,mn+1
h , wn+1

h )T . At each Runge-Kutta stage, the

TVB limiter is applied to the local characteristic variables based on the variables
(
(hh + Bh),mh , wh

)T ,
followed by linear scaling PP limiter for the water depth and a corresponding high-order correction to the
approximation of the bottom topography (cf. (2.21).

3 A conservative DG-interpolation scheme

In this section we briefly describe a DG-interpolation scheme [45] for the interpolation
of a numerical solution qnh from the old mesh T n

h to the new one T n+1
h . The meshes are

assumed to have the same number of vertices and elements and the same connectivity and
can be viewed as a deformation from each other. The scheme works for arbitrary bounded
mesh deformation. It has high-order accuracy, conserves the mass, positivity-preserving, and
satisfies the geometric conservation law (GCL) and thus preserves constant solutions, and,
with a linear scaling PP limiter [23,49,50], can preserve the nonnegativity of the function to
be interpolated. The reader is referred to [45] for the detail.

The interpolation problem between T n
h and T n+1

h is mathematically equivalent to solving
the linear convection equation

∂q

∂ς
(x, ς) = 0, (x, ς) ∈ D × (0, 1] (3.1)

on the moving mesh Th(ς) that is defined as the linear interpolant of T n
h and T n+1

h . Specifi-
cally, Th(ς) has the same number of elements and vertices and the same connectivity as T n

h
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and T n+1
h and its nodal positions and displacements (or deformation) are given by

xi (ς) = (1 − ς)xni + ςxn+1
i , i = 1, ..., Nv (3.2)

ẋi = xn+1
i − xni , i = 1, ..., Nv. (3.3)

We define the piecewise linear mesh deformation function as

Ẋ(x, ς) =
Nv∑

i=1

ẋiφi (x, ς), (3.4)

where φi is the linear basis function associated with the vertex xi .
We use a quasi-Lagrangian MM-DG method [28,44] to solve (3.1). The semi-discrete

scheme for (3.1) is to find qh ∈ Vk
h (ς) such that

d

dς

∫

K
qhφdx +

∑

e∈∂K

∫

e
φFe(q

int
K , qextK )ds +

∫

K
(qh Ẋ) · ∇φdx = 0, ∀φ ∈ Vk

h (ς)

(3.5)

where Fe(qintK , qextK ) ≈ −q Ẋ · nK is a numerical flux defined on e ∈ ∂K , and qintK and qextK
denote the values of qh on K and on the element (denoted by K ′) sharing the common edge
e with K . We use the local Lax-Friedrichs numerical flux, i.e.,

Fe(q
int
K , qextK ) = 1

2

(( − qintK Ẋ
e − qextK Ẋ

e) · neK − αe(q
ext
K − qintK )

)
, ∀e ∈ ∂K (3.6)

where Ẋ
e
denotes the restriction of Ẋ on e and αe = max

(|Ẋe · neK |, |Ẋe · neK ′ |
)
. Note that

the numerical flux is zero on the boundary due to Ẋ
e · neK = 0 if e ∈ ∂D.

We consider the quasi-time instants

0 = ς0 < ς1 < ... < ςν < ςν+1 < ... < ςNς = 1, �ςν = ςν+1 − ςν.

To ensure the stability of the scheme, we choose �ς according to the CFL condition

�ς = Cp

max
e,K

|Ẋe · neK | · min
(
anmin, a

n+1
min

)
. (3.7)

where Cp is the CFL condition constant number and usually taken as 1/(2k + 2) in our
computation, unless stated otherwise. A third-order SSP Runge-Kutta scheme is used for
time integration. Then, the fully-discrete quasi-Lagrangian MM-DG scheme for (3.1) is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

K ν,(1)
qν,(1)
h φν,(1)dx =

∫

K ν

qν
hφνdx + �ςνA(qν

h , φν)|K ν ,

∫

K ν,(2)
qν,(2)
h φν,(2)dx = 3

4

∫

K ν

qν
hφνdx + 1

4

∫

K ν,(1)
qν,(1)
h φν,(1)dx

+ �ςν

4
A(qν,(1)

h , φν,(1))|K ν,(1) ,
∫

K ν+1
qν+1
h φν+1dx = 1

3

∫

K ν

qν
hφνdx + 2

3

∫

K ν,(2)
qν,(2)
h φν,(2)dx

+ 2�ςν

3
A(qν,(2)

h , φν,(2))|K ν,(2) ,

(3.8)

123



Journal of Scientific Computing            (2021) 87:88 Page 11 of 43    88 

where (qν,(1)
h , φν,(1), K ν,(1)) are the stage values at ς = ςν+1, (qν,(2)

h , υν,(2), K ν,(2)) are the

values at ς = ςν+ 1
2 , (qν+1

h , φν+1, K ν+1) are at ς = ςν+1, and

A(qh, φ)|K = −
∑

e∈∂K

∫

e
φFe(q

int
K , qextK )ds −

∫

K
(qh Ẋ) · ∇φdx.

It is emphasized that the volume of K needs to be updated at these stages as

|K ν,(1)| = |K ν | + �ςν |K ν |∇ · Ẋ|K ν ,

|K ν,(2)| = 3

4
|K ν | + 1

4

(|K ν,(1)| + �ςν |K ν,(1)|∇ · Ẋ|K ν,(1)

)
,

|K ν+1| = 1

3
|K ν | + 2

3

(|K ν,(2)| + �ςν |K ν,(2)|∇ · Ẋ|K ν,(2)

)
.

(3.9)

2 This ensures that the geometric conservation law be satisfied and constant solutions be
preserved. Satisfaction of the geometric conservation laws has been studied extensively;
see, for example, Mavriplis and Yang [30], Cheng and Shu [5], and Mavriplis and Nastase
[31] in the context of high-order methods.

Proposition 3.1 ([45]) The DG-interpolation scheme (3.8) conserves the mass, i.e.,

∑

K ν+1

∫

K ν+1
qν+1
h dx =

∑

K ν

∫

K ν

qν
h dx, ν = 0, 1, ... (3.10)

Proposition 3.2 TheDG-interpolation scheme (3.8) preserves constant solutions, i.e., for any
arbitrary constant C, qν

h ≡ C implies qν+1
h ≡ C if the element volume is updated according

to (3.9).

