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A CONSERVATIVE SEMI-LAGRANGIAN HYBRID HERMITE
WENO SCHEME FOR LINEAR TRANSPORT EQUATIONS AND

THE NONLINEAR VLASOV--POISSON SYSTEM\ast 
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Abstract. In this paper, we present a high-order conservative semi-Lagrangian (SL) hybrid
Hermite weighted essentially nonoscillatory (HWENO) scheme for linear transport equations and
the nonlinear Vlasov--Poisson (VP) system. The proposed SL hybrid HWENO scheme adopts a
weak formulation of the characteristic Galerkin method and introduces an adjoint problem for the
test function in the same way as the SL discontinuous Galerkin (DG) scheme [W. Guo, R. D. Nair,
and J. M. Qiu, Monthly Weather Rev., 142 (2014), pp. 457--475]. Comparing with the original
SL DG scheme, we introduce a hybrid moment-based HWENO reconstruction operator in space,
bringing at least two benefits. Firstly, with the same order of accuracy, such a reconstruction allows
lower degrees of freedom per element in the evolution process. Secondly, it naturally possesses a
nonoscillatory property when dealing with discontinuity. In addition, we derive a novel troubled cell
indicator which can effectively detect the discontinuous regions for the reconstruction operator. To
apply the scheme for 2-D transport equations and the nonlinear VP system, we adopt a fourth-order
dimensional splitting method. Positivity-preserving limiters are applied to enforce the positivity of
the solution for the system having positive solutions. Finally, we show extensive numerical tests to
validate the effectiveness of the proposed SL hybrid HWENO scheme.

Key words. Vlasov--Poisson system, semi-Lagrangian, mass conservation, positivity preserva-
tion, hybrid HWENO reconstruction, troubled cell indicator
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1. Introduction. The transport equation can be found in a variety of applica-
tions such as climate modeling and kinetic description of plasma. It can be written
in the form of

ut +\nabla \bfx \cdot (a(u,x, t)u) = 0,(1.1)

where u(x, t) is the scalar density function of a conserved quantity transported in
a flow with velocity field a(u,x, t) with x \in \BbbR d. The semi-Lagrangian (SL) ap-
proach is popular for solving the transport equation. It uses fixed meshes, like the
Eulerian approach, while the information propagates along the characteristics, like
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the Lagrangian approach. Hence, it can escape the CFL time step restriction lead-
ing to savings in computational cost by taking larger numerical time steps, like the
Lagrangian approach, while being highly accurate, like the Eulerian approach.

The SL methodology development has been coupled with the weighted essentially
nonoscillatory (WENO) or discontinuous Galerkin (DG) framework [26, 24, 27, 25, 9,
16, 32, 17, 15, 20, 12, 4] with great success, yet there are pros and cons associated
with each scheme. On one hand, a high-order DG method needs a high number
of degrees of freedom (DOF) per element, especially in a high-dimensional setting.
On the other hand, the WENO method is not as compact as the DG method, and
the reconstruction function of the classical WENO method [21, 18, 29] is a rational
fraction which can cause some trouble.

The Hermite WENO (HWENO) reconstruction methods were first developed in
[23] and then further discussed in [30, 7, 39]. The major advantage of these HWENO
methods is their compactness compared with the original WENO methods, since the
first derivative or first-order moment values are adopted. For the conservation law,
the schemes in [23, 30, 7, 39] only need to reconstruct nodal values at few specific
spatial positions in a given cell. For those specific positions, a set of positive linear
weights can be found to perform their reconstructions. Unfortunately, when the ve-
locity field a is dependent of the spatial variables, the SL formulation requires an
approximated point value at any spatial position. However, the linear weights may
not exist at some locations for the methods in [23, 30, 7, 39]. Hence, we adopt a
new hybrid moment-based (MB) HWENO reconstruction method in [40] which takes
artificial positive linear weights with their sum being one. In this paper, the hybrid
MB HWENO reconstruction operator recovers a fifth-degree polynomial for each 1-D
cell while [40] only gives the reconstruction formulation for specific Gauss--Legendre--
Lobatto points. Theoretically, the hybrid HWENO reconstruction automatically de-
cays to a first-degree polynomial reconstruction in the region where the solution is
discontinuous. In the region where the solution is smooth, it adopts a fifth-degree
polynomial reconstruction. Hence, the scheme shares a similar spirit with p-adaptive
DG methods in [5, 31, 19].

The proposed SL scheme combines the weak formulation of the characteristic
Galerkin method [10, 28, 15] with the hybrid MB HWENO reconstruction operator
[40] for 1-D problems. Such a combination can be seen as a one-step evolution-
Galerkin scheme introduced in [22] with the solution operator being the characteristic
Galerkin method and the recovery operation implemented by the hybrid HWENO
reconstruction operator. More recently, such a reconstruction procedure can also be
explained as a P1P5 method as introduced in [11]. The resulting SL hybrid HWENO
scheme enjoys the following benefits. Firstly, the weak formulation of Galerkin method
provides a good framework to design a mass conservation scheme with ease. Secondly,
compared with the SL DG method [15], it requires a lower number of DOF per element
in the evolution process.

In this paper, we propose a new troubled cell indicator to hybridize an expensive
nonlinear MB HWENO reconstruction operator with a linear Hermite interpolation.
This new troubled cell indicator is simpler than the original KXRCF indicator adopted
in [40] and performs better for our tested cases. When the analytical solution enjoys
a positivity-preserving (PP) property, the PP limiter in [37] is applied to ensure the
PP property of the numerical solution. Furthermore, the PP limiter can maintain the
original accuracy of the proposed scheme as proved in [37]. The SL hybrid HWENO
scheme is coupled with a fourth-order splitting method as in [27, 25, 15] for the 2-D
linear transport equation and the nonlinear Vlasov--Poisson system. To maintain high-
order accuracy in space and a low number of DOF per element for the 2-D scheme, we
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apply a Lagrangian interpolation method and the Hermite interpolation method for
the transformation of nodal information and modal information. From our numerical
tests, we observe that the 2-D SL hybrid HWENO scheme takes roughly half the time
as the 2-D P 3 SL DG scheme in [15] using the same splitting method for the same
problem due to the lower number of DOF per element.

The rest of the paper is organized as follows. In section 2, we introduce the
proposed scheme. The performance of the scheme is demonstrated in section 3 for
linear transport equations and the nonlinear Vlasov--Poisson system. Finally, we give
a conclusion in section 4.

2. The SL hybrid HWENO scheme. Since the proposed scheme is based
on the framework of the P 1 SL DG scheme in [15], we will first review the P 1 SL
DG scheme in subsection 2.1. Then we propose a 1-D SL hybrid HWENO scheme
based on the framework in subsection 2.2. Next we extend the scheme for 2-D linear
transport equation via a fourth-order dimensional splitting method in subsection 2.3;
the PP limiters are discussed in subsection 2.4.

