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Abstract

In this paper, we present a fourth-order conservative semi-Lagrangian (SL) finite volume (FV) weighted essentially non-
scillatory (WENO) scheme without operator splitting for two-dimensional linear transport equations with applications in kinetic
odels including the nonlinear Vlasov–Poisson system, the guiding center Vlasov model and the incompressible Euler equation

n the vorticity-stream function formulation. To achieve fourth-order accuracy in space, two main ingredients are proposed in
he SL FV formulation. Firstly, we introduce a so-called cubic-curved quadrilateral upstream cell and applying an efficient
lipping method to evaluate integrals on upstream cells. Secondly, we construct a new WENO reconstruction operator, which
ecovers a P3 polynomial from neighboring cell averages. Mass conservation is accomplished with the mass conservative nature
f the reconstruction operator and the SL formulation. A positivity-preserving limiter is applied to maintain the positivity of
he numerical solution wherever appropriate. For nonlinear kinetic models, the SL scheme is coupled with a fourth-order
unge–Kutta exponential integrator for high-order temporal accuracy. Extensive benchmarks are tested to verify the designed
roperties.
2022 Elsevier B.V. All rights reserved.

eywords: Vlasov systems; Non-splitting scheme; Semi-Lagrangian; WENO reconstruction; Mass conservation; High-order accuracy

1. Introduction

Semi-Lagrangian (SL) schemes are popular for solving transport equation which can be found in many areas of
pplications, such as climate modeling [1,2] and kinetic description of plasma [3–5]. We are concerned with solving
transport equation in the form of

ut + ∇x · (a(u, x, t)u) = 0, (1)
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where u(x, t) represents a density function and a(u, x, t) is the velocity field. The SL approach can be both efficient
nd of high accuracy with its designed nature for solving (1). On one hand, as the Lagrangian approach, the
nformation propagates along characteristics for the SL approach. Hence, it can escape the CFL time restriction
nd use large time steps. On the other hand, the solution space of the SL approach is built on a fixed mesh as the
ulerian approach. This feature ensures its capability to design high-order schemes.

The SL approach can be coupled with different spatial discretizations, such as finite element methods [6–8],
pectral element methods [9–11], discontinous Galerkin (DG) methods [12–14], finite difference (FD) methods [15–
7] and finite volume (FV) methods [18,3,1]. Many existing SL schemes are 1-D schemes coupled with operator-
plitting method, such as the second-order Strang splitting [13] and the fourth-order Forest-Ruch splitting [5]. A
ain advantage of splitting-based SL schemes is its simplicity in terms of extending to multi-dimensional problems.
owever, splitting-based SL schemes have two unavoidable disadvantages. Firstly, the number of subproblems of

plitting-based SL schemes for multi-dimensional problems proliferates, especially for the fourth-order splitting
ethod. Secondly, without extra limitation on numerical time step and careful modifications to the splitting

rocedure [19], the accuracy of the splitting-based schemes decays to first order for some strongly nonlinear
roblems such as the guiding center Vlasov model. For non-splitting SL schemes, a convenient idea is to construct
n FD scheme, which traces the characteristics back and updates the point value information by an interpolation
rocedure. However, such SL FD scheme may lead to significant loss of total mass for some simulations [20].
n [21], a true non-splitting multi-dimensional mass conservative SL FD scheme is successfully built with flux-
ifference form for passive transport problems. However, extra time step restriction is required for numerical stability
s analyzed in [21]. In [13], the L2 stability is proved for the proposed 1-D SL DG scheme. With an additional
econstruction procedure, the non-splitting SL FV scheme proposed in this paper is proved to be unconditionally
table under linearized settings by Fourier analysis. This result supports our confidence in using larger time steps.

We aim to design a high-order SL FV scheme for nonlinear dynamics. The high order accuracy comes from
everal careful designs. Firstly, the proposed SL FV scheme requires high-order solution remapping between a fixed
ulerian cell and a twisted upstream mesh. Such remapping procedure relies on a clipping procedure between two
eshes. In [22], the authors introduced a clipping method on staggered meshes and perform numerical integration

or triangles. Unfortunately, such integral strategy is difficult to extend for general curved polygons appeared in a
igh-order SL FV scheme. In [23], a similar clipping method is introduced on straight-sided quadrilateral meshes.
he numerical integral in [23] is based on Green’s theorem and the 2-D area integrals are converted to line integrals,
hich has the potential for high-order approximation for evaluating integrals on curved polygons. In our previous
ork in [14,24], we followed such strategy. Quadratic-curved quadrilateral upstream cells and a clipping method are

ntroduced in [14,24] to achieve third-order accuracy in space. Following the same idea, we construct cubic-curved
uadrilateral upstream cells, introduce a clipping method and evaluate integrals on curved polygons by the approach
n [23].

Secondly, we construct a new truly 2-D cell-average-based weighted essentially non-oscillatory (WENO)
econstruction method, which follows the same idea as in [25]. The key purpose of applying WENO-type
econstruction is to provide high-order spatial approximation where the exact solution is smooth and to ensure that
he numerical solution is essentially non-oscillatory where the solution is discontinuous. For hyperbolic conservation
aws, the WENO schemes requires reconstructed point values at specific spatial position of each Eulerian cell.
owever, SL schemes may require reconstructed point values at any spatial position for general convection problem

1). This feature precludes the use of traditional WENO reconstruction method, denoted by WENO-JS, in [26–
8]. The WENO reconstruction method introduced in this paper, denoted by WENO-ZQ as in [25], uses artificial
ositive linear weights with their sum being one. It has the capacity to provide a P3 reconstruction polynomial for
ach Eulerian cell. In the region where the solution is smooth, the WENO-ZQ reconstruction offers a fourth-order
pproximation to the exact solution. In the region where the solution is discontinuous, the WENO-ZQ reconstruction
utomatically decays to a lower order polynomial reconstruction. Hence, such reconstruction procedure shares a
imilar spirit with p-adaptive DG methods [29–31]. Positivity preserving (PP) is also an important consideration
or numerical simulations with positive solutions. We apply a PP limiter introduced in [32] to ensure positivity for
uch systems. This PP limiter requires the local minimum value of each P3 reconstruction polynomial.

Finally, for nonlinear problems with their velocity fields depends on the solutions, we couple the SL FV scheme
ith a fourth-order Runge–Kutta exponential integrator (RKEI) [33], denoted by CF4, for high-order temporal
ccuracy.
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We analyze the proposed SL FV WENO scheme in terms of mass conservation, positivity preservation, error
nalysis, and L2 stability. The major complexity comes from the error analysis. With regularity hypothesis on the

velocity field, we quantitatively show the properties of the edges of the exact upstream cells. Such investigation
helps us prove that the cubic-curved upstream cells offer fourth-order approximations to the exact upstream cells.

The rest of the paper is organized as follows. In Section 2, we introduce the implementation of the 2-D SL
FV scheme. Theoretical properties and their proofs are organized in Section 3. Then, we present the numerical
tests of the linear transport equation, the nonlinear Vlasov–Poisson system, the guiding center Vlasov model and
the incompressible Euler equation in the vorticity-stream function formulation in Section 4. Finally, we give a
conclusion in Section 5.

2. 2-D SL FV WENO scheme

Consider a 2-D linear transport equation

∂u
∂t

+
∂

∂x
(a(x, y, t)u) +

∂

∂y
(b(x, y, t)u) = 0, (2)

here u(x, y, t) is a density function of a conserved quantity transported in a flow with velocity field
a(x, y, t), b(x, y, t)). We define the computational domain as Ω = [xL , xR] × [yB, yT ] and assume a discretization
uch that xL = x 1

2
< x 3

2
< · · · < xi− 1

2
< xi+ 1

2
< · · · < xNx −

1
2
< xNx +

1
2

= xR , yB = y 1
2
< y 3

2
< · · · < y j− 1

2
<

y j+ 1
2
< · · · < yNy−

1
2
< yNy+

1
2

= yT , with Ii, j :=

[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
, xi :=

(
xi− 1

2
+ xi+ 1

2

)
/2, y j :=

y j− 1
2

+ y j+ 1
2

)
/2, ∆xi := xi+ 1

2
−xi− 1

2
and ∆y j := y j+ 1

2
− y j− 1

2
. Now, we consider an Eulerian cell Ii, j at t = tn+1

and define a dynamic characteristic region Ii, j (t) := {(x⋆, y⋆) | (x⋆, y⋆) = (X (x, y; t), Y (x, y; t)) , (x, y) ∈ Ii, j },
where (X (x, y; t), Y (x, y; t)) represents the characteristic curve emanating from (x, y, tn+1), i.e., the solution of the

rdinary differential equations (ODEs)⎧⎪⎪⎪⎨⎪⎪⎪⎩
d X (t)/dt = a(X (t), Y (t), t),
dY (t)/dt = b(X (t), Y (t), t),
X (tn+1) = x,
Y (tn+1) = y.