Proof This proposition follows from the same proof for the geometric conservation law
(Lamma 2.1) in [45]. ��
Proposition 3.3 ([45]) When the linear scaling PP limiter [23,49,50] is further applied at
each step, the DG-interpolation scheme (3.8) preserves the solution positivity in the sense
that, for ν = 0, 1, ..., if qν

h has nonnegative cell averages for all elements and is nonnegative

at a set of special points at each element of Th(ςν), then qν+1
h has nonnegative cell averages

for all elements and is nonnegative at the corresponding set of special points at each element
of Th(ςν+1). The DG-interpolation with the linear scaling PP limiter we call as the PP-DG-
interpolation.

Remark 3.4 It is reasonable to assume that the mesh movement speed is finite during the
course of computation. Under this assumption, the deformation between T n

h and T n+1
h is

proportional to �tn , i.e.,

ẋi = xn+1
i − xni = O(�tn).

From (3.4), we have

max
e,K

|Ẋe · neK | = O(�tn).

Combining this with (2.17) and (3.7), we get

�ς = O
(
max
K ,e

(
max
s

(|λs((Ũ n
h,K )int )|, |λs((Ũ n

h,K )ext )|)
))

,
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which is close to being constant since the characteristic speeds (2.4) are close to c. As a
result, only a constant number of steps are needed in integrating (3.1). Since each step of
(3.8) requiresO(Nv) operations, the total cost of the DG-interpolation isO(Nv). The detailed
discussion on the cost of DG-interpolation can be seen in [45].

4 MMPDEmovingmeshmethod

In this section we describe the generation of the new mesh T n+1
h from the old one T n

h using
the MMPDE moving mesh method [15,16,20]. We use the ξ -formulation of the method and
its new implementation proposed in [21].

For mesh generation purpose, we introduce a computational mesh Tc = {ξ1, ..., ξ Nv
}

which can be viewed as a deformation of the mesh T n
h and serves as an intermediate variable.

We also assume that a reference computational mesh T̂c = {ξ̂1, ..., ξ̂ Nv
} has been given.

This mesh is kept fixed in the computation and should be chosen as uniform as possible.
Often it can be chosen as the initial physical mesh.

A key idea of the MMPDE method is to view any nonuniform mesh as a uniform one in
some Riemannian metric [19,20]. The metric tensorM, a symmetric and uniformly positive
definite matrix-valued function defined onD, provides the information needed for determin-
ing the size, shape, and orientation of the mesh elements throughout the domain. Various
metric tensors have been proposed; e.g., see [18,20]. We use here an optimal metric ten-
sor based on the L2-norm of piece linear interpolation error. To be specific, we consider a
physical variable q and its finite element approximation qh . Let HK be a recovered Hessian
of qh on K ∈ Th obtained using the least squares fitting Hessian recovery technique [46].
Assuming that the eigen-decomposition of HK is given by

HK = Qdiag(λ1, · · · , λd)Q
T ,

where Q is an orthogonal matrix, we define

|HK | = Qdiag(|λ1|, ..., |λd |)QT .

The metric tensor is defined as

MK = det
(
αhI + |HK |)− 1

d+4
(
αhI + |HK |), ∀K ∈ Th (4.1)

where I is the identity matrix, det(·) is the determinant of a matrix, d is the dimension of the
spatial domain, and αh is a regularization parameter defined through the algebraic equation

∑

K∈Th

|K | det(αhI + |HK |) 2
d+4 = 2

∑

K∈Th

|K | det(|HK |) 2
d+4 .

It is interesting to note that the entropy has been commonly used for adaptive mesh
simulation of shock waves [26,28]. For the SWEs, the total energy E = 1

2 (hu
2 + hv2) +

1
2 gh

2+ghB plays the role of the entropy function.However,wehave found throughnumerical
experiment that themetric tensor based on the equilibriumvariableE = 1

2 (u
2+v2)+g(h+B)

and the water depth h leads to more desirable mesh concentration than that based on the total
energy/entropy alone (cf. Figs. 3, 4, and 25 – 28). A motivation for this is that the mesh
is adapted to both the perturbations of the lake-at-rest steady state through E and the water
depth distribution through h. Specifically, we first compute M

E
K and M

h
K using (4.1) with

q = E and h, respectively. Then, a new metric tensor is obtained through matrix intersection
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as

M̃K = M
E
K

|||ME
K ||| ∩ δ · Mh

K

|||Mh
K ||| , (4.2)

where ||| · ||| denotes the maximum absolute value of the entries of a matrix and “∩” stands
for matrix intersection. The reader is referred to [44] for the definition and geometric inter-
pretation of matrix intersection. We take δ = 0.1 in our numerical simulations.

The next step is to make sure that the metric tensor is bounded. It is known [22] that
the moving mesh generated by the MMPDE method stays nonsingular (free from tangling)
if the metric tensor is bounded and the initial mesh is nonsingular. More specifically, a
positive lower bound on the minimum element height is obtained in [22], which is inversely
proportional to some powers of N and λmax (M). We define

M̂K = M̃K√

1 +
(
tr(M̃K )

β

)2
, (4.3)

where β is a positive number and tr(·) denotes the trace of a matrix. It is not difficult to show
λmax(M̂K ) ≤ β. The greater β is, the smaller the minimum element height may result. In
our computation, we take β = 1000.

The metric tensor is generally non-smooth since the received Hessian can contain the
discontinuous. A common practice in the moving mesh context is to smooth the metric
tensor for smoother meshes. Here we simply average the metric tensor at a vertex over its
neighboring vertices, i.e.,

Mi ←− 1

|Ni |
∑

j∈Ni

M̂ j , ∀xi ∈ Th (4.4)

where M̂i is the nodal value at vertex xi obtained by area-averaging the values of the metric
tensor on the neighboring elements, the Ni denotes the set of the immediate neighboring
vertices (including itself) of xi , and |Ni | is the length of the set Ni . This process can be
repeated several times every time in the computation.

Having defined themetric tensor, we are ready to describe theMMPDEmethod. Recalling
that Tc and Th are a deformation of each other, for any element K ∈ Th , there exists an
element Kc ∈ Tc corresponding to K . Denote the affine mapping from Kc to K as FK and its
Jacobian matrix as F ′

K . It is known [19,20] that any mesh Th which is uniform in the metric
M in reference to the computational mesh Tc, satisfies

|K |√det(MK ) = σh |Kc|
|Dc| , ∀K ∈ Th (4.5)

1

d
tr
(
(F ′

K )−1
M

−1
K (F ′

K )−T ) = det
(
(F ′

K )−1
M

−1
K (F ′

K )−T ) 1
d , ∀K ∈ Th (4.6)

where MK is the average ofM over K and

|Dc| =
∑

Kc∈Tc

|Kc|, σh =
∑

K∈Th

|K |det(MK )
1
2 .