2.1. Review of the \bfitP \bfone SL DG formulation. Consider a 1-D linear transport
equation

ut(x, t) + (a(x, t)u(x, t))x = 0,(2.1)

where u(x, t) is the density function and a(x, t) is the velocity field on [xL, xR].
We assume a discretization such that xL = x 1

2
< x 3

2
< \cdot \cdot \cdot < xj - 1

2
< xj+ 1

2
<

\cdot \cdot \cdot < xN - 1
2

< xN+ 1
2

= xR, with Ij := [xj - 1
2
, xj+ 1

2
], hj := xj+ 1

2
 - xj - 1

2
and

xj := (xj - 1
2
+ xj+ 1

2
)/2 for all j. In the context of HWENO scheme, we consider

a DG space V 1
h = \{ vh : vh| Ij \in P 1(Ij) for all j\} , where P 1(Ij) denotes the set of

linear polynomials defined on Ij . We let \Delta tn = tn+1  - tn and let un(x) \in V 1
h as the

numerical approximation of u(x, tn) with any given integer n.
The following locally defined adjoint problem of (2.1) is introduced: for a test

function W \in P 1(Ij), \Biggl\{ 
wt + a(x, t)wx = 0 on [tn, tn+1),

w(t = tn+1) = W (x).
(2.2)

It can be shown [15] that

d

dt

\int 
Ij(t)

u(x, t)w(x, t)dx = 0,(2.3)

where Ij(t) (see Figure 1(a)) is a dynamic interval whose boundaries are characteristics
passing through xj\pm 1

2
at t = tn+1. Equation (2.3) naturally leads to the following

scheme: \int 
Ij

un+1Wdx =

\int 
I \star 
j

u(x, tn)w(x, tn)dx,(2.4)

where I \star j = [x \star 
j - 1

2

, x \star 
j+ 1

2

] and x \star 
j\pm 1

2

are the feet of characteristics passing through

(xj\pm 1
2
, tn+1) at tn.

To update un+1 on Ij , one has to properly evaluate the right-hand side of (2.4)
which is summarized as follows.

1. Trace characteristics backward.
We solve a final value ordinary differential equation (ODE) problem,

dX(t)

dt
= a(X(t), t),(2.5)
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tn

tn+1

xj - 1
2

xj+ 1
2

Ij(t)

x \star 
j - 1

2

x \star 
j+ 1

2

I \star j,1 I \star j,2

(a)

tn

tn+1

x
j - 1

2
x
j+1

2

x \star 

j - 1
2

x \star 

j+1
2

xj,1,ig

x \star 
j,1,ig

I \star 
j,1 I \star 

j,2

(b)

Fig. 1. Schematic illustration for the proposed scheme in 1-D case.

with final values X(tn+1) = xj\pm 1
2
to obtain x \star 

j\pm 1
2

. This can be numerically

solved by a high-order Runge--Kutta method. We define \cup I \star j,l = I \star j such that
each subinterval is bounded by grid points or x \star 

j\pm 1/2. See Figure 1(a) as an

example where I \star j is divided into two subintervals: I \star j,1 = [x \star 
j - 1/2, xj - 1/2] and

I \star j,2 = [xj - 1/2, x
 \star 
j+1/2]. Then, as shown in Figure 1(b), we locate 4 Gauss--

Legendre (GL) points \{ x \star 
j,l,ig\} 4ig=1 in each subinterval.

2. Approximate test function w(x, tn).
We solve the ODE (2.5) with an initial value X(tn) = x \star 

j,l,ig to locate xj,l,ig

at t = tn+1 (see Figure 1(b)). Then, by the adjoint problem (2.2), we have

w(x \star 
j,l,ig, t

n) = W (xj,l,ig).(2.6)

3. Update of the solution at t = tn+1.
Given W (x) = 1 and (x - xj)/hj , respectively,

1

hj

\int 
Ij

u(x, tn+1)W (x)dx =
1

hj

\sum 
l

\int 
I \star 
j,l

u(x, tn)w(x, tn)dx

\approx 1

hj

\sum 
l

\sum 
ig

u(x \star 
j,l,ig, t

n)w(x \star 
j,l,ig, t

n)\omega GL
ig

| I \star j,l | 
2

=
1

hj

\sum 
l

\sum 
ig

u(x \star 
j,l,ig, t

n)W (xj,l,ig)\omega 
GL
ig

| I \star j,l | 
2

,

(2.7)

where \{ \omega GL
ig \} are the four GL weights and | \cdot | represents the length of a

given interval. Denoting the approximations for the first two moments of the
solution at tn by un

j and vnj , then

un(x) = un
j + 12vnj

\biggl( 
x - xj

hj

\biggr) 
, x \in Ij \forall j, \forall n.(2.8)

The P 1 SL DG scheme is

un+1
j =

1

hj

\sum 
l

\sum 
ig

un(x \star 
j,l,ig)\omega 

GL
ig

| I \star j,l | 
2

,(2.9)

vn+1
j =

1

hj

\sum 
l

\sum 
ig

un(x \star 
j,l,ig)

\biggl( 
xj,l,ig  - xj

h

\biggr) 
\omega GL
ig

| I \star j,l | 
2

.(2.10)
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Remark 2.1. (2.9) and (2.10) represent the 1-D P 1 SL DG formulation in [15]
except that we adopt the 4-point GL quadrature rather than the 2-point Gauss--
Legendre--Lobatto quadrature. The 4-point GL quadrature offers an eighth-order
sufficiently high-order accuracy in the HWENO P1P5 reconstruction framework.

2.2. Hybrid HWENO reconstruction operator. With the SL MB method
introduced above, we introduce the hybrid MB HWENO reconstruction operator to
establish the 1-D SL hybrid HWENO scheme via the P1P5 framework [11] in this
subsection. We take the solution space and test function space to be V 1

h in our
scheme. However, another set of piecewise polynomials of degree 5 based on the same
grid, denoted as V 5

h , undertakes the work of solution evaluation in the time evolution.
In particular, the SL hybrid HWENO scheme takes

un+1
j =

1

hj

\sum 
l

\sum 
ig

Hn(x \star 
j,l,ig)\omega 

GL
ig

| I \star j,l | 
2

,(2.11)

vn+1
j =

1

hj

\sum 
l

\sum 
ig

Hn(x \star 
j,l,ig)

\biggl( 
xj,l,ig  - xj

h

\biggr) 
\omega GL
ig

| I \star j,l | 
2

(2.12)

in (2.9) and (2.10), where Hn(x) \in V 5
h is constructed based on un(x) by the hybrid

MB HWENO reconstruction operator.
Below we will describe the hybrid HWENO reconstruction procedure in construct-

ing Hn(x), which is in the same spirit as in [40]. Again, we want to emphasize that the
new hybrid HWENO reconstruction method can build a single polynomial Hn(x) on
each computational cell, while those in [23, 30, 7, 39] are only designed to reconstruct
point values at specific spatial positions. For convenience, we assume that a uniform
mesh is applied, i.e., hj \equiv h for all j. We define \xi j(x) = (x  - xj)/h and a group of
local orthogonal bases of P 5(Ij) denoted as \{ v(\alpha )(\xi j)\} 5\alpha =0 with\biggl\{ 

v(0) = 1; v(1) = \xi j ; v(2) = \xi jv
(1)  - 1

12
v(0); v(3) = \xi jv

(2)  - 1

15
v(1);(2.13)

v(4) = \xi jv
(3)  - 9

140
v(2); v(5) = \xi jv

(4)  - 4

63
v(3)

\biggr\} 
.