(3)

By Reynolds transport Theorem

d
dt

∫∫
Ii, j (t)

u(x, y, t)dxdy =

∫∫
Ii, j (t)

∂u
∂t

dxdy +

∫
∂ Ii, j (t)

((a, b) · n⃗) uds,

=

∫∫
Ii, j (t)

∂u
∂t

dxdy +

∫∫
Ii, j (t)

∇ · ((a, b)u) dxdy = 0.
(4)

ence, an SL scheme can be naturally formulated from (4):

1
∆xi∆y j

∫∫
Ii, j

u(x, y, tn+1)dxdy =
1

∆xi∆y j

∫∫
I ⋆i, j

u(x, y, tn)dxdy, (5)

where I ⋆i, j = Ii, j (tn) (see Fig. 1).
The design of a fourth-order SL FV WENO scheme relies on an accurate evaluation of the right-hand side of

(5). Firstly, we approximate upstream cells, {I ⋆i, j }, by cubic-curved quadrilaterals, denoted by { Ĩ ⋆i, j }. We discuss the
onstruction of { Ĩ ⋆i, j } in Section 2.1. Secondly, we introduce the WENO-ZQ reconstruction method to map the FV
nformation, {un

i, j }, to a piecewise P3 polynomial, ũ(x, y), in Section 2.2. Finally, in Section 2.3, we describe the
clipping procedures to integrate ũ(x, y) over { Ĩ ⋆i, j }.

2.1. Constructing cubic-curved quadrilateral upstream cells

A cubic-curved quadrilateral upstream cell Ĩ ⋆i, j is a closed region enclosed by four cubic interpolated curves. We
⋆̃
onstruct {Ii, j } as follows.

3
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Fig. 1. Schematic illustration for the characteristic upstream cell I ⋆i, j .

Fig. 2. Left: the black solid lines represent the Eulerian mesh; the black dots are the GLL points located on each edge of the Eulerian
cells. Right: the black solid lines represent the Eulerian mesh; the dashed lines represent the boundaries of {I ⋆i, j }; the black dots are the
characteristic feet obtained by solving (3).

1. Tracing characteristics back.
We locate four Gauss–Legendre–Lobatto (GLL) points in each edge of the Eulerian cells, {Ii, j }, and determine
their characteristic feet by solving (3) at t = tn (see Fig. 2). In practice, the ODEs (3) is solved by high-order
ODE solvers such as a fourth-order Runge–Kutta (RK) method.

2. Reconstructing edges of upstream cells.
For given curved edge of a characteristic upstream cell, say I ⋆i, j , there are four characteristic feet, denoted as
{v⋆k} (see Fig. 2). By {v⋆k}, we interpolate a cubic curve as the edge of Ĩ ⋆i, j in parametric form:{

x(ξ ) = xaξ
3
+ xbξ

2
+ xcξ + xd ,

3 2 (6)

y(ξ ) = yaξ + ybξ + ycξ + yd , ξ ∈ [−1, 1].

4
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Fig. 3. Stencil for the WENO-ZQ reconstruction on 2-D Cartesian mesh.

The constructing procedure of (6) is arranged in Appendix A for brevity.

2.2. 2-D WENO reconstruction

For convenience, we require that ∆xi ≡ ∆x ∀i , and ∆y j ≡ ∆y ∀ j . The WENO-ZQ reconstruction method
maps the FV solution, {un

i, j }, to a piecewise P3 polynomial,

ũ(x, y) = ũ(i, j)(x, y), (x, y) ∈ Ii, j , ∀(i, j), (7)

where ũ(i, j)(x, y) ∈ P3(Ii, j ). We first define a set of local orthogonal basis of P3(Ii, j ) denoted as {vl(x, y)} with:

v1(x, y) = 1, v2(x, y) = µi (x) :=
x − xi

∆x
, v3(x, y) = ν j (y) :=

y − y j

∆y
,

v4(x, y) = µ2
i −

1
12
, v5(x, y) = µiν j , v6(x, y) = ν2

j −
1

12
,

v7(x, y) = µ3
i −

3
20
µi , v8(x, y) =

(
µ2

i −
1
12

)
ν j , v9(x, y) = µi

(
ν2

j −
1
12

)
,

v10(x, y) = ν3
j −

3
20
ν j , v11(x, y) = µ4

i −
3

14
µ2

i +
3

560
,

v12(x, y) =

(
µ2

i −
1

12

)(
ν2

j −
1

12

)
, v13(x, y) = ν4

j −
3

14
ν2

j +
3

560
.

(8)

We also define that un
5 := un

i, j , I5 := Ii, j and other {un
s }, {Is} represent corresponding cell averages and Eulerian

cells based on the serial numbers in Fig. 3. Then, the WENO-ZQ reconstruction over Ii, j is performed as follows.

1. Construct a polynomial q̃0(x, y) :=
∑13

l=1 aq0
l v

l(x, y) and four P1 polynomials {qk(x, y)}4
k=1 :=

{
∑3

l=1 aqk
l v

l(x, y)}4
k=1 satisfying:

1
∆x∆y

∫∫
Is

q̃0(x, y)dxdy = un
s , (9)

where s = 1, 2, . . . , 13;

1
∫∫

qk(x, y)dxdy = un
s , (10)
∆x∆y Is

5
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where

s = 2, 4, 5, for k = 1; s = 2, 5, 6, for k = 2;

s = 4, 5, 8, for k = 3; s = 5, 6, 8, for k = 4.
(11)

Let q0(x, y) :=
∑10

l=1 aq0
l v

l(x, y), which is the orthogonal projection of q̃0 to P3(Ii, j ).
2. Compute the smoothness indicators {βk} of {qk(x, y)}:

β0 =
1

∆x∆y

∑
l1+l2<=3

∫∫
Ii, j

(
∆x l1∆yl2

∂ |l1+l2|

∂x l1∂yl2
q0(x, y)

)2

dxdy;

βk =
1

∆x∆y

∑
l1+l2<=1

∫∫
Ii, j

(
∆x l1∆yl2

∂ |l1+l2|

∂x l1∂yl2
qk(x, y)

)2

dxdy, k = 1, 2, 3, 4.

(12)

3. Calculate a new parameter:

τ :=

(
|β0 − β1| + |β0 − β2| + |β0 − β3| + |β0 − β4|

4

)2

. (13)

4. Compute the nonlinear weights {ωk} (see [25]):

ωk =
ωk∑4
l=0 ωl

, with ωk = γk

(
1 +

τ

βk + ϵ

)
, k = 0, 1, . . . , 4. (14)

where ϵ, which is 10−14 in our program, is used to avoid the denominator being zero and {γk} is a set
of positive linear weights satisfying that the sum of which is 1. In numerical tests, we take γ0 = 0.8,
γ1 = · · · = γ4 = 0.05.

5. The WENO-ZQ reconstruction polynomial ũ(i, j)(x, y) :=
∑10

l=1 a(i, j)
l vl(x, y) is given by

ũ(i, j)(x, y) =
ω0

γ0

(
q0(x) −

4∑
k=1

γkqk(x, y)

)
+

4∑
k=1

ωkqk(x, y), (15)

where {a(i, j)
l } can be explicitly provided by

a(i, j)
1 = un

i, j ; a(i, j)
l =

ω0

γ0
aq0

l +

4∑
k=1

(
ωk −

ω0

γ0
γk

)
aqk

l for l = 2, 3;

a(i, j)
l =

ω0

γ0
aq0

l for l = 4, 5, . . . , 10.

(16)

In particular, if ũ(i, j)(x, y) =
∑10

l=1 aq0
l v

l(x, y) ∀i, j , we call such a reconstruction linear reconstruction.

2.3. Calculating integrals over cubic curved quadrilateral upstream cells

2.3.1. Clipping
As introduced in Section 2.2, we will evaluate the integration of a reconstructed piecewise polynomial over

each Ĩ ⋆i, j , which may cross different Eulerian cells. Hence, we clip { Ĩ ⋆i, j } into curved polygons such that Ĩ ⋆i, j =

∪(p,q)( Ĩ ⋆i, j ∩ Ip,q ) and integrate piecewisely. We denote the curved polygons
{

Ĩ ⋆i, j ∩ Ip,q

}
by
{

Ĩ ⋆i, j;p,q

}
. The clipping

algorithm introduced here focuses on determining edges of the curved polygons. In particular, we define the outer
integral segments of a upstream cell Ĩ ⋆i, j as the edges, overlapping ∂ Ĩ ⋆i, j , of

{
Ĩ ⋆i, j;p,q

}
with counterclockwise direction

ith respect to Ĩ ⋆i, j , denoted by {Lk
i, j;p,q} (see Fig. 4(a)). The inner integral segments are defined as the edges,

verlapping mesh lines, of
{

Ĩ ⋆i, j;p,q

}
with counterclockwise direction with respect to the curved polygons, denoted

y {Sk
i, j;p,q} (see Fig. 4(b)).
For the implementation of clipping, we introduce the basic procedure in Appendix B for conciseness.