The equidistribution condition (4.5) determines the size of elements through themetric tensor
M and implies that all the elements have the same size in the metric tensorM. The alignment
condition (4.6) determines the shape and orientation of K through M and shape of Kc and
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implies that any element K when measured in the metric MK is similar to Kc measured in
the Euclidean metric.

A mesh energy function associated with the equidistribution and alignment conditions is
given by

Ih(Th; Tc) =1

3

∑

K∈Th

|K |det(MK )
1
2
(
tr((F ′

K )−1
M

−1
K (F ′

K )−T )
) 3d

4

+ 1

3
d

3d
4

∑

K∈Th

|K |det(MK )
1
2

(
det(F ′

K )det(MK )
1
2

)− 3
2
,

(4.7)

which is a Riemann sum of a continuous functional developed in [17].
For a given mesh T n

h , we want to find a new mesh T n+1
h by minimizing the mesh energy

function Ih . Note that Ih(Th, Tc) is a function of the vertices ξ i , i = 1, ..., Nv of Tc and the
vertices xi , i = 1, ..., Nv of Th . We take Th as T n

h , minimize Ih(T n
h , Tc) with respect to Tc

(and denote the final mesh as T n+1
c ), and obtain T n+1

h through the relation between T n
h and

T n+1
c . The minimization of Ih(T n

h , Tc) is carried out by solving the mesh equation defined
as the gradient system of the energy function (the MMPDE approach), i.e.,

dξ i

dt
= −det(M(xi ))

1
2

τ

(∂ Ih(T n
h , Tc)

∂ξξξ i

)T
, i = 1, ..., Nv

(4.8)

where ∂ Ih/∂ξ i is considered as a row vector and τ > 0 is a parameter used to adjust the
response time of mesh movement to the changes inM.

Define the function G associated with the energy (4.7) as

G(J, det(J)) = 1

3
det(MK )

1
2 (tr(JM−1

K J
T ))

3d
4 + 1

3
d

3d
4 det(MK )

1
2

(
det(J)

det(MK )
1
2

) 3
2

, (4.9)

where J = (F ′
K )−1 = EKc E

−1
K , and EK = [xK

1 − xK
0 , ..., xK

d − xK
0 ] and EKc =

[ξ K
1 − ξ K

0 , ..., ξ K
d − ξ K

0 ] are the edge matrices of K and Kc, respectively. Using the notion
of scalar-by-matrix differentiation, the derivatives of G with respect to J and det(J) can be
obtained [21] as

∂G

∂J
= d

2
det(MK )

1
2 (tr(JM−1

K J
T ))

3d
4 −1

M
−1
K J

T , (4.10)

∂G

∂det(J)
= 1

2
d

3d
4 det(MK )−

1
4 det(J)

1
2 . (4.11)

With these formulas, we can rewrite (4.8) as (cf. [21])

dξ i

dt
= det(M(xi ))

1
2

τ

∑

K∈ωi

|K |vK
iK , i = 1, ..., Nv (4.12)

where ωi is the element patch associated with the vertex xi , iK is the local index of xi on
K , and vK

iK
is the local velocity contributed by the element K to the vertex iK . The local
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velocities vK
iK

, iK = 0, ..., d are given by

⎡

⎢
⎢
⎢
⎣

(vK
1 )T

(vK
2 )T

...

(vK
d )T

⎤

⎥
⎥
⎥
⎦

= −E−1
K

∂G

∂J
− ∂G

∂det(J)

det(EKc )

det(EK )
E−1
Kc

, vK
0 = −

d∑

iK=1

vK
iK . (4.13)

Note that the velocities for the boundary nodes need to be modified properly. For example,
they should be set to be zero for the corner vertices. For other boundary vertices, the velocities
should be modified such that their normal component along the domain boundary are zeros
so they slide only along the boundary and do not move out of the domain.

Starting with the reference computational mesh T̂c as the initial mesh, the mesh equation
(4.12) is integrated over a physical time step. The obtained new mesh is denoted by T n+1

c .
Note that T n

h is kept fixed during the integration and forms a correspondence with T n+1
c , i.e.,

T n
h = �h(T n+1

c ). Then the new physical mesh T n+1
h is defined as T n+1

h = �h(T̂c), which
can be computed using linear interpolation.

5 Numerical Results

In this section we present numerical results obtained with the MM-DG method described
in the previous sections for the one- and two-dimensional SWEs. We take the CFL number
Ccf l as 0.3 for P1-DG and 0.18 for P2-DG in one dimension, and 0.2 for P1-DG and 0.1
for P2-DG in two dimensions, unless otherwise stated. For the TVB limiter implemented
in the RKDG scheme, the constant Mtvb is taken as zero except for accuracy test Example
5.1 (to avoid the accuracy order reduction near the extrema). For mesh movement, we take
τ = 0.1N−1/d . The gravitation constant is taken as g = 9.812 in the computation. For
examples where the analytical exact solution is unavailable, we take the numerical solution
obtained by the P2-DG method with a fixed mesh of N = 10000 as a reference solution,
unless otherwise stated. The error is computed with 21 points used on each element. Except
for the accuracy test (Example 5.1) and the lake-at-rest steady-state flow tests (Example 5.2
and Example 5.6), to save space we omit the results for the P1-DG method since they are
similar to those for the P2-DG method.

Example 5.1 (The accuracy test for the 1D SWEs over a sinusoidal hump.)

This example is used to verify the high order accuracy of the MM-DG method. The bottom
topography is

B(x) = sin2(πx), x ∈ (0, 1).

We use periodic boundary conditions for all unknown variables. The initial conditions are
given as

h(x, 0) = 5 + ecos(2πx), hu(x, 0) = sin
(
cos(2πx)

)
.

This example has been used as an accuracy-test in literature, e.g. see [27,39,40]. The final
simulation time is T = 0.1 when the solutions remain smooth. A reference solution is
obtained using the P2-DG method with a fixed mesh of N = 20000. The minmod constant
Mtvb in the TVB limiter is taken as 40 in this example to avoid the accuracy order reduction
near the extrema. The L1 and L∞ norm of the error with moving and fixed meshes for the
water depth h and water discharge hu are plotted in Fig. 1. It can be seen that the MM-DG
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Fig. 1 Example 5.1. The L1 and L∞ norm of the error with moving and fixed meshes for the water depth h
and the water discharge hu

method has the expected second-order convergence for P1-DG and third-order for P2-DG
in both L1 and L∞ norm. Moreover, the figures show that a moving mesh produces a slightly
smaller but otherwise comparable error than a fixed mesh of the same number of elements.
The error is much smaller for P2-DG method than the P1-DG method, as expected for
smooth problems.