The hybrid HWENO reconstruction operator is summarized as follows.
Step 1. Identify the troubled cell, and modify the first-order moment in the trou-

bled cell. We detect the smoothness of the numerical solution in a given cell, say Ij ,
by the new troubled cell indicator \scrI (un

j - 1, u
n
j , u

n
j+1, v

n
j ):

1. Construct three linear polynomials \{ pl(x)\} satisfying

1

h

\int 
Ij

p1(x)dx = un
j , and

1

h

\int 
Ij

p1(x)

\biggl( 
x - xj

h

\biggr) 
dx = vnj ;

1

h

\int 
Ij+l

p2(x)dx = un
j+l, l =  - 1, 0;

1

h

\int 
Ij+l

p3(x)dx = un
j+l, l = 0, 1.

(2.14)

2. Compute the smoothness indicators \{ \beta l\} [21, 18, 29] of \{ pl(x)\} :

\beta 1 = 144
\bigl( 
vnj
\bigr) 2

, \beta 2 =
\bigl( 
un
j - 1  - un

j

\bigr) 2
, \beta 3 =

\bigl( 
un
j  - un

j+1

\bigr) 2
.(2.15)
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3. Calculate a new parameter as in [41]:

\tau =

\Biggl( 
| \beta 1  - \beta 2| + | \beta 1  - \beta 3| 

2

\Biggr) 2

.(2.16)

4. The new troubled cell indicator is obtained by

\scrI (un
j - 1, u

n
j , u

n
j+1, v

n
j ) =

\Biggl\{ 
1, \tau > c1h

c2max\{ \beta 1, \beta 2, \beta 3\} ,
0 otherwise.

(2.17)

The principle (2.17) is based on the fact that

\tau =
\Bigl( 
(u\prime \prime (xj))

2
h4
\Bigr) 
\beta l +O(h7), l = 1, 2, 3,(2.18)

in a smooth region. Here, c1 and c2 are two parameters determining the sensitivity
of the indicator. The smaller c1h

c2 is, the more troubled cells are found for a given
problem. By (2.18), we know that c1h

c2 should be larger than h4 and smaller than
1. We found that a range of [h3, h2] is more suitable for c1h

c2 via extensive tests. In
section 3, we choose c1 = 0.2 and c2 = 2.

If the cell Ij is identified as a troubled cell, we modify the first-order moment vnj
by the HWENO reconstruction operator \scrH W1

j as in [40]:

1. Calculate the first-order moments, denoted as \{ \widetilde vnj,l\} , of a fourth-degree poly-
nomial q1(x) and two linear polynomials \{ ql(x)\} 3l=2 := \{ pl(x)\} 3l=2:

\widetilde vnj,1 =
 - 5un

j - 1 + 5un
j+1  - 22vnj - 1  - 22vnj+1

76
,

\widetilde vnj,2 =
 - un

j - 1 + un
j

12
, \widetilde vnj,3 =

 - un
j + un

j+1

12
,

(2.19)

where q1(x) is constructed based on

1

h

\int 
Ij+l

q1(x)dx = un
j+l, l =  - 1, 0, 1;

1

h

\int 
Ij+l

q1(x)

\biggl( 
x - xj+l

h

\biggr) 
dx = vnj+l, l =  - 1, 1.

(2.20)

2. Choose a group of positive linear weights \{ \gamma l\} such that the sum of them is
one. In this paper, \{ \gamma l\} = \{ 0.98, 0.01, 0.01\} is used. Calculate the nonlinear
weights of \{ ql(x)\} as \{ \omega l\} as shown in Appendix B.

3. Reconstruct the first-order moment:

\widetilde vnj =\scrH W1
j (un

j - 1, u
n
j , u

n
j+1, v

n
j - 1, v

n
j+1)=\omega 1

\Biggl( 
1

\gamma 1
\widetilde vnj,1  - 3\sum 

l=2

\gamma l
\gamma 1
\widetilde vnj,l
\Biggr) 

+

3\sum 
l=2

\omega l\widetilde vnj,l.
(2.21)

For a good cell, say Ij , we also use the new notation \widetilde vnj = vnj . Then, we obtain a

new set of first-order moments \{ \widetilde vnj \} , which is useful for better understanding of the
hybrid MB HWENO reconstruction as shown below.
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Step 2. Build the reconstructed Hn(x) in V 5
h .

We perform different reconstruction methods based on the troubled cell indicator,
i.e.,

Hn| Ij (x) = (1 - \scrI j)\scrH j

\bigl( 
un
j - 1, u

n
j , u

n
j+1,\widetilde vnj - 1,\widetilde vnj ,\widetilde vnj+1

\bigr) 
+ \scrI j\scrH W2

j

\bigl( 
un
j - 1, u

n
j , u

n
j+1,\widetilde vnj - 1,\widetilde vnj ,\widetilde vnj+1

\bigr) 
,

(2.22)

where \scrI j = \scrI (un
j - 1, u

n
j , u

n
j+1, v

n
j ), \scrH j is the linear Hermite interpolation operator, and

\scrH W2
j is the HWENO reconstruction operator which gives a reconstruction polynomial.
We define the linear Hermite interpolation operator \scrH j [40] as follows:

\scrH j(u
n
j - 1, u

n
j , u

n
j+1,\widetilde vnj - 1,\widetilde vnj ,\widetilde vnj+1) =

5\sum 
k=0

akv
(k)(\xi j(x)),(2.23)

where the coefficients \{ ak\} are obtained based on the following conditions:

1

h

\int 
Ij+l

\scrH j(u
n
j - 1, u

n
j , u

n
j+1,\widetilde vnj - 1,\widetilde vnj ,\widetilde vnj+1)dx = un

j+l, l =  - 1, 0, 1,

1

h

\int 
Ij+l

\scrH j(u
n
j - 1, u

n
j , u

n
j+1,\widetilde vnj - 1,\widetilde vnj ,\widetilde vnj+1)

\biggl( 
x - xj+l

h

\biggr) 
dx = \widetilde vnj+l, l =  - 1, 0, 1.

(2.24)

Noticing that [40] only gives the reconstruction formula at specific Gauss--
Legendre--Lobatto points, we will present the explicit expression of \scrH W2

j as a polyno-
mial below:

1. Construct a fifth-degree polynomial, denoted by Q1(x), on a big stencil \scrT 1 =
\{ Ij - 1, Ij , Ij+1\} satisfying

Q1(x) = \scrH j(u
n
j - 1, u

n
j , u

n
j+1,\widetilde vnj - 1,\widetilde vnj ,\widetilde vnj+1) :=

5\sum 
k=0

akv
(\alpha )(\xi j(x)), x \in Ij .