6
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2

w

Fig. 4. Schematic illustration for the definitions of outer integral segments (a) and inner integral segments (b). The red circles and triangles
represent the intersection points of Ĩ ⋆i, j and the Eulerian mesh.

.3.2. Numerical integral

For numerical integral, we define a reference integral region [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ] and corresponding projections

J(i, j)
: R2

→ R2, (x, y) ↦→ (µi , ν j ) :=
(
(x − xi )/∆x, (y − y j )/∆y

)
for all i, j . With the clipped outer

integral segments, {Lk
i, j;p,q}, as well as the inner integral segments, {Sk

i, j;p,q}, and the reconstruction piecewise
P3 polynomial, ũ(x, y), we can numerically approximate (5) by

un+1
i, j =

1
∆x∆y

∫∫
Ĩ ⋆i, j

ũ(x, y)dxdy

=
1

∆x∆y

∑
(p,q)

∫∫
Ĩ ⋆i, j;p,q

ũ(p,q)(x, y)dxdy

=

∑
(p,q)

∫∫
J(p,q)( Ĩ ⋆i, j;p,q )

ũ(p,q)(µp, νq )dµpdνq

=

∑
(p,q)

∫
J(p,q)(∂( Ĩ ⋆i, j;p,q ))

[
P̃ (p,q)dµp + Q̃(p,q)dνq

]
=

∑
(p,q)

{∑
k

∫
J(p,q)(Lk

i, j;p,q )

[
P̃ (p,q)dµp + Q̃(p,q)dνq

]
+

∑
k

∫
J(p,q)(Sk

i, j;p,q )

[
P̃ (p,q)dµp + Q̃(p,q)dνq

] }
,

(17)

here P̃ (p,q)(µp, νq ) and Q̃(p,q)(µp, νq ) are piecewise smooth auxiliary functions such that

−
∂ P̃ (p,q)

∂νq
+
∂ Q̃(p,q)

∂µp
= ũ(p,q)(µp, νq ). (18)

In our program, we choose:

P̃ (p,q)(µp, νq ) = −

[
a(p,q)

2 µp + a(p,q)
4

(
µ2

p −
1
)

+ a(p,q)
7

(
µ3

p −
3
µp

)]
νq , (19)
12 20
7
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and

Q̃(p,q)(µp, νq ) =

[
a(p,q)

1 +

(
a(p,q)

3 −
a(p,q)

8

18

)
νq +

1
2

a(p,q)
5 µpνq + a(p,q)

6

(
ν2

q −
1
12

)
+

1
3

a(p,q)
8

(
µ2

p −
1
12

)
νq +

1
2

a(p,q)
9 µp

(
ν2

q −
1

12

)
+ a(p,q)

10

(
ν3

q −
3

20
νq

) ]
µp.

(20)

or the line integral over a given outer integral segment, say Lk
i, j;p,q ,∫

J(p,q)(Lk
i, j;p,q )

[P̃ (p,q)dµp + Q̃(p,q)dνq ]

=

∫ ξk+1

ξk

[
P̃ (p,q) (µp(ξ ), νq (ξ )

)
µ′

p(ξ ) + Q̃(p,q) (µp(ξ ), νq (ξ )
)
ν ′

q (ξ )
]

dξ,
(21)

here ξk and ξk+1 represent the ξ value of the start point and end point of Lk
i, j;p,q with respect to corresponding

ubic curve (6), and
(
µp(ξ ), νq (ξ )

)
:=

(
x(ξ )−x p

∆x ,
y(ξ )−yq
∆y

)
.

In practical programming, we use 3-point Gauss–Legendre quadrature for evaluating line integrals. It can be
hecked that the 3-point Gauss–Legendre quadrature is exact for integration on inner integral segments and is of
ixth-order accuracy for outer integral segments.

.3.3. PP limiter
When the analytical solution of (2) enjoys the PP property, we introduce the PP limiter in [32] to ensure the PP

roperty of the numerical solution. The PP limiter applied here replaces ũ(i, j)(x, y) by˜̃u(i, j)(x, y) := θi, j
(̃
u(i, j)(x, y) − un

i j

)
+ un

i j , (x, y) ∈ Ii, j (22)

here

θi, j := min

{⏐⏐⏐⏐⏐ un
i j

un
i j − mi j

⏐⏐⏐⏐⏐
}
, mi j := min

(x,y)∈Ii, j

{
ũ(i, j)(x, y)

}
. (23)

To determine mi j , one has to find the extreme points of R(i, j)(x, y) by solving a system of quadratic equations with
two variables:⎧⎪⎪⎨⎪⎪⎩

∂ ũ(i, j)(x, y)
∂x

= 0,

∂ ũ(i, j)(x, y)
∂y

= 0.
(24)

hrough careful classification, solving (24) is equivalent to finding intersection points of conic sections.
It can be proved as in [32] that ˜̃u(i, j)(x, y) stays non-negative and maintains the original accuracy of ũ(i, j)(x, y)

pproximating u(x, y, tn).

emark 2.1. By our numerical test, we find that we can not only compute the minimum value of ũ(x, y) at the
orresponding Gauss–Legendre points as in [34]. This is probably because that the Green’s formulation is involved
n (17).

. Theoretical properties

In this section, we demonstrate four basic properties of the SL FV WENO scheme.

roposition 3.1 (Mass Conservation). The SL FV WENO scheme is mass conservative if the periodic boundary

ondition is imposed.

8
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Fig. 5. Left: the black solid lines represent the Eulerian mesh; the black dots are the vertexes of Ii, j ; the red solid lines are the edges of
Ii, j . Right: the black solid lines represent the Eulerian mesh; the black dots are the vertexes of I ⋆i, j ; the red curves represent the boundaries
of {I ⋆i, j }.

Proof.

∆x∆y
Nx∑
i=1

Ny∑
j=1

un+1
i, j = ∆x∆y

Nx∑
i=1

Ny∑
j=1

∫
J(p,q)(∂ Ii, j )

[
P̃ (i, j)dµi + Q̃(i, j)dν j

]
=

Nx∑
i=1

Ny∑
j=1

∫∫
Ii, j

ũ(i, j)(x, y)dxdy = ∆x∆y
Nx∑
i=1

Ny∑
j=1

un
i, j ,

(25)

here the first equality comes from the periodic boundary condition, the second equality is based on the fact that
ntegrals over inner integral segments are exact and the third equality comes from the mass conservation property
f the WENO reconstruction. □

roposition 3.2 (Positivity Preservation). The SL FV WENO scheme coupled with the PP limiter in Section 2.3.3
s PP if the line integrals in (17) are exactly evaluated.

roof. As stated in Section 2.3.3, ˜̃u(i, j)(x, y) is non-negative for all i, j . The conclusion is clearly valid given the
line integrals in (17) are exactly evaluated. □

Some preparations are required before providing the error analysis. Firstly, we emphasize that the characteristics
will not intersect at the PDE level for the problems we consider. Secondly, we assume that ∆t ∼ ∆x ∼ ∆y, which

uarantees that the exact upstream cells are only mildly distorted, as will be proved below. Now, Consider an edge
f Ii, j , v1v4, at t = tn+1 and its characteristic upstream curve v̂⋆1v

⋆
4 (see Fig. 5). Here, we use the same notation

f {v⋆k}
4
k=1 as in Section 2.1 and assume that {v⋆k} are obtained by exactly solving (3). For simplicity, we define

(α) := X (α, y j− 1
2
; tn), and Y(α) := Y (α, y j− 1

2
; tn) with (α, y j− 1

2
) α ∈ [xi− 1

2
, xi+ 1

2
] representing v1v4. Then, a

arametric equation of v̂⋆1v
⋆
4 is represented by[

X (α)

Y(α)

]
=

⎡⎣ α +
∫ tn

tn+1 a(X (α, y j− 1
2
; t), Y (α, y j− 1

2
; t), t)dt

y j− 1
2

+
∫ tn

tn+1 b(X (α, y j− 1
2
; t), Y (α, y j− 1

2
; t), t)dt

⎤⎦ α ∈ [xi− 1
2
, xi+ 1

2
]. (26)

emma 3.3. The derivatives of X (α), Y(α) satisfy[
dX (α)

dα
dY(α)

]
=

[
1 + O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
], (27)
dα
O(∆t)

9
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and ⎡⎣ dkX (α)
dαk

dkY(α)
dαk

⎤⎦ =

[
O(∆t)