Example 5.2 (The lake-at-rest steady-state flow test for the 1D SWEs.)

In this example we consider a lake-at-rest steady-state flow over three different bottom
topographies to verify the well-balance property of the MM-DG method. Two of these
topographies are smooth and the other is discontinuous, i.e.,

B(x) = 5e− 2
5 (x−5)2 , x ∈ (0, 10) (5.1)
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Table 1 Example 5.2.
Well-balance test for the moving
mesh P1-DG method over the
smooth bottom topography (5.1)

N h + B hu
L1-error L∞-error L1-error L∞-error

B updated with DG-interpolation

50 1.970E-14 2.551E-14 2.810E-14 7.858E-14

100 4.066E-14 4.958E-14 4.955E-14 1.164E-13

200 7.874E-14 9.286E-14 7.765E-14 1.911E-13

B updated with L2 -projection

50 3.393E-04 9.016E-04 2.827E-03 7.166E-03

100 9.550E-05 2.852E-04 8.202E-04 2.338E-03

200 2.381E-05 8.143E-05 2.039E-04 6.823E-04

B(x) =
{
4, for x ∈ (4, 8)

0, for x ∈ (0, 4) ∪ (8, 10)
(5.2)

B(x) = 10e− 2
5 (x−5)2 , x ∈ (0, 10). (5.3)

The initial data is at the lake-at-rest steady state,

u = 0, h + B = 10.

This still water state solution should be preserved exactly if the MM-DG method is well-
balanced.

We computed the solution up to t = 0.5 on moving meshes. To show that the well-balance
property is attained up to the level of round-off error (double precision in MATLAB), we
present the L1 and L∞ error for h + B and hu in Tables 1 and 2 for P1-DG and P2-DG on
moving meshes, respectively, for the smooth bottom topography (5.1). Similar results for the
discontinuous bottom topography (5.2) are shown in Tables 3 and 4. For comparison purpose,
we also list the results obtained with the L2-projection of B. From the results one can see
that the MM-DG method with B updated with DG-interpolation preserves the lake-at-rest
solution. On the other hand, when B is updated with L2-projection, the lake-at-rest solution
is not preserved by the MM-DG method. The results show that the error, more precisely, the
deviation from the lake-at-rest steady state, is about second-order for the smooth topography
for both P1-DG and P2-DG. For the discontinuous topography, the error is about second-
order in L1 and first-order in L∞. To explain this, we notice that in the current situation the
deviation from the lake-at-rest steady state comes from the error of the scheme which in turn
is dominated by the error of the TVB limiter. For this example, we have not made effort in
optimizing the choice of the TVB minmod constant Mtvb. Instead, we have simply chosen
Mtvb = 0, for which the TVB limiter becomes the TVD limiter that is second-order at best
in one dimension [6,14].

The bottom topography (5.3) (with a dry region) is used to verify the well-balance and PP
properties of the MM-DGmethod. This topography has a similar shape as (5.1) but its height
touches the water level at x = 5 where h = 0 initially. The computed water depth can have
negative values during the computation and the application of the PP limiter is necessary. We
computed the solution up to t = 0.5 onmoving meshes. To ensure positivity preservation (cf.
[41]), we take smaller CFL numbers as 0.3 and 0.15 for P1-DG and P2-DG, respectively, for
this test. The L1 and L∞ error for h + B and hu is listed in Table 5 for P1-DG and P2-DG.
The results clearly show that the MM-DG method is well-balanced.
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Table 2 Example 5.2.
Well-balance test for the moving
mesh P2-DG method over the
smooth bottom topography (5.1)

N h + B hu
L1-error L∞-error L1-error L∞-error

B updated with DG-interpolation

50 3.051E-14 3.813E-14 3.951E-14 9.699E-14

100 6.282E-14 7.583E-14 7.464E-14 1.769E-13

200 1.276E-13 1.503E-13 1.449E-13 3.481E-13

B updated with L2 -projection

50 4.922E-06 1.251E-05 4.995E-05 1.393E-04

100 1.160E-06 3.775E-06 1.139E-05 3.573E-05

200 2.395E-07 8.878E-07 2.299E-06 8.875E-06

Table 3 Example 5.2.
Well-balance test for the moving
mesh P1-DG method over the
discontinuous bottom topography
(5.2)

N h + B hu
L1-error L∞-error L1-error L∞-error

B updated with DG-interpolation

50 1.175E-14 2.014E-14 4.114E-14 1.001E-13

100 1.912E-14 3.143E-14 6.747E-14 1.501E-13

200 3.108E-14 5.032E-14 1.136E-13 2.576E-13

B updated with L2 -projection

50 6.001E-03 5.651E-02 4.542E-02 3.688E-01

100 1.823E-03 2.629E-02 1.637E-02 1.713E-01

200 5.499E-04 1.237E-02 5.166E-03 9.294E-02

Table 4 Example 5.2.
Well-balance test for the moving
mesh P2-DG method over the
discontinuous bottom topography
(5.2)

N h + B hu
L1-error L∞-error L1-error L∞-error

B updated with DG-interpolation

50 1.518E-14 2.635E-14 5.499E-14 1.562E-13

100 2.166E-14 4.096E-14 1.003E-13 2.367E-13

200 3.419E-14 6.230E-14 1.679E-13 3.781E-13

B updated with L2 -projection

50 3.548E-03 2.796E-02 3.090E-02 2.522E-01

100 8.669E-04 1.073E-02 7.585E-03 9.252E-02

200 1.903E-04 3.710E-03 1.624E-03 2.714E-02

Example 5.3 (The perturbed lake-at-rest steady-state flow test for the 1D SWEs.)