(2.25)

2. Construct two quadratic polynomials, denoted by Q2(x) and Q3(x), on two
small stencils \scrT 2 = \{ Ij - 1, Ij\} and \scrT 3 = \{ Ij , Ij+1\} satisfying

1

h

\int 
Ij+l

Q2(x)dx = un
j+l, l =  - 1, 0,

1

h

\int 
Ij

Q2(x)

\biggl( 
x - xj

h

\biggr) 
dx = \widetilde vnj ;

1

h

\int 
Ij+l

Q3(x)dx = un
j+l, l = 0, 1,

1

h

\int 
Ij

Q3(x)

\biggl( 
x - xj

h

\biggr) 
dx = \widetilde vnj .

(2.26)

The explicit expressions of \{ Ql\} 3l=2 are

Ql(x) =

1\sum 
k=0

akv
(k)(\xi j(x)) + al,2v

(2)(\xi j(x)), l = 2, 3,(2.27)

where a0 = un
j , a1 = 12\widetilde vnj .

3. Choose a group of positive linear wights \{ \widetilde \gamma l\} such that the sum of them is
one. In this paper, \{ \widetilde \gamma l\} = \{ 0.98, 0.01, 0.01\} is used. Calculate the nonlinear
weights of \{ Ql\} as \{ \widetilde \omega l\} as shown in Appendix B.
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4. Perform the reconstruction by the following expression:

\scrH W2
i (un

j - 1, u
n
j , u

n
j+1
\widetilde vnj - 1,\widetilde vnj ,\widetilde vnj+1)

= \widetilde \omega 1

\Biggl( 
1\widetilde \gamma 1Q1(x) - 

3\sum 
l=2

\widetilde \gamma l\widetilde \gamma 1Ql(x)

\Biggr) 
+

3\sum 
l=2

\widetilde \omega lQl(x)

= a0 + a1v
(1)(\xi j(x)) +

\Biggl[ \widetilde \omega 1
1\widetilde \gamma 1 a2 +

3\sum 
l=2

\biggl( \widetilde \omega l  - \widetilde \omega 1
\widetilde \gamma l\widetilde \gamma 1
\biggr) 
al,2

\Biggr] 
v(2)(\xi j(x))

+

5\sum 
k=3

\widetilde \omega 1\widetilde \gamma 1 akv(k)(\xi j(x)).

(2.28)

Below, we give some basic propositions of the proposed 1-D scheme.

Proposition 2.2. The 1-D SL hybrid HWENO scheme (2.11)--(2.12) is mass
conservative if periodic boundary condition is imposed.

Proof.

h

N\sum 
j=1

un+1
j =

N\sum 
j=1

\left(  \sum 
l

\sum 
ig

Hn(x \star 
j,l,ig)\omega 

GL
ig

| I \star j,l | 
2

\right)  =

N\sum 
j=1

\int 
I \star 
j

Hn(x)dx

=

N\sum 
j=1

\int 
Ij

Hn(x)dx = h

N\sum 
j=1

un
j ,

(2.29)

where the second equality is based on the fact that 4-point GL quadrature is exact
for fifth-degree polynomials, the third equality comes from the periodic boundary
condition, and the last equality comes from the property of the hybrid MB HWENO
reconstruction operator.

If we set Hn| Ij = \scrH j(u
n
j - 1, u

n
j , u

n
j+1, v

n
j - 1, v

n
j , v

n
j+1) for all j, which means that

we use the linear Hermite interpolation operator for all cells, we call the numerical
update (2.11)--(2.12) an SL Hermite scheme.

Proposition 2.3 (L2 stability). The numerical update given by (2.11)--(2.12) is
unconditionally stable for transport equations with constant coefficients and periodic
boundary condition if Hn(x) is constructed by the linear Hermite interpolation.

Proof. We give the proof in Appendix C for the sake of the conciseness.

2.3. Dimensional splitting. In this subsection, we introduce how to couple the
1-D SL hybrid HWENO scheme with the fourth-order dimensional splitting method.
The transport equation (1.1) in 2-D case can be split into two 1-D transport equations:

ut + (a(x, y, t)u)x = 0,(2.30)

ut + (b(x, y, t)u)y = 0.(2.31)

With the two split 1-D subproblems, we adopt the fourth-order dimensional splitting
technique developed by Forest and Ruth [14] and by Yoshida [33, 34] summarized as
(A.1) in Appendix A.

In order to perform the dimensional splitting, we apply a similar framework as
[25]. Since the 1-D SL hybrid HWENO scheme obtains a solution in V 1

h , directly
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t = tn

\bfn \bfo \bfd \bfa \bfl \bft \bfo 

\bfm \bfo \bfd \bfa \bfl 

t = tn

u, v

u, v \bfone \bfD \bfs \bfc \bfh \bfe \bfm \bfe 

t = tn + c1\Delta tn

u, v

u, v \bfm \bfo \bfd \bfa \bfl \bft \bfo 

\bfn \bfo \bfd \bfa \bfl 

t = tn + c1\Delta tn

Fig. 2. Schematic illustration of the 2-D scheme for stage 1 of (A.1).

transforming the nodal and the modal information as in [25] can only give second-
order nodal information. Hence, we introduce high-order reconstructions shown in
Algorithms 2.1 and 2.2 to transform the nodal and the modal information. We find
that the high-order interchange of the nodal and the modal information is the key to
preserve the high-order accuracy in space and low number of DOF per 2-D element at
the same time. We briefly summarize the proposed 2-D SL hybrid HWENO scheme
as follows.

Assume a 2-D Cartesian mesh on \Omega := Ix \times Iy := [xL, xR]\times [yL, yR] by defining

two uniform 1-D meshes \{ xi+ 1
2
\} Nx
i=0 and \{ yj+ 1

2
\} Ny

j=0 similar to the one in section 2.1

with Ixi := [xi - 1
2
, xi+ 1

2
], Iyj := [yj - 1

2
, yj+ 1

2
], hx \equiv xi+ 1

2
 - xi - 1

2
, hy \equiv yj+ 1

2
 - yj - 1

2
, and

Iij := Ixi \times Iyj for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. Then, within any given rectangular

cell Iij , we locate 2 GL points in both directions as (xi
ig, y

j
jg) for ig, jg = 1, 2 (see

Figure 2). Based on the 2-D mesh defined above, we take our solution space to be 4
point values at GL points per element, which is equivalent to V 2D

h = \{ vh : vh| Iij \in 
Q1(Iij) for all i, j\} . Further, we assume that our 2-D scheme obtains \{ u(k),n\} 6k=1 \subseteq 
V 2D
h and un+1 \in V 2D

h in each stage of (A.1). The proposed 2-D scheme for stage 1
of (A.1) is implemented as follows:

1. For each yjjg, we use \{ un(xl
ig, y

j
jg)\} 

i+1, 2
l=i - 1, ig=1 to obtain the Lagrangian inter-

polation polynomial Pi(x) for all i. Then we take \{ 1
hx

\int 
Ii
Pi(x)dx\} := \{ uj,jg

i \} 
and \{ 1

hx

\int 
Ii
Pi(x)(x - xi)/hxdx\} := \{ vj,jgi \} as the initial condition of the 1-D

scheme (see Algorithm 2.1).
2. Evolve (2.30) for c1\Delta tn by the 1-D SL hybrid HWENO scheme and obtain

the new modal information \{ unew,j,jg
i \} and \{ vnew,j,jg

i \} at tn + c1\Delta tn.