O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
] k = 2, 3, 4. (28)

f a(x, y, t), b(x, y, t) ∈ C4.

roof. Taking the derivative of both sides of (26) with respect to α and expand the right-hand side integrands at
α, y j− 1

2
; tn), we have[

dX (α)
dα

dY(α)
dα

]
=

[
1

0

]
− ∆t

[
a′

1 a′

2

b′

1 b′

2

] ⏐⏐⏐⏐
(α,y

j− 1
2

;tn )

[
dX (α)

dα
dY(α)

dα

]
+ δA, (29)

here δA ∈ R2 and ∥δA∥ = O(∆t2). Dropping the high-order term δA, we have[
1 + ∆ta′

1 ∆ta′

2

∆tb′

1 1 + ∆tb′

2

][
dX (α)

dα
dY(α)

dα

]
=

[
1

0

]
. (30)

enote the matrix in (30) by B. We find that det(B) = 1 + O(∆t). It is obvious that det(B) ̸= 0 for sufficiently
mall ∆t . Hence, we obtain[

dX (α)
dα

dY(α)
dα

]
=

[
(1 + ∆tb′

2)/det(B)

−∆tb′

1/det(B)

]
=

[
1 + O(∆t)

O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
]. (31)

imilarly, by taking the second, third, and fourth derivative of both sides of (26) with respect to α, we can prove
hat ⎡⎣ d(k)X (α)

dαk

d(k)Y(α)
dαk

⎤⎦ =

[
O(∆t)

O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
] k = 2, 3, 4. □ (32)

Lemma 3.3 naturally leads to the following lemma.

emma 3.4. Assuming that {v⋆k}
4
k=1 := {(xk, yk)}4

k=1 in x − y space, we have

x4 − x1 = ∆x + O(h2), y4 − y1 = O(h2), d(v⋆1, v
⋆
4) = ∆x + O(h2) (33)

f a(x, y, t), b(x, y, t) ∈ C4, where h ∼ ∆x ∼ ∆y ∼ ∆t .

roof. By Lemma 3.3, the result follows by a simple calculation. □

We construct a new coordinate space x ′
− y′ such that x ′

− y′ is transformed by x − y through a rotation and
ranslation transformation (see Fig. 5). x ′

− y′ is set up so that the direction of x ′-axis is the same with
−−→
v⋆1v

⋆
4. Let O ′

e the midpoint of v⋆1 and v⋆4. Assume that the coordinates of {v⋆k} in x ′
− y′ space are {(x ′

k, y′

k)}, where y′

1 = y′

4 = 0.
Then, we define a parametric equation of v̂⋆1v

⋆
4 as (x ′, f (x ′)) with x ′

∈ [x ′

1, x ′

4].

emma 3.5. The derivatives of f (x ′) satisfy

f (k)(x ′) = O(h) x ′
∈ [x ′

1, x ′

4] k = 1, 2, 3, 4 (34)

f a(x, y, t), b(x, y, t) ∈ C4, where h ∼ ∆x ∼ ∆y ∼ ∆t .

roof. With the definition of x ′
− y′, we have[

x ′

y′

]
=

[ x4−x1
d

y4−y1
d

−
y4−y1

d
x4−x1

d

][
x

y

]
+

[
c1

c2

]
:= T

[
x

y

]
+ c⃗, (35)

where d = d(v⋆1, v
⋆
4). Let T = (ti j )2×2. By Lemma 3.4, we immediately obtain

t = 1 + O(h), t = O(h), t = O(h), t = 1 + O(h). (36)
11 12 21 22

10
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Then, for v̂⋆1v
⋆
4, we have[

x ′

f (x ′)

]
= T

[
X (α)

Y(α)

]
+ c⃗ x ′

∈ [x ′

1, x ′

4]. (37)

aking the derivative of both sides of (37) with respect to x ′, we obtain[
1

f ′(x ′)

]
= T

[
dX (α)

dα ·
dα
dx ′

dY(α)
dα ·

dα
dx ′

]
x ′

∈ [x ′

1, x ′

4]. (38)

y Lemma 3.3, we obtain[
dα
dx ′

f ′(x ′)

]
=

[
1/
(
t11

dX
dα + t12

dY
dα

)(
t21

dX
dα + t22

dY
dα

) dα
dx ′

]
=

[
1 + O(h)

O(h)

]
x ′

∈ [x ′

1, x ′

4]. (39)

imilarly, taking the second, third, and fourth derivative of both sides of (37) with respect to x ′, we can prove that

f (k)(x ′) = O(h) x ′
∈ [x ′

1, x ′

4] k = 2, 3, 4. □ (40)

roposition 3.6 (Error Analysis). The numerical update given by (17) satisfies:⏐⏐⏐⏐⏐ 1
∆x∆y

∫∫
Ii, j

u
(
x, y, tn+1) dxdy − un+1

i, j

⏐⏐⏐⏐⏐ = O
(
h4) (41)

ith h ∼ ∆x ∼ ∆y ∼ ∆t (h → 0) if corresponding {un
p,q} are exact and u(x, y, t), a(x, y, t), b(x, y, t) ∈ C4.

roof. ⏐⏐⏐⏐⏐ 1
∆x∆y

∫∫
Ii, j

u
(
x, y, tn+1) dxdy − un+1

i, j

⏐⏐⏐⏐⏐
=

1
∆x∆y

⏐⏐⏐⏐ ∫∫
I ⋆i, j

u
(
x, y, tn) dxdy −

(∫∫
Ĩ ⋆i, j

ũ (x, y) dxdy + eI

) ⏐⏐⏐⏐
≤

1
∆x∆y

[ ∫∫
I ⋆i, j

⏐⏐u (x, y, tn)
− ũ(x, y)

⏐⏐ dxdy

+

⏐⏐⏐⏐⏐
∫∫

I ⋆i, j

ũ(x, y)dxdy −

∫∫
Ĩ ⋆i, j

ũ(x, y)dxdy

⏐⏐⏐⏐⏐+ |eI |

]

≤
1

∆x∆y

[
max

(x,y)∈I ⋆i, j

{⏐⏐u (x, y, tn)
− ũ(x, y)

⏐⏐} ⏐⏐I ⋆i, j

⏐⏐+ M
(
|I ⋆i, j\ Ĩ ⋆i, j | + | Ĩ ⋆i, j\I ⋆i, j |

)
+ |eI |

]
,

(42)

where M = max {|̃u (x, y)|} and eI is the error introduced by numerical integration. For |u (x, y, tn)− ũ(x, y)|, we
refer to [25] for similar analysis and conclude that

max
(x,y)∈I ⋆i, j

{⏐⏐u (x, y, tn)
− ũ(x, y)

⏐⏐} = O
(
h4) . (43)

For |eI |, notice that we use the 3-point Gauss–Legendre quadrature for numerical integral, which offers a six-order
approximation to exact integral. Hence, we have |eI | = O(h6).

To prove (41), it is sufficient to prove that⏐⏐I ⋆i, j

⏐⏐ = O
(
h2) (44)

nd (
|I ⋆i, j\ Ĩ ⋆i, j | + | Ĩ ⋆i, j\I ⋆i, j |

)
= O

(
h6) . (45)

Define that I ⋆⋆i, j represents the straight-sided quadrilateral determined by the four vertexes of I ⋆i, j . Then, it is
bvious that |I ⋆⋆ | = O(h2) by Lemma 3.4. Notice that |I ⋆ | = |I ⋆⋆ | + |I ⋆ \I ⋆⋆ | − |I ⋆⋆\I ⋆ |. We denote the blue
i, j i, j i, j i, j i, j i, j i, j

11
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shaded area in Fig. 5 by Ωb. To prove |I ⋆i, j | = O(h2), it is sufficient to investigate |Ωb|. By Lemmas 3.4 and 3.5,
e have

|Ωb| =

⏐⏐⏐⏐⏐
∫ x ′

4

x ′
1

f (x ′)dx ′

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
∫ x ′

4

x ′
1

[
f (x ′) − 0

]
dx ′

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
∫ x ′

4

x ′
1

f ′′(β(x ′))
2!

(x ′
− x ′

1)(x ′
− x ′

4)dx ′

⏐⏐⏐⏐⏐
= O(h4),

(46)

where f ′′(β(x ′))
2!

(x ′
− x ′

1)(x ′
− x ′

4) is the Lagrangian interpolation remainder of the linear interpolation polynomial
with information {(x ′

1, 0), (x ′

4, 0)} and β(x ′) ∈ [x ′

1, x ′

4] for all x ′. Hence, |I ⋆i, j | = O(h2).