This example has been used by a number of researchers [11,25,27,39,40] to demonstrate the
capability of a numerical method to accurately compute small perturbations of a lake-at-rest
steady-state flow over non-flat bottom topographies. The bottom topography in this example
is taken as

B(x) =
{
0.25(cos(10π(x − 1.5)) + 1), for x ∈ (1.4, 1.6)

0, for x ∈ (0, 1.4) ∪ (1.6, 2)
(5.4)
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Table 5 Example 5.2.
Well-balance test for the MM-DG
method over the bottom
topography (5.3) (with a dry
region)

N h + B hu
L1-error L∞-error L1-error L∞-error

P1 MM-DG method with PP limiter

50 1.362E-14 2.131E-14 3.802E-14 8.519E-14

100 2.426E-14 3.709E-14 6.166E-14 1.356E-13

200 5.079E-14 7.733E-14 1.225E-13 2.779E-13

P2 MM-DG method with PP limiter

50 2.404E-14 4.065E-14 7.451E-14 1.781E-13

100 4.197E-14 6.853E-14 1.355E-13 2.919E-13

200 8.531E-14 1.322E-13 2.496E-13 5.637E-13
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Fig. 2 Example 5.3. The initial water surface level B + h and bottom topography B for the pulse of ε = 0.2
and ε = 10−5

which has a bump in the middle of the physical interval. The initial conditions are given by

h(x, 0) =
{
1 − B(x) + ε, for 1.1 ≤ x ≤ 1.2

1 − B(x), otherwise
and u(x, 0) = 0,

where ε is a constant for the perturbation magnitude. We consider two cases, ε = 0.2 (large
pulse) and ε = 10−5 (small pulse). The initial conditions for both cases are plotted in Fig. 2.
The initial wave splits into two waves propagating at the characteristic speeds ±√

gh. We
use the transmissive boundary conditions and compute the solution up to t = 0.2 when the
right wave has already passed the bottom bump.

The mesh trajectories, water surface B + h, and discharge hu at t = 0.2 obtained with
P2-DG and moving and fixed meshes of N = 160 are shown in Figs. 3 (for ε = 0.2) and 4
(for ε = 10−5). Recall that these results are obtained with the metric tensor (4.3) based on the
equilibrium variable E = 1

2u
2 + g(h + B) and the water depth h. For comparison purpose,

we also include the results obtained with the metric tensor based on the entropy/total energy
E = 1

2hu
2 + 1

2 gh
2 + ghB. Interestingly, for the large pulse ε = 0.2 (Fig. 3), both ways of

computing the metric tensor lead to almost indistinguishable solutions although they have
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(a) E and h: Mesh trajectories (b) Entropy: Mesh trajectories
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Fig. 3 Example 5.3. The mesh trajectories and the water surface B + h and discharge hu at t = 0.2 obtained
with P2-DG of a moving mesh of N = 160 and a fixed mesh of N = 160 for a large pulse ε = 0.2. The
metric tensor is computed based on the equilibrium variable E and the water depth h (left column) or the
entropy/total energy (right column)
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(a) E and h: Mesh trajectories (b) Entropy: Mesh trajectories

0 0.5 1 1.5 2

x

0.999999

1

1.000001

1.000002

1.000003

1.000004

1.000005

1.000006

B
+

h

reference
FM N=160
MM N=160

(c) E and h: B + h

0 0.5 1 1.5 2

x

0.999999

1

1.000001

1.000002

1.000003

1.000004

1.000005

1.000006
B

+
h

reference
FM N=160
MM N=160

(d) Entropy: B + h
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Fig. 4 Example 5.3. The mesh trajectories and the water surface B + h and discharge hu at t = 0.2 obtained
with P2-DG of a moving mesh of N = 160 and a fixed mesh of N = 160 for a small pulse ε = 10−5.
The metric tensor is computed based on the equilibrium variable E and the water depth h (left column) or the
entropy/total energy (right column)
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(c) B + h: FM 480 vs MM 160
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Fig. 5 Example 5.3. The water surface B+h at t = 0.2 obtained with P2-DG and a moving mesh of N = 160
are compared with those obtained with the fixed meshes of N = 160 and N = 480 for a large pulse ε = 0.2

slightly different but correct mesh concentration: the former concentrates more points in the
sharp wave regions whereas the latter leads to more points in the non-flat bottom region.
For the case with a small pulse ε = 10−5 (Fig. 4), the situation is very different. The metric
tensor based on E misses thewave regions and concentrates points only in the non-flat bottom
region. On the other hand, the metric tensor based on E and h works well for this case too
and concentrates mesh points in both the wave regions and the non-flat bottom region. The
advantages of using E and h over E in mesh adaptation are clear when the perturbation is
smaller.

It is interesting to see that the small perturbation splits into two waves at about t = 0.0165
and the mesh elements are concentrated properly near the waves before and after the split.

The water surface B + h and discharge hu obtained with P2-DG and a moving mesh
of N = 160 and fixed meshes of N = 160 and N = 480 are plotted in Figs. 5 and 6 (for
ε = 0.2) and Figs. 7 and 8 (for ε = 10−5). The results show that the moving mesh solutions
with N = 160 are more accurate than those with the fixed mesh of N = 160 and N = 480
and contain no visible spurious numerical oscillations. They also show that the MM-DG
method with moving or fixed meshes is able to capture the waves of large or small pulses.
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(c) hu: FM 480 vs MM 160
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Fig. 6 Example 5.3. The water discharge hu at t = 0.2 obtained with P2-DG and a moving mesh of N = 160
are compared with those obtained with the fixed meshes of N = 160 and N = 480 for a large pulse ε = 0.2

Comparison results are shown in Figs. 9 (ε = 0.2) and 10 (ε = 10−5) by using DG-
interpolation or L2-projection in updating the bottom topography B. The computed solutions
are almost indistinguishable for the large pulse case with ε = 0.2. On the other hand, for
the small pulse case with ε = 10−5 (Fig. 10), the MM-DG method with DG-interpolation
captures the waves well whereas the method with L2-projection misses them badly. Recall
that the former is well-balanced but the latter is not. For the latter, the deviation from the
lake-at-rest steady state comes from the error of the scheme that is second-order at best since
the TVB limiter with Mtvb = 0 is used. When this deviation is smaller than the size of the
perturbation, the scheme is able to capture the waves as shown in Fig. 9. However, when the
deviation is larger than the size of the perturbation, the scheme will miss the waves, as seen in
Fig. 10, although the situation can be improved with finer meshes. In contrast, well-balanced
schemes are able to capture small perturbations even on a reasonably coarse mesh.

We now comment on the cost of the DG-interpolation scheme. Recall from Remark 3.4
that for a given example, the integration of (3.1) requires only a constant number of time
steps, which implies that each interpolation costsO(Nv) operations. This has been observed
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Fig. 7 Example 5.3. The water surface B+h at t = 0.2 obtained with P2-DG and a moving mesh of N = 160
are compared with those obtained with the fixed meshes of N = 160 and N = 480 for a small pulse ε = 10−5

in all the numerical examples we have tested. For example, the average number of time steps
is around 3 (ε = 0.2) and 4 (ε = 10−5) for P2-DG applied to the current example. Since
the cost of the DG-interpolation scheme has been studied extensively in [45], we will not
discuss this further in this work.