3. For each yjjg, we use \{ unew,j,jg
l \} i+1

l=i - 1 and \{ vnew,j,jg
l \} i+1

l=i - 1 to obtain the Her-

mite interpolation Hi(x) for all i. Then we set u(1),n(xi
ig, y

j
jg) = Hi(x

i
ig) for

all i, ig (see Algorithm 2.2).
Then, the proposed 2-D SL hybrid MB HWENO scheme takes similar procedures

above for each stage in (A.1), and the numerical solution un+1 is updated.
We use linear reconstructions in Algorithms 2.1 and 2.2 rather than WENO-type

reconstructions due to the following reasons: firstly, it is hard to maintain the mass
conservation property when adopting WENO-type reconstructions since the 2-D mass
conservation in our framework relies on a special symmetry of the coefficients \{ clig\} ,
\{ cul \} , \{ cvl \} , \{ dul \} , and \{ dvl \} in (2.33), and (2.35) while WENO-type reconstructions
destroy the symmetry; secondly, the reconstructions in Algorithms 2.1 and 2.2 are only
used for transforming spatial information rather than evolving the solution in time;
thirdly, WENO-type reconstructions are costly. In practice, numerical oscillation is
still well controlled according to our observations.

In the dimensional splitting setting, the SL Hermite-type scheme has a lower
number of DOF per cell and thus lower computational cost. For example, in the
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Algorithm 2.1. Reconstruction in transforming nodal information to modal infor-
mation.

1. Construct a Lagrangian interpolation polynomial \{ Pi(x)\} satisfying

Pi(x
l
ig) = un(xl

ig , y
j
jg), l = i - 1, i, i+ 1, ig = 1, 2.(2.32)

2. Compute the first two moments of Pi(x):

1

hx

\int 
Ii

Pi(x)dx =

i+1, 2\sum 
l=i - 1, ig=1

cligu
n(xi

ig , y
j
jg) := uj,jg

i ,

1

hx

\int 
Ii

Pi(x)(x - xi)/hxdx =

i+1, 2\sum 
l=i - 1, ig=1

dligu
n(xi

ig , y
j
jg) := vj,jgi ,

(2.33)

where \{ clig\} , and \{ dlig\} are constant coefficients independent of i.

Algorithm 2.2. Reconstruction in transforming modal information to nodal infor-
mation.

1. Construct a Hermite interpolation polynomial \{ Hi(x)\} satisfying

Hi(x) = \scrH i(u
new,j,jg
i - 1 , unew,j,jg

i , unew,j,jg
i+1 , vnew,j,jg

i - 1 , vnew,j,jg
i , vnew,j,jg

i+1 ).(2.34)

2. Compute \{ Hi(x
i
ig)\} :

Hi(x
i
1) =

i+1\sum 
l=i - 1

cul u
new,j,jg
l +

i+1\sum 
l=i - 1

cvl v
new,j,jg
l ,

Hi(x
i
2) =

i+1\sum 
l=i - 1

dul u
new,j,jg
l +

i+1\sum 
l=i - 1

dvl v
new,j,jg
l ,

(2.35)

where \{ cul \} , \{ c
v
l \} , \{ d

u
l \} , and \{ dvl \} are constant coefficients independent of i.

dimensional splitting setting, 2 nodal points per direction per cell are needed for the
SL hybrid HWENO scheme (see Figure 2), while 4 nodal points are needed for the P 3

SL DG scheme. Hence, for 2-D problems, if Nx = Ny = N , the SL hybrid HWENO
scheme takes 7\times (2N) = 14N 1-D solvers per time step while the P 3 SL DG scheme
needs 7 \times (4N) = 28N 1-D solvers. For 3-D problems, we can estimate that the
fourth-order splitting method requires 25 stages per time step. Hence, the SL hybrid
HWENO scheme takes 25 \times (2N) \times (2N) = 100N2 1-D solvers per time step while
the SL P 3 SL DG scheme takes 25 \times (4N) \times (4N) = 400N2 1-D solvers. The lower
number of DOF per dimension is of great importance for high-dimensional problems
under the dimensional splitting setting.

Below, we provide the proof of the 2-D mass conservation property.

Proposition 2.4. The 2-D SL hybrid HWENO scheme is mass conservative if
periodic boundary condition is imposed.

Proof. With periodic boundary condition and the special symmetry of the coef-
ficients \{ clig\} , \{ cul \} , \{ cvl \} , \{ dul \} , and \{ dvl \} , one can easily verify that
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hx

Nx\sum 
i=1

uj,jg
i = hx

Nx\sum 
i=1

\Biggl( 
un(xi

1, y
j
jg) + un(xi

2, y
j
jg)

2

\Biggr) 
,

hx

Nx\sum 
i=1

unew,j,jg
i = hx

Nx\sum 
i=1

\biggl( 
Hi(x

i
1) +Hi(x

i
2)

2

\biggr) (2.36)

in Algorithms 2.1 and 2.2.
Since the 1-D scheme is mass conservative, we have

hx

Nx\sum 
i=1

uj,jg
i = hx

Nx\sum 
i=1

unew,j,jg
i .(2.37)

Comparing (2.36)--(2.37), we have

hx

Nx\sum 
i=1

\Biggl( 
un(xi

1, y
j
jg) + un(xi

2, y
j
jg)

2

\Biggr) 
= hx

Nx\sum 
i=1

\Biggl( 
u(1),n(xi

1, y
j
jg) + u(1),n(xi

2, y
j
jg)

2

\Biggr) 
.

(2.38)

Notice that the indexes j and jg are arbitrary; we have

hxhy

Nx,Ny\sum 
i=1,j=1

\Biggl( 
un(xi

1, y
j
1) + un(xi

2, y
j
1) + un(xi

1, y
j
2) + un(xi

2, y
j
2)

4

\Biggr) 

= hxhy

Nx,Ny\sum 
i=1,j=1

\Biggl( 
u(1),n(xi

1, y
j
1) + u(1),n(xi

2, y
j
1) + u(1),n(xi

1, y
j
2) + u(1),n(xi

2, y
j
2)

4

\Biggr) 
.

(2.39)

Following similar procedures for the other stages, we finish the proof.