For
(
|I ⋆i, j\ Ĩ ⋆i, j | + | Ĩ ⋆i, j\I ⋆i, j |

)
= O(h6), similar to (46), one can find that it is sufficient to prove⏐⏐⏐⏐⏐

∫ x ′
4

x ′
1

f (4)(β̃(x ′))
4!

(x ′
− x ′

1)(x ′
− x ′

2)(x ′
− x ′

3)(x ′
− x ′

4)dx ′

⏐⏐⏐⏐⏐ = O(h6), (47)

here f (4)(β̃(x ′))
4!

(x ′
−x ′

1)(x ′
−x ′

2)(x ′
−x ′

3)(x ′
−x ′

4) is the Lagrangian interpolation remainder of the cubic interpolation
olynomial with information {(x ′

k), f (x ′

k)}4
k=1. The approximation (47) holds naturally by Lemmas 3.4 and 3.5. □

emark 3.7. According to Lemmas 3.3 and 3.5, we prove quantitatively that the upstream curved edges are actually
mooth curves close to vertical or horizontal straight edges.

emark 3.8. Notice that the conclusion is proved based on the assumption that {v⋆k}
4
k=1 is obtained by exactly

olving (3). The numerical error occurred by the fourth-order RK integrator can be found to be not dominant in
his error analysis. For conciseness, we skip this discussion.

roposition 3.9 (L2 Stability). The numerical update given by (17) is unconditionally stable for transport equations
ith constant coefficients and the periodic boundary condition, if ũ(x, y) is constructed by the fourth-order linear

econstruction.

roof. The proposition is proved by the standard von Neumann analysis. The proof is arranged in Appendix C for
onciseness. □

. Numerical tests

.1. Linear transport equations

In this subsection, two linear transport equations are chosen to test the non-splitting SL FV WENO scheme. We
ompare the non-splitting SL FV scheme with a fourth-order splitting-based SL FV WENO scheme [35] in terms
f accuracy and efficiency. We adopt the 1-D WENO-ZQ [25] for the splitting scheme.

Unless specified, we set ∆t =
CFL

max{|a(x,y,t)|}
∆x +

max{|b(x,y,t)|}
∆y

and CFL = 10.2. The PP limiter is applied for the problems

with non-negative initial conditions for both schemes.

Example 4.1 (Transport Equation with Constant Coefficients). Consider

ut + ux + u y = 0, x ∈ [−π, π], y ∈ [−π, π]. (48)

ith a smooth initial condition u(x, y, 0) = sin(x + y) and the periodic boundary condition. The exact solution for
his problem is u(x, y, t) = sin(x + y − 2t).
12
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Table 1
(Transport equation with constant coefficients). L2 errors and corresponding orders of
accuracy of the non-splitting and splitting-based schemes for (48) with u(x, y, 0) =

sin(x + y) at T = 2.

Non-splitting Splitting

Mesh L2 error Order L2 error Order

40 × 40 1.58E−04 – 2.23E−05 –
80 × 80 8.40E−07 7.55 1.76E−07 6.99
160 × 160 5.16E−08 4.03 1.96E−09 6.49
320 × 320 3.22E−09 4.00 5.43E−11 5.17

Fig. 6. (Transport equation with constant coefficients). Log–log plot of the CPU times vs. the L2 errors of the non-splitting and splitting-based
schemes for (48) with u(x, y, 0) = sin(x + y) at T = 2.

In Table 1, we show the L2 errors, corresponding orders of accuracy of the non-splitting and splitting-based SL
FV WENO schemes at T = 2. For this problem, there is no temporal error for both schemes. Hence, the orders in
Table 1 are spatial orders. The spatial order of the non-splitting SL FV WENO scheme is fourth as expected. The
spatial order of the splitting-based SL FV WENO scheme is fifth. In Fig. 6, we present the log–log plot of the CPU
times vs. the L2 errors of both schemes. For this problem, the splitting-based SL FV WENO scheme is observed
to be much more efficient than the non-splitting SL FV WENO scheme.

Example 4.2 (Swirling Deformation Flow). Consider

ut − (2πcos2(
x
2

)sin(y)g(t)u)x + (2πsin(x)cos2(
y
2

)g(t)u)y = 0,

x ∈ [−π, π], y ∈ [−π, π],
(49)

here g(t) = cos(π t/T ) and T = 1.5. We consider (49) with zero boundary condition and a smooth initial condition

u(x, y, 0) =

{
rb

0 cos( rb(x)π
2rb

0
)6 if rb(x) < rb

0 ,

0, otherwise,
(50)

where rb
0 = 0.3π , rb(x) =

√
(x − xb

0 )2 + (y − yb
0 )2 and the center of the cosine bell (xb

0 , yb
0 ) = (0.3π, 0).

We give the L2 errors and corresponding orders of accuracy of the non-splitting and spitting-based SL FV WENO
chemes at t = 1.5 in Table 2. Fourth order accuracy is observed for the non-splitting SL FV scheme. Under the
ame mesh, we observe that the non-splitting SL FV scheme is more accurate than the splitting-based SL FV
cheme. In Fig. 7(a), we show the log–log plot of the CPU times vs. the L2 errors of both schemes with the same
ettings in Table 2. We observe that the CPU efficiency of the two schemes is very close. In Fig. 7(b), with a fixed
esh of 160 × 160, we present the log–log plot of the CFL numbers vs. the L2 errors. When ∆t is small enough,

he spatial error dominates. Accumulated error increases with reducing CFL, or ∆t , because more time steps are
aken. Hence, the L2 error slightly goes up as CFL is reduced. We can observe that the temporal orders of the both
chemes are fourth when the temporal error starts to dominate for larger CFL.

Then, we test (49) with zero boundary condition and a discontinuous initial condition shown in Fig. 8. In Fig. 9,
e present the mesh plot and the contour plot of the numerical solution of the non-splitting SL FV scheme at
13
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Table 2
(Swirling deformation flow). L2 errors and corresponding orders of accuracy of
the non-splitting and splitting-based schemes for (49) with initial condition (50) at
t = 1.5.

Non-splitting Splitting

Mesh L2 error Order L2 error Order

40 × 40 6.47E−03 – 1.63E−02 –
80 × 80 5.82E−04 3.47 2.01E−03 3.02
160 × 160 4.47E−05 3.70 9.42E−05 4.41
320 × 320 3.90E−06 3.52 5.39E−06 4.13
640 × 640 3.28E−07 3.57 3.11E−07 4.12
1280 × 1280 2.51E−08 3.71 1.50E−08 4.37
2560 × 2560 3.11E−11 9.66 1.15E−10 7.03
5120 × 5120 1.37E−12 4.50 2.39E−12 5.59

Fig. 7. (Swirling deformation flow). Left: log–log plot of the CPU times vs. the L2 errors with the same settings in Table 2. Right: log–log
plot of the CFL numbers vs. the L2 errors with a fixed mesh of 160 × 160 for (49) with initial condition (50) at t = 1.5.

Fig. 8. (Swirling deformation flow). The mesh plot (left) and the contour plot (right) of the discontinuous initial data for (49).

Fig. 9. (Swirling deformation flow). The mesh plot (left) and the contour plot (right) of the numerical solution of the non-splitting SL FV
WENO scheme for (49) with initial condition Fig. 8 at t = 0.75.

= 0.75. In Fig. 10, we show the mesh plot, the contour plot, and two cross-sections of the numerical solution of
he non-splitting SL FV scheme at t = 1.5. We observe that the non-splitting SL FV WENO scheme captures the
omplex structure of the solution well. The PP property is also observed.
14
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Fig. 10. (Swirling deformation flow). Top left and top right panels are the mesh plot and contour plot of the numerical solution of the
on-splitting SL FV WENO scheme for (49) with initial condition Fig. 8 at t = 1.5. Bottom left and bottom right panels present the
ross-sections at x = 0 and y = 1.2.

Table 3
CF4.