To verify the well-balance and positivity-preserving properties of the MM-DG method
we modify the bottom topography (5.4) to contain a dry region (near x = 1.5),

B(x) =
{
0.5(cos(10π(x − 1.5)) + 1), for x ∈ (1.4, 1.6)

0, for x ∈ (0, 1.4) ∪ (1.6, 2)
(5.5)

We repeat the computationwith ε = 10−5. The bottom topography, the initial water level, and
the mesh trajectories of N = 160 obtained with P2 MM-DG method are plotted in Fig. 11.
Themesh points are concentrated around the shockwaves and the non-flat topography region.
Interestingly, the mesh trajectories show that the right moving shock stops after it hits the
dry region.
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(c) hu: FM 480 vs MM 160

0.45 0.5 0.55 0.6

x

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

hu

10-6

1.65 1.7 1.75 1.8 1.85

x

-2

0

2

4

6

8

10

12

14

16

18

hu

10-6

(d) Close view of (c)

Fig. 8 Example 5.3. The water discharge hu at t = 0.2 obtained with P2-DG and a moving mesh of N = 160
are compared with those obtained with the fixed meshes of N = 160 and N = 480 for a small pulse ε = 10−5

The water surface B + h and discharge hu obtained with P2-DG and a moving mesh of
N = 160 and fixed meshes of N = 160 and N = 640 are plotted in Figs. 12 and 13. The
results show that the MM-DG method with moving or fixed meshes is able to capture the
waves of small perturbation for the situation with dry regions. Moreover, the moving mesh
solutions with N = 160 are more accurate than those with fixed mesh of N = 160 and
N = 640 and contain no visible spurious numerical oscillations.

The L1-error of the approximation in the bottom topography B (5.5) (see Fig. 11a) at the
final time of the simulation is plotted in Fig. 14. The result shows the second- and third-order
of convergence, which are expected for P1- and P2-DGmethods, respectively. This indicates
that the DG interpolation scheme plus a high-order correction works well for updating B.

123



   88 Page 26 of 43 Journal of Scientific Computing            (2021) 87:88 

0 0.5 1 1.5 2

x

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

B
+

h

reference
DG-interpolation

L2-projection

(a) B + h

0 0.5 1 1.5 2

x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

hu

reference
DG-interpolation

L2-projection

(b) hu

Fig. 9 Example 5.3. The water surface B + h and discharge hu at t = 0.2 are obtained with P2-DG and a
moving mesh of N = 160 for a large pulse ε = 0.2. Comparison is made for the use of DG-interpolation or
L2-projection in updating B
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Fig. 10 Example 5.3. The water surface B + h and discharge hu at t = 0.2 are obtained with P2-DG and a
moving mesh of N = 160 for a small pulse ε = 10−5. Comparison is made for the use of DG-interpolation
or L2-projection in updating B

Example 5.4 (The Riemann problem for the 1D SWEs with a step bottom topography.)

In this test we solve the 1D SWEs with a step bottom topography [2,29],

B(x) =
{
0, for x ∈ (−10, 0)

1, for x ∈ (0, 10)
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Fig. 11 Example 5.3. (a) The initial water surface B + h and the bottom B (5.5) for the small perturbation
test with a dry region. (b) The mesh trajectories obtained with P2 MM-DG method of N = 160

The initial conditions are given by

h(x, 0) =
{
4, for x ≤ 0

1, otherwise
u(x, 0) =

{
5, for x ≤ 0

−0.9, otherwise.

The solution contains two hydraulic jumps/shocks and a stationary step subcritical transition.
Thefirst shockmoves to the leftwhile the secondone to the right. The stationary step transition
of the flow occurs at x = 0.

The mesh trajectories for the P2-DG method with a moving mesh of N = 100 are shown
in Fig. 15. We can see that the mesh has high element concentration at the location of two
hydraulic jumps/shocks and the stationary step transition. The moving mesh solutions of
N = 100 at t = 1 and the fixed mesh solutions obtained with N = 100 and N = 800
are shown in Figs. 16 and 17 for water surface level and water discharge, respectively. The
results show that the moving mesh solution (N = 100) provides a better resolution of the
shocks than that with the fixed mesh of N = 100 and N = 800.

Example 5.5 (The rarefaction and shock waves test for the 1D SWEs with flat and wavy
bottom topographies.)

In this test we compute the 1D SWEs with two sets of bottom topographies B(x). The initial
conditions are given by

h(x, 0) =
{
2 − B(x), for x ∈ (−10, 1)

0.35 − B(x), for x ∈ (1, 10)
u(x, 0) =

{
1, for x ∈ (−10, 1)

0, for x ∈ (1, 10).

We choose the transmissive boundary conditions and compute the solution up to t = 1.
We first consider B(x) = 0. The solution contains a rarefaction wave moving to the

left and a shock wave (hydraulic jump) traveling to the right. The mesh trajectories with a
moving mesh of N = 100 are shown in Fig. 18. One can see that the mesh has high element
concentration around the rarefaction and shock. In Figs. 19 and 20, we plot the water surface
B+h and water discharge hu at t = 1 obtained with P2-DG and a moving mesh of N = 100
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(d) Close view of (c)

Fig. 12 Example 5.3 with the bottom topography (5.5) with a dry region. The water surface B + h at t = 0.2
obtained with P2-DG and amovingmesh of N = 160 are compared with those obtained with the fixedmeshes
of N = 160 and N = 640

and fixed meshes of N = 100 and N = 1280. It can be seen that the moving mesh solutions
of N = 100 are more accurate than those with a fixed mesh of N = 100 and comparable
with those with a fixed mesh of N = 1280.

To show the effects of non-flat bottom topographies on water flow, we repeat this example
with a wavy bottom topography [36],

B(x) =
{
0.3 cos30( π

2 (x − 1)), for 0 ≤ x ≤ 2

0, otherwise.
(5.6)

The solution shows more complex features, made up of a left rarefaction wave and two
hydraulic jumps/shocks. One shock near the location of x = 2 occurs in the flow over the
non-flat bed topography.