2.4. PP limiter. In this subsection, we introduce the PP limiter in [37] to ensure
the PP property of the numerical solution when the relevant property is enjoyed by the
exact solution. In the earlier works [25, 38, 15], another type of PP limiter introduced
in [35, 36] is adopted. Such a PP limiter as in [35, 36] would require the minimum
value of Hn(x) in each cell in our framework. However, it is impossible to obtain the
extreme points of a piecewise fifth-degree polynomial Hn(x) theoretically. Hence, we
apply the new PP limiter introduced in [37], which only requires the minimum value
of Hn(x) at the GL points we defined in section 2.1 at each cell.

To explain how the PP limiter is applied in our scheme, we denote the subintervals
defined in step 1 of subsection 2.1 within a given cell Ij by \{ Ij,l\} . Then, denote the
local GL points within Ij,l by \{ \widetilde xj,l,ig\} . The PP limiter [37] replaces the Hn(x) in
(2.22) with

\widetilde Hn(x) = \theta 
\bigl( 
Hn(x) - un

j

\bigr) 
+ un

j , x \in Ij ,(2.40)

where

\theta = min

\biggl\{ \bigm| \bigm| \bigm| \bigm| un
j

mj  - un
j

\bigm| \bigm| \bigm| \bigm| , 1\biggr\} , mj = minl,ig\{ Hn(\widetilde xj,l,ig)\} .(2.41)
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It can be proved as in [37] that

\{ \widetilde Hn(\widetilde xj,l,ig)\} \subset [0,+\infty ) if un
j \in [0,+\infty ) \forall l, ig.(2.42)

Furthermore, it was proved in [37] that \widetilde Hn(x) can still maintain the accuracy of
Hn(x) approximating u(x, tn). Applying this PP limiter, the PP of cell average of
the 1-D SL hybrid HWENO scheme is easily obtained by (2.11) and (2.42).

Notice that \{ un(xl
ig, y

j
jg)\} 

i+1
l=i - 1,ig=1 \subseteq [0,+\infty ) does not guarantee uj,jg

i \geq 0 in

Algorithm 2.1 and \{ unew,j,jg
l \} i+1

l=i - 1 \subseteq [0,+\infty ) does not guarantee \{ Hi(x
i
ig)\} 2ig=1 \subseteq 

[0,+\infty ) in Algorithm 2.2. Hence, we need extra PP limiters applying on Algo-
rithms 2.1 and 2.2 if u(x, y, 0) \geq 0 for the 2-D SL hybrid HWENO scheme. For
the compactness of the paper, we summarize the PP limiters for Algorithm 2.1 and
Algorithm 2.2 as Algorithms D.1 and D.2 as shown in Appendix D.

Proposition 2.5. The new PP limiters (Algorithms D.1 and D.2) enjoy the fol-
lowing three properties:

1. the corresponding cell averages or nodal values are strictly enforced to be
nonnegative;

2. they are sixth-order accurate limiters;
3. the mass conservation property is not destroyed.

Proof. We skip the proof since it is nearly the same as the one in [37].

3. Numerical tests.

3.1. Numerical tests for linear transport equations. In this subsection,
we test three classical 2-D linear cases: transport equation with constant coefficients,
rigid body rotation, and swirling deformation flow. Through these three cases, we
investigate the following properties of our schemes:

1. spatial and temporal order of accuracy,
2. computational efficiency,
3. effectiveness of the new troubled cell indicator,
4. essentially nonoscillatory property.

Unless otherwise specified, we take \Delta t = CFL
max\{ | a(x,y,t)| \} 

hx
+

max\{ | b(x,y,t)| \} 
hy

and CFL =

10.2. The L2 error of the numerical solution is calculated by the following formula:

\| u(\cdot , \cdot , T ) - u \star (\cdot , \cdot )\| 2

:=

\sqrt{}    1

| \Omega | 

Nx\sum 
i=1

Ny\sum 
j=1

hxhy

4

2\sum 
ig=1

2\sum 
jg=1

\Bigl( 
u(xi

ig, y
j
jg, T ) - u \star (xi

ig, y
j
jg)
\Bigr) 2

,
(3.1)

where u \star represents a numerical solution and | \Omega | is the area of the computational
domain \Omega . The numerical solutions in the figures below are plotted based on the cell
averages of the numerical solutions. The PP limiters are applied in the cases where
the initial conditions are positive. The P 3 SL DG scheme shown below presents the
one constructed in [15].

Example 3.1 (2-D transport equation with constant coefficients). Consider

ut + ux + uy = 0, x \in [ - \pi , \pi ], y \in [ - \pi , \pi ].(3.2)

We solve (3.2) with a smooth initial data u(x, y, 0) = sin(x+ y). The exact solution
for this problem is u(x, y, t) = sin(x+ y  - 2t).
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Since there is no dimensional splitting error in time for (3.2), the spatial error
is dominant. Thus, this example can test the spatial order of accuracy of the 2-D
schemes. And we only take the simplest first-order dimensional splitting, which first
evolves \Delta tn for (2.30) and then evolves (2.31) for \Delta tn for each time step. Table 1
shows the L2 errors, corresponding order of accuracy, and corresponding CPU times
of the SL Hermite scheme, the SL hybrid HWENO scheme, and the P 3 SL DG scheme
at T = 2. The meshes of \{ 40 \times 40, 80 \times 80, 160 \times 160, 320 \times 320\} are applied. As
shown, the errors of the former two schemes are the same for all meshes, which means
that all cells are identified as good cells by the indicator for this test. As expected,
the spatial orders of the former two schemes are sixth while the spatial order of the
P 3 SL DG scheme is fourth. We also observe that the CPU times of the former two
schemes are roughly half those of the P 3 SL DG scheme for the same mesh. This is
consistent with the estimate of DOF in subsection 2.3.

To make a clear comparison of efficiency, Figure 3 gives the log-log plot of the
CPU times and corresponding L2 errors in Table 1. For this special case, the spatial
error is the dominant error. Hence, we observe that the former two schemes with
sixth-order spatial accuracy are much more efficient than the P 3 SL DG scheme.

Example 3.2 (rigid body rotation). Consider

ut  - (yu)x + (xu)y = 0, x \in [ - \pi , \pi ], y \in [ - \pi , \pi ].(3.3)

Table 1
(2-D transport equation with constant coefficients). L2 errors, corresponding order of accuracy,

and corresponding CPU times of three different schemes with different meshes and CFL = 10.2 for
(3.2) with u(x, y, 0) = sin(x+ y) at T = 2.