0
1
2

1
2

1
2 0 1

2

1 1
2 0 0

−
1
2 0 1

1
4

1
6

1
6 −

1
12

−
1
12

1
6

1
6

1
4

4.2. Nonlinear Vlasov–Poisson system

The nonlinear VP system describes collisionless plasma with a negligible magnetic field. In this subsection, we
consider the 1-D physical space and 1-D velocity space (1D1V) nonlinear VP system on (x, v, t) ∈ Ωx ×R×R+:

ft + v fx + E(x, t) fv = 0, (51)

E(x, t) = −φx , − φxx (x, t) = ρ(x, t), (52)

here x and v are spatial position and velocity respectively, f(x,v,t) describes the probability of a particle arises
t position x with velocity v at time t , E is the electric field, φ is the self-consistent electrostatic potential, and
=
∫
R f (x, v, t)dv−ρ0 is the charge density with ρ0 =

1
|Ωx |

∫
Ωx

∫
R f (x, v, 0)dvdx . We assume periodic boundary

ondition on the x-dimension and zero boundary condition on the v-dimension.
For the nonlinear 1D1V VP system, we couple the non-splitting SL FV WENO scheme with a fourth-order RKEI

n the same framework as in [36]. The fourth-order RKEI (CF4) is a commutator-free Lie group method introduced
n [33] with its Butcher tableau shown in Table 3.
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We summarize the SL FV WENO scheme coupled with CF4 for the 1D1V VP system as follows:

f
(1)

= f
n

f
(2)

= SLW E N O
(

V
(

f
(1)
)
,

1
2
∆t
)

f
n

f
(3)

= SLW E N O
(

V
(

f
(2)
)
,

1
2
∆t
)

f
n

f
(4)

= SLW E N O
(

−
1
2

V
(

f
(1)
)

+ V
(

f
(3)
)
,

1
2
∆t
)

f
(2)

f
n+1

= SLW E N O
(

−
1
12

V
(

f
(1)
)

+
1
6

V
(

f
(2)
)

+
1
6

V
(

f
(3)
)

+
1
4

V
(

f
(4)
)
,

1
2
∆t
)

SLW E N O
(

1
4

V
(

f
(1)
)

+
1
6

V
(

f
(2)
)

+
1
6

V
(

f
(3)
)

−
1
12

V
(

f
(4)
)
,

1
2
∆t
)

f
n
,

(53)

here V
(

f
(k)
)

represents the numerical velocity field obtained by a given FV solution f
(k)

, SLW E N O(
V
(

f
(k)
)
, 1

2∆t
)

f
(l)

represents the solution evolved from f
(l)

with time step 1
2∆t and velocity field V

(
f

(k)
)

by

the non-splitting SL FV WENO scheme. For V
(

f
(k)
)

:=
(
v, Ẽ(x)

)
, we approximate the electric field as follows.

1. Compute the cell averages of the charge density {ρi } := {∆v
∑

j f
(k)
i, j − ρ0}.

2. Compute the nodal values of the charge density {ρi } at {xi } by {ρi } with fifth-order accuracy:

ρi =
3

640
ρi−2 −

29
480

ρi−1 +
1067
960

ρi −
29

480
ρi+1 +

3
640

ρi+2 ∀i. (54)

3. Solve the Poisson’s equation (52) and compute the nodal values of the electric field {Ei } at {xi } by a Fast
Fourier transform (FFT) solver.

4. Reconstruct a piecewise P4 polynomial Ẽ(x) satisfying

Ẽ(x) = Ẽ i (x) ∀x ∈ Ii , ∀i, (55)

with Ẽ i (x) ∈ P4(Ii ) being the interpolation polynomial interpolated by {(xi+l , Ei+l)}2
l=−2 for all i .

In this subsection, standard tests such as Landau damping, two stream instability, and bump-on-tail instability
re tested. We use an FFT solver for the Poisson’s equation (52) for both non-splitting and splitting SL FV WENO
chemes. Unless otherwise specified, we set the computational domain as [0, 4π ] × [−vmax, vmax] with vmax = 2π
nd set Nx = 128, Nv = 256, CFL = 10.2, ∆t = CFL/ (vmax/∆x + max{|E |}/∆v). We adopt the PP limiter for
ll the tests below.

xample 4.3 (Landau Damping). Consider the VP system with the initial condition

f (x, v, t = 0) =
1

√
2π

(1 + αcos(kx)) exp
(

−
v2

2

)
, (56)

here k = 0.5, α = 0.01 for the weak Landau damping and k = 0.5, α = 0.5 for the strong Landau damping.
In Table 4, we present the L2 errors and corresponding orders of accuracy of the non-splitting and splitting-based

L FV WENO schemes at T = 2 with CFL = 10.2. The errors are computed by comparing the solution to a reference
olution with mesh refinement. As shown, the order of accuracy for the non-splitting SL FV WENO scheme is 4th
s expected. For the same mesh, the non-splitting scheme is observed to be more accurate than the splitting-based
cheme. In Fig. 11(a), we show the log–log plot of the CPU times vs. the L2 errors of the non-splitting and splitting-
ased SL FV WENO schemes with the same settings in Table 4. As shown, the splitting-based scheme is more
fficient. In Fig. 11(b), the log–log plot of the CFL numbers vs. the L2 errors of the non-splitting and splitting-based

SL FV schemes with a fixed mesh of 128 × 128 at T = 2 is shown. The fourth-order temporal orders of both
chemes are observed.
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Table 4
(Strong Landau damping). L2 errors and corresponding orders of accuracy of the
non-splitting and splitting-based SL FV WENO schemes for strong Landau damping
at T = 2.

Non-splitting Splitting

Mesh L2 error Order L2 error Order

16 × 16 2.74E−03 – 2.40E−02 –
32 × 32 2.15E−04 3.67 5.68E−03 2.08
64 × 64 1.36E−05 3.98 4.15E−04 3.77
128 × 128 5.30E−07 4.68 1.79E−05 4.53
256 × 256 2.90E−08 4.19 1.43E−06 3.65

Fig. 11. (Strong Landau damping). Left: log–log plot of the CPU times vs. the L2 errors with the same settings in Table 4. Right: log–log
plot of the CFL numbers vs. the L2 errors with a fixed mesh of 128 × 128 for strong Landau damping at T = 2.

Fig. 12. (Strong Landau damping). The mesh plot (left) and the contour plot (right) of the numerical solution of the non-splitting SL FV
ENO scheme at T = 40.

In Fig. 12, we show the mesh plot and the contour plot of the numerical solution of the non-splitting SL FV
ENO scheme at T = 40. We observe that the filamentation structure of strong Landau damping problem is well

aptured and the numerical solution is non-negative.
For 1D1V VP system, there are several conservative quantities including mass, L p norms, energy and entropy [5].

In Fig. 13, we present the relative deviation of mass and the L1 norm for the non-splitting SL FV WENO scheme for
weak and strong Landau damping which are observed to be around O(10−13). Hence, the proposed non-splitting SL
FV WENO scheme enjoys the mass conservation and PP property. For other conservative quantities, the proposed
scheme is not designed to exactly preserve them. The performance of preserving those quantities is similar to the
results in [5,24]. We skip them for saving space. For the same reason, we skip presenting the time history of the
electric field to save space.
17
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Fig. 13. (Landau damping). Performance of mass conservation and PP properties of the non-splitting SL FV WENO scheme for the weak
(left) and strong (right) Landau damping with vmax = 10.

Fig. 14. Numerical solution of the non-splitting SL FV WENO scheme for the two stream instability at T = 53 (left) and bump-on-tail
instability (right) at T = 40.

Example 4.4 (Two Stream Instability [37]). Consider the symmetric warm two stream instability, i.e. the VP system
with the initial condition

f (x, v, t = 0)

=
2

7
√

2π
(1 + 5v2) (1 + α ((cos(2kx) + cos(3kx)) /1.2 + cos(kx))) exp

(
−
v2

2

)
,

(57)

here α = 0.01 and k = 0.5. On the left of Fig. 14, we show the contour plot of the numerical solution of the
on-splitting SL FV WENO scheme at T = 53. The result is comparable to those in [13,21].

xample 4.5 (Bump-on-tail Instability [38,24]). Consider the bump-on-tail instability with the initial condition

f (x, v, t = 0) =

(
n pexp

(
−
v2

2

)
+ nbexp

(
−

(v − u)2

2v2
t

))
(1 + 0.04cos(kx)) , (58)

here n p =
9

10
√

2π
, nb =

2
10

√
2π

, u = 4.5, vt = 0.5 and k = 0.3. The computational domain for this test is
[0, 20

3 π ]×[−13, 13]. On the right of Fig. 14, we show the contour plot of the numerical solution of the non-splitting
L FV WENO scheme at T = 40. As shown, the numerical result is consistent with the ones in [24,35].

.3. Guiding center Vlasov model

The guiding center Vlasov model describes a highly magnetized plasma in the transverse of a tokamak [39,4].
t can be written as

ρt + ∇ ·
(
E⊥ρ

)
= 0, (59)

− ∆Φ = ρ, E⊥
= (−Φy,Φx ), (60)

here ρ(x, y, t) represents the charge density and E is the electric field.
For the 2-D guiding center Vlasov model (59)–(60), we apply the same procedure introduced in (53). The only
ifference is the simulation of the velocity field. Similar to (53), we denote a numerical velocity field obtained by

18
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Table 5
(Kelvin–Helmholtz instability problem). L2 errors and corresponding orders of
accuracy of the non-splitting and splitting-based SL FV WENO schemes for
Kelvin–Helmholtz instability problem at T = 5 with CFL = 1.