The moving mesh trajectories (N = 160) are plotted in Fig. 21. One can see that the mesh
elements concentrate around the rarefaction and hydraulic jumps/shocks. In Figs. 22 and 23,
we plot the water surface level B + h and water discharge hu at t = 1 obtained with P2-DG
and a moving mesh of N = 160 and fixed meshes of N = 160 and N = 1280. These results
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Fig. 13 Example 5.3 with the bottom topography (5.5) with a dry region. The water discharge hu at t = 0.2
obtained with P2-DG and amovingmesh of N = 160 are compared with those obtained with the fixedmeshes
of N = 160 and N = 640

Fig. 14 Example 5.3 with the
bottom topography (5.5) with a
dry region. The L1-error of the
approximation to the bottom
topography B at the final time of
the simulation is plotted as a
function of N
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Fig. 15 Example 5.4. The mesh
trajectories are obtained with
P2-DG method with a moving
mesh of N = 100
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Fig. 16 Example 5.4. The water surface B + h at t = 1 obtained with P2-DG method with a moving mesh
of N = 100 is compared with those obtained with the fixed meshes of N = 100 and N = 800
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Fig. 17 Example 5.4. The water discharge hu at t = 1 obtained with P2-DG method with a moving mesh of
N = 100 is compared with those obtained with the fixed meshes of N = 100 and N = 800

show that the moving mesh solutions of N = 160 are more accurate than those with a fixed
mesh of N = 160 and comparable with that with the fixed mesh of N = 1280. Moreover,
the MM-DG method does a good job in resolving the shock near x = 2 which seems to be a
difficult structure for a fixed mesh to resolve.

Example 5.6 (The lake-at-rest steady-state flow test for the 2D SWEs.)

We choose this example to verify the well-balance property of the MM-DG scheme over
non-flat bottom topographies.We take a bottom topographywith an isolated elliptical-shaped
bump [25] as

B(x, y) = 0.8e−50
(
(x−0.5)2+(y−0.5)2

)
, (x, y) ∈ (0, 1) × (0, 1). (5.7)

The initial depth of water and velocities are given by

h(x, y, 0) = 1 − B(x, y), u(x, y, 0) = 0, v(x, y, 0) = 0.

We use periodic boundary conditions and compute the solution up to t = 0.1 on moving
meshes. The flow surface should remain steady. An initial triangular mesh, shown in Fig. 24,
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Fig. 18 Example 5.5. The mesh
trajectories for B = 0 are
obtained with P2-DG and a
moving mesh of N = 100
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Fig. 19 Example 5.5. The water depth h (for B = 0) at t = 1 obtained with P2-DG and a moving mesh of
N = 100 is compared with those obtained with the fixed meshes of N = 100 and N = 1280
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Fig. 20 Example 5.5. The water discharge hu (for B = 0) at t = 1 obtained with P2-DG and a moving mesh
of N = 100 is compared with those obtained with the fixed meshes of N = 100 and N = 1280

Fig. 21 Example 5.5. The mesh
trajectories (for B defined in
(5.6)) are obtained with P2-DG
and a moving mesh of N = 160
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Fig. 22 Example 5.5. The water surface level B + h (for B defined in (5.6)) at t = 1 obtained with P2-DG
and a moving mesh of N = 160 is compared with those obtained with the fixed meshes of N = 160 and
N = 1280

is formed by dividing each cell of a rectangular mesh into four triangular elements. The L1

and L∞ error for h + B and discharges hu and hv is listed in Table 6 for the moving mesh
DG method with B updated with DG-interpolation. They show that the MM-DG method
with B updated with DG-interpolation maintains the lake-at-rest steady state to the level of
round-off error in both L1 and L∞ norm.

Example 5.7 (The perturbed lake-at-rest steady-state flow test for the 2D SWEs.)

We use this example, first proposed by LeVeque [25], to demonstrate the ability of our well-
balanced MM-DG scheme to capture small perturbations over the lake-at-rest water surface.
The bottom topography is an isolated elliptical shaped hump,

B(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2 , (x, y) ∈ (−1, 2) × (0, 1).
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Fig. 23 Example 5.5. The water discharge hu (for B defined in (5.6)) at t = 1 obtained with P2-DG and a
moving mesh of N = 160 is compared with those obtained with the fixed meshes of N = 160 and N = 1280

Fig. 24 Example 5.6. An initial
triangular mesh used in the
computation is formed by
dividing each cell of a rectangular
mesh into 4 triangular elements
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Table 6 Example 5.6. Well-balance test for the moving mesh DG method with B updated with DG-
interpolation, over an isolated elliptical shaped hump bottom topography (5.7)

N h + B hu hv

L1-error L∞-error L1-error L∞-error L1-error L∞-error

P1 MM-DG method

10 × 10 × 4 1.589E-16 3.077E-16 1.359E-16 8.941E-16 1.361E-16 8.588E-16

20 × 20 × 4 2.179E-16 4.641E-16 1.775E-16 1.658E-15 1.787E-16 1.627E-15

40 × 40 × 4 3.344E-16 8.298E-16 2.793E-16 3.069E-15 2.813E-16 3.054E-15

P2 MM-DG method

10 × 10 × 4 4.259E-16 1.855E-15 8.005E-16 4.425E-15 8.105E-16 4.288E-15

20 × 20 × 4 3.870E-16 1.944E-15 9.724E-16 6.313E-15 9.104E-16 5.361E-15

40 × 40 × 4 4.257E-16 2.158E-15 1.467E-15 1.129E-14 1.204E-15 8.449E-15
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Fig. 25 Example 5.7. The mesh and contours of B + h at t = 0.12 are obtained with the P2 MM-DG method
and a moving mesh of N = 150 × 50 × 4. The metric tensor is computed based on the equilibrium variable
E and the water depth h (left column) or the entropy/total energy (right column)

The initial depth of water and velocities are given by

h(x, y, 0) =
{
1 − B(x, y) + 0.01, for x ∈ (0.05, 0.15)

1 − B(x, y), otherwise

u(x, y, 0) = 0, v(x, y, 0) = 0.

As time being, the initial perturbation splits into two waves, propagating left and right at the
characteristic speeds±√

gh. The reflection boundary conditions [37] are used for all domain
boundary.