SL Hermite SL hybrid HWENO

Mesh L2 error Order CPU L2 error Order CPU
40\times 40 1.22E-09 --- 0.31 1.22E-09 --- 0.33
80\times 80 3.28E-11 5.22 2.39 3.28E-11 5.22 2.58

160\times 160 5.39E-13 5.93 24.56 5.39E-13 5.93 26.42
320\times 320 6.93E-15 6.28 305.59 6.93E-15 6.28 318.17

P3 SL DG
40\times 40 1.07E-07 --- 0.58
80\times 80 6.84E-09 3.97 4.58

160\times 160 3.75E-10 4.19 47.78
320\times 320 1.36E-11 4.79 619.95

Fig. 3. (2-D transport equation with constant coefficients). A log-log plot of the CPU times
and the L2 errors of three different schemes with meshes of \{ 40\times 40, 80\times 80, 160\times 160, 320\times 320\} 
and CFL = 10.2 for (3.2) with u(x, y, 0) = sin(x+ y) at T = 2.
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We first test (3.3) with a smooth initial data

u(x, y, 0) =

\left\{   rb0cos
\Bigl( 

rb(\bfx )\pi 

2rb0

\Bigr) 6
if rb(x) < rb0,

0 otherwise,
(3.4)

where rb0 = 0.3\pi , rb(x) =
\sqrt{} 

(x - xb
0)

2 + (y  - yb0)
2, and the center of the cosine bell

(xb
0, y

b
0) = (0.3\pi , 0). In Table 2, we give the L2 errors, corresponding order of accuracy,

and corresponding CPU times of the SL Hermite scheme the SL hybrid HWENO
scheme, and the P 3 SL DG scheme with fourth-order splitting method at T = 2\pi .
The meshes of \{ 40\times 40, 80\times 80, 160\times 160, 320\times 320\} are applied. For this case, the
splitting error in time dominates the total error. Hence, the orders are fourth for all
these schemes. As shown, when the meshes of \{ 40 \times 40, 80 \times 80\} are applied, the
errors of the former two schemes are different. This phenomenon illustrates that the
troubled cell indicator misidentifies some cells as troubled cells, especially the cells
near extreme points, when the meshes are not dense enough. The misidentification
near the extreme points causes the dissipation of the numerical solution because of
the adopted HWENO reconstruction. Similar to Example 3.1, Figure 4 shows the
log-log plot of the CPU times and corresponding L2 errors of these three schemes in
Table 2. The SL Hermite scheme is observed to be more efficient than the other two
schemes.

Table 2
(Rigid body rotation). L2 errors, corresponding order of accuracy, and corresponding CPU

times of three different schemes with different meshes and CFL = 10.2 for (3.3) with initial condition
(3.4) at T = 2\pi .

SL Hermite SL hybrid HWENO

Mesh L2 error Order CPU L2 error Order CPU
40\times 40 3.26E-04 --- 0.31 9.92E-03 --- 0.33
80\times 80 2.01E-05 4.02 3.55 5.85E-04 4.08 3.81

160\times 160 1.25E-06 4.01 46.83 1.25E-06 8.87 51.28
320\times 320 7.83E-08 4.00 662.08 7.83E-08 4.00 669.67

P\bfthree SL DG
40\times 40 3.22E-04 --- 0.55
80\times 80 2.01E-05 4.00 6.72

160\times 160 1.25E-06 4.00 93.02
320\times 320 7.83E-08 4.00 1364.52

Fig. 4. (Rigid body rotation). A log-log plot of the CPU times and the L2 errors of three
different schemes with meshes of \{ 40\times 40, 80\times 80, 160\times 160, 320\times 320\} and CFL = 10.2 for (3.3)
with initial condition (3.4) at T = 2\pi .
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Secondly, we solve (3.3) with a discontinuous initial data as shown in Figure 5.
The numerical solution of the SL hybrid HWENO scheme with fourth-order splitting
at T = 12\pi is shown on the top two panels of Figure 6. Cross-sections of the numerical
solution are also provided in Figure 7. We can see that the numerical solution pre-
serves the geometrical morphology of the analytical solution very well. The numerical
solution is also positive, nonoscillatory, and of high resolution as observed. On the
bottom of Figure 6, we can also observe that the new indicator finds the troubled
cell as expected. From Figure 7, which presents two cross-sections of the numerical
solution shown in Figure 6, we clearly observe that the numerical solution offers a
good approximation of the exact solution.

Fig. 5. (Rigid body rotation). The mesh plot (left) and the contour plot (right) of the discon-
tinuous initial data for (3.3).

Fig. 6. (Rigid body rotation). Top left and top right panels are the mesh plot and contour plot
of the numerical solution of the SL hybrid HWENO scheme with fourth-order splitting for (3.3) with
discontinuous initial condition shown in Figure 5 at T = 12\pi with CFL = 10.2. Bottom left and
bottom right panels are the troubled cells detected by the new indicator at the final time level over
x- and y-directions, respectively.
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A CONSERVATIVE SEMI-LAGRANGIAN HYBRID HWENO SCHEME A3595

Fig. 7. (Rigid body rotation). Cross-sections at x = 0 (left) and y = 1.2 (right) of the numerical
solution shown in Figure 6.

Example 3.3 (swirling deformation flow). Consider

ut  - 
\Bigl( 
2\pi cos2

\Bigl( x
2

\Bigr) 
sin(y)g(t)u

\Bigr) 
x
+
\Bigl( 
2\pi sin(x)cos2

\Bigl( y
2

\Bigr) 
g(t)u

\Bigr) 
y
= 0,

x \in [ - \pi , \pi ], y \in [ - \pi , \pi ],
(3.5)

with g(t) = cos(\pi t/T ) and the same initial condition (3.4). Table 3 shows the L2

errors, corresponding order of accuracy, and corresponding CPU times of the SL
Hermite scheme, the SL hybrid HWENO scheme, and the P 3 SL DG scheme with
fourth-order splitting method at T = 1.5. The meshes of \{ 40 \times 40, 80 \times 80, 160 \times 
160, 320\times 320\} are applied. We observe that the SL hybrid HWENO scheme has the
largest errors. Similarly, the troubled cell indicator misidentifies cells for all the four
meshes and causes the loss of accuracy. For the swirling deformation flow, one can
check Figure 8 and observe that a smooth bell is deformed to a sharp structure at
t = 0.75 and the cells near the extreme points are identified as troubled cells. The SL
Hermite scheme has the smallest errors for this test as observed, and it takes roughly
half the time to compute a result as the P 3 SL DG scheme with the same mesh.
Similarly, a log-log plot of the CPU times and corresponding L2 errors of these three
schemes in Table 3 is presented in Figure 9.

To estimate the temporal order of accuracy, we fix a spatial mesh, 160 \times 160,
while varying the CFL number as shown in Figure 10. We can still observe that

Table 3
(Swirling deformation flow). L2 errors, corresponding order of accuracy, and corresponding

CPU times of three different schemes with different meshes and CFL = 10.2 for (3.5) with initial
condition (3.4) at T = 1.5.