Non-splitting Splitting

Mesh L2 error Order L2 error Order

16 × 16 3.49E−03 – 2.35E−02 –
32 × 32 2.64E−04 3.73 1.28E−02 0.88
64 × 64 1.04E−05 4.66 6.80E−03 0.91
128 × 128 4.65E−07 4.49 3.51E−03 0.95
256 × 256 3.12E−09 7.22 1.79E−03 0.97
512 × 512 8.89E−11 5.14 9.03E−04 0.99

a FV solution ρ(k) by V
(
ρ(k))

:=
(
Ẽ1(x, y), Ẽ2(x, y)

)
. We briefly summarize the procedure to construct V

(
ρ(k)) as

follows.

1. Compute the nodal values of the charge density {ρi, j } at (xi , y j ) by {ρ
(k)
i, j } with the fourth-order accuracy:

ρi, j = P(xi , y j ), (61)

where P ∈ P3(Ii, j ) is obtained with the same stencil as q0(x, y) introduced in Section 2.2.
2. Solve the Poisson’s equation (60) and compute the nodal values of the velocity field {(E1, E2)} at {(xi , y j )}

by an FFT solver.
3. Reconstruct two piecewise P3 polynomial

(
Ẽ1(x, y), Ẽ2(x, y)

)
with the same stencil of q0(x, y) introduced

in Section 2.2 except that we use the nodal values here.

For this problem, we set Nx = 256, Ny = 256, and

∆t = CFL/ (max{|E1|}/∆x + max{|E2|}/∆y) .

xample 4.6 (Kelvin–Helmholtz Instability Problem). Consider the guiding center Vlasov model with initial
ondition

u(x, y, 0) = sin(y) + 0.015cos(kx), x ∈ [0, 4π ], y ∈ [0, 2π ], (62)

here k = 0.5, and with the periodic boundary condition. In Table 5, we present the L2 errors and corresponding
rders of accuracy of the non-splitting and splitting-based SL FV WENO schemes at T = 5 with CFL = 10.2. For
his problem, the reference solutions are obtained in the same way as in strong Landau damping. We observe that
he order of accuracy for the non-splitting SL FV WENO scheme is fourth as expected. However, the convergence
ate of the splitting-based SL FV scheme is reduced to the first order. In Fig. 15(a), we show the log–log plot of the
PU times vs. the L2 errors of the non-splitting and splitting-based SL FV WENO schemes with the same settings

n Table 5. For this problem, the non-splitting scheme is observed to be much more efficient than the splitting-based
cheme. Fig. 15(b) shows the log–log plot of the CFL numbers vs. the L2 errors of both schemes with a fixed mesh
f 128 × 128 at T = 5. As shown, the temporal order of the non-splitting SL FV WENO scheme is fourth and
hat of the splitting scheme is first.

In Fig. 16, we provide the contour plots of the numerical solution of the non-splitting SL FV WENO scheme
ith CFL = 1 and CFL = 10.2 at T = 40. The shapes of the two results are consistent with the existing results in

he literature [36,21]. In Fig. 17, we present the contour plots of the numerical solution of the splitting-based SL
V WENO scheme with CFL = 0.1 and CFL = 1 at T = 40. We observe that the numerical solution is similar to

he ones in Fig. 16 when CFL = 0.1. When CFL = 1, the solution from the splitting-based scheme is observed to
ave significant deviation from the reference solution.

It is well known that the 2-D guiding center Vlasov model has three conservative physical quantities over time,
.e. mass, energy, and enstrophy [21,36]. For mass conservation, both the non-splitting and splitting-based SL FV

ENO schemes are mass conservative by O(10−13) magnitude deviation. We skip this for saving space. We show
he relative deviation of energy and enstrophy for the two schemes in Fig. 18 with CFL = 10.2. We observe that the

erformance of the non-splitting SL FV WENO scheme is better than the splitting-based SL FV WENO scheme.
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C

Fig. 15. (Kelvin–Helmholtz instability problem). Left: log–log plot of the CPU times vs. the L2 errors of the two schemes with the same
settings in Table 5. Right: log–log plot of the CFL numbers vs. the L2 errors of the two schemes with a fixed mesh of 128 × 128 for
Kelvin–Helmholtz instability problem at T = 5.

Fig. 16. (Kelvin–Helmholtz instability problem). Contour plots of the numerical solution of the non-splitting SL FV WENO scheme with
FL = 1 (left) and with CFL = 10.2 (right) at T = 40.

Fig. 17. (Kelvin–Helmholtz instability problem). Contour plots of the numerical solution of the splitting-based SL FV WENO scheme with
CFL = 0.1 (left) and CFL = 1 (right) at T = 40.

Fig. 18. (Kelvin–Helmholtz instability problem). Relative deviation of energy (left) and enstrophy (right) for the non-splitting and
splitting-based SL FV WENO schemes with CFL = 10.2.
20
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Fig. 19. Contour plots of the numerical solution of the non-splitting SL FV WENO scheme with CFL = 10.2 for vortex patch problem at
T = 10 (left) and shear flow problem at T = 8 (right).

4.4. Incompressible Euler equations

The 2-D incompressible Euler equations in vorticity-stream function formulation read

ωt + ∇ · (uω) = 0, (63)

∆ψ = ω, u = (−ψy, ψx ), (64)

here ω(x, y, t) is the vorticity of the fluid, ψ is the stream-function determined by Poisson’s equation, and
:= (u1, u2) is the velocity field. The form of (63)–(64) is almost the same with (59)–(60) except the sign of

he Poisson equation. Hence, the procedure for solving (63)–(64) is similar to the one of solving the guiding
enter Vlasov model. We skip the description of this procedure for brevity. Similar to the guiding center Vlasov
odel, the mass, energy, and enstrophy are conserved for the 2-D incompressible Euler equation in vorticity-stream

unction formulation [21,36]. For this problem, we set Nx = 256, Ny = 256, CFL = 10.2, and set the time step as
t = CFL/ (max{u1}/∆x + max{u2}/∆y).

Example 4.7 (Vortex Patch Problem). Consider the incompressible Euler equations on the domain [0, 2π ]× [0, 2π ]
with the initial condition

u(x, y, 0) =

⎧⎪⎨⎪⎩
−1, if (x, y) ∈ [π2 ,

3π
2 ] × [π4 ,

3π
4 ],

1, if (x, y) ∈ [π2 ,
3π
2 ] × [ 5π

4 ,
7π
4 ],

0, otherwise,
(65)

nd the periodic boundary condition.
In Fig. 19(a), we show the contour plot of the numerical solution of the non-splitting SL FV WENO scheme at

T = 10. The numerical solution is non-oscillatory thanks to the essentially non-oscillatory nature of the WENO
econstruction procedure in space. This result is comparable to the existing ones in the literature [17,36,21].

In Fig. 20, we present the performance of preserving energy and enstrophy for the non-splitting and splitting-
ased SL FV WENO schemes. We observe that the non-splitting scheme performs better.

xample 4.8 (Shear Flow Problem). Consider the incompressible Euler equations in the domain [0, 2π ] × [0, 2π ]
with the initial condition

u(x, y, 0) =

⎧⎨⎩δcos(x) −
1
ρ

sech2
(

y−π/2
ρ

)
, if y ≤ π,

δcos(x) +
1
ρ

sech2
(

3π/2−y
ρ

)
, if y > π,

(66)

where δ = 0.05 and ρ = π/15, and the periodic boundary condition.
In Fig. 19(b), we provide the contour plot of the numerical solution of the non-splitting SL FV WENO scheme

at T = 8. The performance is similar to the results in [17,36,21]. In Fig. 21, the time history of the relative
21
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Fig. 20. (Vortex patch problem). Relative deviation of energy (left) and enstrophy (right) for the non-splitting and splitting-based SL FV
ENO schemes with CFL = 10.2.

Fig. 21. (Shear flow problem). Relative deviation of energy (left) and enstrophy (right) for the non-splitting and splitting-based SL FV
WENO schemes with CFL = 10.2.

deviation of the energy and enstrophy for the non-splitting and splitting-based SL FV WENO schemes is provided.
The non-splitting SL FV WENO scheme has better performance compared with the splitting-based SL FV WENO
scheme.

5. Conclusion

In this paper, we introduce a fourth-order SL FV WENO scheme without operator splitting for 2-D linear
ransport equations, the nonlinear Vlasov–Poisson system, the guiding center Vlasov model and the incompressible
uler equations in the vorticity-stream function formulation. The proposed SL FV WENO scheme is mass
onservative, Positivity-preserving, unconditionally stable under linearized settings, and fourth-order accurate in
oth space and time. Numerical performances are observed through an extensive set of test problems.
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Appendix A. Constructing a cubic curve

Assume that the coordinate of {v⋆k} in x − y space is {(xk, yk)}. Denote the cubic curve (6) by C. Then, we do
the following steps to construct (6) (see Fig. A.22).