The mesh and contours of B + h at t = 0.12, 0.24, 0.36, and 0.48 obtained with the
P2 MM-DG method and a moving mesh of N = 150 × 50 × 4 are shown in Figs. 25,
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Fig. 26 Continuation of Fig. 25: t = 0.24
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(a) E and h: Mesh at t = 0.36
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Fig. 27 Continuation of Fig. 25: t = 0.36

26, 27, 28. Recall that these results are obtained with the metric tensor (4.3) based on the
equilibrium variable E = 1

2 (u
2 + v2) + g(h + B) and the water depth h. For comparison

purpose, we also include the results obtained the metric tensor based on the entropy/total
energy E = 1

2 (hu
2 + hv2) + 1

2 gh
2 + ghB. One can see that the distribution of the mesh

concentration based on E and h is consistent with the contours of B + h while capturing the
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(a) E and h: Mesh at t = 0.48
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Fig. 28 Continuation of Fig. 25: t = 0.48

complex features in small perturbations. On the other hand, the concentration of the mesh
based on E does not reflect fully the variations of B + h especially at t = 0.24, 0.36, and
0.48. The advantages of using E and h over E in mesh adaptation are clear.

The contours of h + B at t = 0.24 and 0.48 obtained using the P2 MM-DG method with
a moving mesh of N = 150 × 50 × 4 and the fixed meshes of N = 150 × 50 × 4 and
N = 600 × 200 × 4 are shown in Fig. 29. In Fig. 30, the cut of the corresponding results
along the line y = 0.495 is compared for the moving and fixed meshes. We can see that the
moving mesh solution with N = 150 × 50 × 4 is more accurate than that with a fixed mesh
of N = 150 × 50 × 4 and comparable with that with a fixed mesh of N = 600 × 200 × 4.

6 Conclusions and Further Comments

We have presented a high-order well-balanced positivity-preserving adaptive moving mesh
DG method for the numerical solution of the SWEs with non-flat bottom topography. The
method is of rezoning type and contains three main components at each time step, the gen-
eration of the new mesh by node redistribution/movement, the interpolation of the physical
variables from the old mesh to the new one, and the numerical solution of the SWEs on
the new mesh that is fixed over the time step. A focus of the study is the well-balance and
positivity-preserving properties of the method that are crucial to its ability to simulate per-
turbation waves to the lake-at-rest steady state such as waves on a lake or tsunami waves in
deep ocean.

We have employed the MMPDE moving mesh scheme to generate the new mesh at each
time step. A key of the MMPDE scheme is to define the metric tensor that provides the
information needed for controlling the size, shape, and orientation of mesh elements over
the whole spatial domain. The numerical examples have shown that the metric tensor based

123



Journal of Scientific Computing            (2021) 87:88 Page 39 of 43    88 

Fig. 29 Example 5.7. The contours of h+B at t = 0.24 (left column) and 0.48 (right column) are obtainedwith
the P2 MM-DGmethod and a moving mesh of N = 150× 50× 4 and the fixed meshes of N = 150× 50× 4
and N = 600 × 200 × 4

on the entropy/total energy E = 1
2 (hu

2 + hv2) + 1
2 gh

2 + ghB, a common choice in the
adaptive mesh simulation of shock waves, does not lead to fully correct mesh concentration
for waves of small magnitude. Instead, we have proposed to use the equilibrium variable
E = 1

2 (u
2 + v2) + g(h + B) combined with the water depth h in the computation of the

metric tensor and demonstrated numerically that they are well suited for the simulation of
the lake-at-rest steady state and its perturbations.

We have used a fixed mesh well-balanced DG scheme for solving the SWEs on the new
mesh. However, to ensure the well-balance property of the overall MM-DGmethod, we need
to pay special attention to the interpolation of the flow variables and bottom topography,
the slope limiting, and the positivity-preserving (PP) limiting. We have proposed to use a
DG-interpolation scheme (cf. sect. 3) for the purpose. The scheme has high-order accuracy,
preserves constant solutions, and is conservative while being economic to implement: it
requires O(Nv) operations in each use, where Nv is the number of vertices of the mesh. We
note that although the bottom topography has been assumed to be a given time-independent
function in this work, it needs to be updated at each time step from the oldmesh to the new one
due to the movement of the mesh. Moreover, the same scheme should be used for updating
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(c) B + h: MM vs FM at t = 0.48
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Fig. 30 Example 5.7. The cut of the water surface h + B along the line y = 0.495 at t = 0.24 and 0.48
obtained using the P2 MM-DG method with a moving mesh of N = 150 × 50 × 4 is compared with those
obtained with the fixed meshes of N = 150 × 50 × 4 and N = 600 × 200 × 4

both the bottom topography and flow variables in order to attain the well-balance property
of the MM-DG method. We have used the DG-interpolation scheme for both. It is worth
mentioning that the MM-DG scheme also works without modification for a time-dependent
bottom topography, e.g., in tsunamis on the moving ocean floor. In this case, the update of
the bottom topography from mesh to mesh is necessary for both fixed and moving mesh
computation.

To ensure the nonnegativity of the water depth, we use the PP-DG-interpolation (DG-
interpolation with PP limiter) to interpolate the water depth from the old mesh to the new
one, and apply a scaling PP limiter to the water depth every time after we use the TVB limiter.
However, the PP limiter will destroy the well-balance property. To restore the property, we
have proposed tomake a high-order correction to the approximation of the bottom topography
according to themodifications in the water depth due to the PP limiting; see (2.19) and (2.21).

A selection of numerical examples in one and two dimensions have been presented to
demonstrate the well-balance property, positivity-preserving, and high-order accuracy of the
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MM-DG method. They have also shown that the method is well suited for the numerical
simulation of the lake-at-rest steady state and its perturbations. Particularly, the mesh con-
centration correctly reflects structures in the flow variables and bottom topography and leads
to more accurate numerical solutions than a fixed mesh with the same number of elements.

While our focus here is on the well-balance and positivity-preservation properties of the
DGmethod for SWEs on moving meshes, we would like to comment on the efficiency of the
method. Generally speaking, the advantage of the MM-DGmethod in efficiency over a fixed
mesh counterpart is problem-dependent. For example, it has been found that the MM-DG
method can greatly improve the computational efficiency for the radiative transfer equation
(cf. [44, Figs. 5 and 16] and [45, Figs. 13c and 14])where an implicit time scheme is employed
and for higher-accuracy solutions of hyperbolic conservation laws (cf. [28, Fig. 5.23]) where
an explicit time scheme is used. However, for the SWE examples presented in this work, we
found that the MM-DG method typically takes a longer CPU time than a fixed mesh DG
method for the same level of accuracy and therefore has no gain in efficiency although it
requires less mesh elements. A major issue is that the CFL conditions (2.17) and (3.7), which
have been developed for uniform meshes, are very restrictive on adaptive meshes and result
in very small time steps. Investigations on developing a more practical CFL conditions for
nonuniform meshes have been underway.
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