(a) Based on v⋆1 and v⋆4, we construct an affine coordinate transformation from x − y to ξ − η such that (x1, y1)
and (x4, y4) are (−1, 0) and (1, 0) in ξ − η space, respectively:{

ξ (x, y) = ax + by + c,
η(x, y) = −bx + ay + d,

(A.1)

where

a =
2(x4 − x1)

(x1 − x4)2 + (y1 − y4)2 ,

b =
2(y4 − y1)

(x1 − x4)2 + (y1 − y4)2 ,

c =
x2

1 − x2
4 + y2

1 − y2
4

(x1 − x4)2 + (y1 − y4)2 ,

d =
2(x1 y4 − x4 y1)

(x1 − x4)2 + (y1 − y4)2 .

The reverse transformation of (A.1) can be constructed accordingly:{
x =

x4−x1
2 ξ −

y4−y1
2 η +

x4+x1
2 ,

y =
y4−y1

2 ξ +
x4−x1

2 η +
y4+y1

2 .
(A.2)

(b) Get the ξ − η coordinates of v⋆2 and v⋆3 by (A.1) as (ξ2, η2) and (ξ3, η3). Based on (−1, 0), (ξ2, η2), (ξ3, η3) and
(1, 0), we construct a cubic interpolation

η(ξ ) = η2
(ξ 2

− 1)(ξ − ξ3)
(ξ 2

2 − 1)(ξ2 − ξ3)
+ η3

(ξ 2
− 1)(ξ − ξ2)

(ξ 2
3 − 1)(ξ3 − ξ2)

. (A.3)

c) Substituting (A.3) into (A.2), we obtain the parametric Eq. (6) of C.

Fig. A.22. The dashed line represents C; the blue arrows represent the new coordinate ξ − η; the black dots are the four characteristic feet
v⋆k }.
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Appendix B. The clipping procedure

In Appendix B.1, we first introduce the procedure to determine the intersection points between a cubic curve
nd the Eulerian mesh. Then, in Appendices B.2 and B.3, we introduce methods to determine the outer and inner
ntegral segments based on the intersection points.

.1. Determining intersection points

Take C as an example, we do the following steps to determine all the intersection points between C and the
Eulerian mesh (see Fig. B.23(a)).

(a) By solving x ′(ξ ) = 0 and y′(ξ ) = 0, we find the minimum and maximum values of C in x and y directions
and determine the mesh lines intersecting C (see Fig. B.23(a)).

(b) If x = xi− 1
2

intersect C, we solve

x(ξ ) − xi− 1
2

= 0, (B.1)

and choose the real single roots in [−1, 1] to determine the points in x = xi− 1
2
. We do the same operation for

all the lengthways mesh lines determined in step (a). We define such intersection points as type-1 intersection
points.

Fig. B.23. Left: the red straight lines represent the mesh lines intersecting C; the red circle represents a type-1 intersection point; the red
triangle represents a type-2 intersection point. Right: the black arrows represent the directions of the outer segments.
24
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Fig. B.24. Schematic illustration for determining inner integral segments.

(c) If y = y j− 1
2

intersect C, we solve

y(ξ ) − y j− 1
2

= 0, (B.2)

and choose the real single roots in [−1, 1] to the intersection points in y = y j− 1
2
. Similarly, we do the

same thing for all the widthways mesh lines determined in step (a). We define such intersections as type-2
intersection points.

(d) Order all the intersection points by ξ from small to large.

B.2. Determining outer integral segments

For a single cubic curved edge, taking C as an example, the procedure to obtain the outer integral segments is
shown as follows.

(a) We connect v⋆1, the intersections between v⋆1 and v⋆4, and v⋆4 in turn based on their ξ values from small to large
along the cubic curve C. Then, we define these segments as the outer segments in C, denoted as {Ck} (see
Fig. B.23(b)). Finally, we determine the location or index of an outer segment by the information of the start
and end point of this segment.

(b) In a given cubic-curved quadrilateral upstream cell, we redefine the direction of these outer segments as
counterclockwise with respect to Ĩ ⋆i, j and accomplish the determination of {Lk

i, j;p,q}.

.3. Determining inner integral segments

We determine the inner integral segments, {Sk
i, j;p,q}, of Ĩ ⋆i, j by the following steps.

a) Determine the mesh lines intersecting Ĩ ⋆i, j by the maximum and minimum values of Ĩ ⋆i, j .

b) If x = xi− 1
2

intersects Ĩ ⋆i, j , we first collect all the intersection points in x = xi− 1
2

of the four edges of Ĩ ⋆i, j .

c) After all the intersection points in x = xi− 1
2

are collected, we order the collected intersections and vertexes by
their y coordinates from small to large, denoted as {pk}. Then, we define p1 p2 and p3 p4, if they exist, as the
super inner segments of Ĩ ⋆i, j in x = xi− 1

2
(see Fig. B.24).

(d) For a given lengthways super inner segment, say p1 p2, we determine the inner integral segments to be the
subsegments of p1 p2 belong to specific Eulerian cells. The location or index and the direction of a given
inner integral segments can be easily determined by the Eulerian cell it belongs to (see Fig. B.24(a)).
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(e) We do step (b)–(d) for all lengthways mesh lines determined in step (a) and determine all the lengthways inner
integral segments of Ĩ ⋆i, j .

(f) Then, we perform similar procedures to determine all the widthways inner segments of Ĩ ⋆i, j .

In practical programming, two implementation issues arise due to the truncation error of the floating point system.
irstly, an intersection point near one end of a cubic curve can be incorrectly determined when this end is very close

o an Eulerian mesh line. Secondly, when a cubic curve and a mesh line almost overlap, the locations or indices
f outer segments can be incorrectly determined. Both the two kinds of mistakes cause chaos in latter integral
rocedure. Here, we just remind readers the two phenomena and do not state a standard way to treat them, since
hey are not the key points of this paper.

ppendix C. Proof of Proposition 3.9

roof. Consider (2) with constant coefficients, a(x, y, t) ≡ a, b(x, y, t) ≡ b, and periodic boundary condition. We
efine that κ1 =

a∆t
∆x and κ2 =

b∆t
∆x . Without loss of generality, we define that a > 0, b > 0, 0 ≤ κ1 ≤ 1, and

≤ κ2 ≤ 1. When κ1 or κ2 is greater than 1, the linear scheme could reduce to solution shifting on a uniform mesh
ogether with the scheme having 0 ≤ κ1 ≤ 1 and 0 ≤ κ2 ≤ 1.

Then (17) with linear reconstruction is summarized as

un+1
i, j =

1
∆x∆y

[ ∫ x
i− 1

2

x
i− 1

2
−κ1∆x

∫ y
j− 1

2

y
j− 1

2
−κ2∆y

ũ(i−1, j−1)(x, y)dxdy

+

∫ x
i− 1

2
+(1−κ1)∆x

x
i− 1

2

∫ y
j− 1

2

y
j− 1

2
−κ2∆y

ũ(i, j−1)(x, y)dxdy

+

∫ x
i− 1

2

x
i− 1

2
−κ1∆x

∫ y
j− 1

2
+(1−κ2)∆y

y
j− 1

2

ũ(i−1, j)(x, y)dxdy

+

∫ x
i− 1

2
+(1−κ1)∆x

x
i− 1

2

∫ y
j− 1

2
+(1−κ2)∆y

y
j− 1

2

ũ(i, j)(x, y)dxdy
]
.

(C.1)

We prove the proposition via von Neumann stability analysis by assuming

un
p,q =uneI ξ1 p∆x eI ξ2q∆y for p = i − 3, i − 2, . . . , i + 2; q = j − 3, j − 2, . . . , j + 2 (C.2)

nd

un+1
i, j =un+1eI ξ1i∆x eI ξ2 j∆y, (C.3)

where I =
√

−1. Substituting (C.2) and (C.3) into (C.1), we have

un+1
= A(κ1, κ2, ζ1, ζ2)un, (C.4)

where ζ1 = ξ1∆x , ζ2 = ξ2∆y, and A(κ1, κ2, ζ1, ζ2) is the amplification factor. The explicit expression of
A(κ1, κ2, ζ1, ζ2) is extremely complicated. Hence, we skip this expression for brevity. Now, it is sufficient to verify
that |A(κ1, κ2, ζ1, ζ2)| ≤ 1 for any κ1, κ2 ∈ [0, 1], and ζ1, ζ2 ∈ [0, 2π ]. Since we cannot determine the maximum
and minimum values of |A(·, ·, ·, ·)| theoretically, we numerically verify this relation by sampling 1000 uniform

oints in κ1, κ2, ζ1, and ζ2 domains, respectively. We find that all the moduli of A computed by the sampled points
re not greater than 1, which validates Proposition 3.9. □
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