SL Hermite SL hybrid HWENO

Mesh L2 error Order CPU L2 error Order CPU
40\times 40 4.87E-04 --- 0.50 1.52E-02 --- 0.47
80\times 80 1.06E-05 5.52 5.27 1.41E-03 3.43 5.50

160\times 160 4.12E-08 8.00 71.16 8.09E-06 7.44 73.58
320\times 320 2.46E-09 4.06 964.05 6.25E-08 7.02 976.25

P\bfthree SL DG
40\times 40 4.25E-04 --- 0.89
80\times 80 1.04E-05 5.36 10.31

160\times 160 1.23E-07 6.40 146.38
320\times 320 5.09E-09 4.60 2044.88
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Fig. 8. (Swirling deformation flow). Numerical solutions of the proposed 2-D scheme and
troubled cells detected by the new indicator over x- and y-directions at t = 0.75 (left) and t = 1.5
(right) with CFL = 10.2 and a mesh of 100\times 100 for (3.5) with initial data shown in Figure 5.

the temporal order is at least fourth when the coefficients of (3.5) are dependent of
t. We also observe that the error of the SL hybrid HWENO scheme does not go
down with refinement of \Delta t. This is due to the dominant spatial error caused by the
misidentification of the troubled cells similar to Table 3 as mentioned above. When
the spatial error is dominant, the accumulated error increases with reducing CFL, or
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Fig. 9. (Swirling deformation flow). A log-log plot of the CPU times and the L2 errors of three
different schemes with meshes of \{ 40\times 40, 80\times 80, 160\times 160, 320\times 320\} and CFL = 10.2 for (3.5)
with initial condition (3.4) at T = 1.5.

Fig. 10. (Swirling deformation flow). Temporal order of accuracy of three different schemes
with fourth-order splitting method for (3.5) with initial condition (3.4) at T = 1.5. A fixed mesh of
160\times 160 is used for this test.

\Delta t, because more time steps are taken. Hence, in Figure 10, the L2 error slightly goes
up for the SL hybrid HWENO scheme (partly for the SL Hermite scheme) as CFL is
reduced.

Then, we test (3.5) with the same discontinuous initial condition shown in
Figure 5. We numerically evaluate the solution up to t = 0.75, when the numer-
ical solution is greatly deformed, and to T = 1.5, when the solution is recovered.
Numerical solutions at t = 0.75 and t = 1.5 of the 2-D scheme and the troubled cells
detected by the new indicator at the final time with CFL = 10.2 are presented in
Figure 8. We make the following comments for the results shown in Figure 8:

1. the numerical solution is nonoscillatory and positive as expected;
2. the new troubled cell indicator successfully identifies the troubled cells we

need;
3. the third panel on the right side of Figure 8 seems to misidentify some troubled

cells. The reason for this is that the numerical solution around those places
is smeared so that the indicator detects the cells nearby as good cells.

3.2. Vlasov simulations. In this subsection, we apply the proposed scheme to
the 1-D physical space and 1-D velocity space (1D1V) Vlasov--Poisson (VP) system,
describing collisionless plasma with a negligible magnetic field, on (x, v, t) \in \Omega x\times \BbbR \times 
\BbbR +:

ft + vfx + E(x, t)fv = 0,(3.6)

E(x, t) =  - \phi x,  - \phi xx(x, t) = \rho (x, t)(3.7)
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with periodic boundary condition on the x-dimension and zero boundary condition
on the v-dimension. In (3.6) and (3.7), x and v are coordinates in the phase space,
f(x, v, t) is the probability distribution function describing the probability of finding
a particle at position x with velocity v at time t, E is the electric field, \phi is the self-
consistent electrostatic potential, and \rho =

\int 
\BbbR f(x, v, t)dv  - \rho 0 is the charge density

with \rho 0 = 1
| \Omega x| 

\int 
\Omega x

\int 
\BbbR f(x, v, 0)dvdx.

The proposed scheme is a dimensional-splitting-based scheme, which means that
it can be easily extended to solve the 1D1V Vlasov--Poission (VP) system. We use
the same framework for this extension as shown in [24, 25] except that we use the
fourth-order splitting method. To save space, we briefly describe this extension as
follows. Consider the two split subproblem of (3.6):

ft + vfx = 0,(3.8)

ft + E(x, t)fv = 0.(3.9)

Then, the coefficient E(x, t) of (3.9) is reduced to E \star (x) which is obtained by solving
the Poisson equation (3.7) based on the solution of the former stage in the split-
ting procedure. The Poisson equation is solved by a fourth-order local DG (LDG)

method [2, 27]. Notice that we can directly obtain \rho (xi
ig, t) =

\sum Nv

j=1
hv

2 [f(xi
ig, v

j
1, t)+

f(xi
ig, v

j
2, t)], which is fourth-order accurate at 2 local GL points in each cell, which

means that we only have a P 1 nodal DG approximation of \rho for the LDG solver.
Hence, we apply a reconstruction in each cell summarized as Algorithm 3.1 to obtain
a P 3 nodal DG approximation for the fourth-order LDG solver.

Algorithm 3.1. Reconstruction of \rho on Ixi .

1. Construct a third-degree Lagrangian interpolation polynomial \{ P \rho 
i (x)\} satis-

fying

P \rho 
i (x

l
ig) = \rho (xl

ig , t), \{ l, ig\} \in \{ \{ i - 1, 2\} , \{ i, 1\} , \{ i, 2\} , \{ i+ 1, 1\} \} := IG\rho .(3.10)

2. Compute P \rho 
i (\widetilde xi

ig), where \{ \widetilde xi\widetilde ig\} 4\widetilde ig=1
are the 4 local GL points in Ixi :

P \rho 
i (\widetilde xi\widetilde ig) =

\sum 
\{ l,ig\} \in IG\rho 

a
\widetilde ig
\{ l,ig\} \rho (x

l
ig , t), \widetilde ig = 1, 2, 3, 4,(3.11)

where \{ a \widetilde ig
\{ l,ig\} \} are constant coefficients independent of i.

Another thing is that we use the SL Hermite scheme instead of the SL hybrid
HWENO scheme since the Hermite interpolation has a better capability of capturing
the special filamentation structure for the VP system as we observed.

In this subsection, we use the standard tests such as Landau damping, two stream
instability, and bump-on-tail instability to verify the effectiveness of the proposed
scheme described above for the VP system. In all the tests below, we set the basic
numerical parameters as Nx = 128, Nv = 128, CFL=10.2 and computational domain
as [0, 4\pi ] \times [ - vmax, vmax] with vmax = 2\pi unless otherwise specified, where Nx and
Nv are the numbers of cells in the x-direction and v-direction, respectively. We apply
the PP limiters for the tests below. The contour figures below are plotted based on
nodal values.

Example 3.4 (Landau damping). Consider the VP system with the initial condi-
tion
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f(x, v, t = 0) =
1\surd 
2\pi 

(1 + \alpha cos(kx)) exp

\biggl( 
 - v2

2

\biggr) 
,(3.12)

where k = 0.5, \alpha = 0.01 for the weak Landau damping and k = 0.5, \alpha = 0.5 for the
strong Landau damping. To explain why we use the SL Hermite scheme for the VP
system, contour plots of the numerical solutions of the SL hybrid HWENO scheme
and SL Hermite scheme with fourth-order splitting for the strong Landau damping
at T = 40 are provided in Figure 11. We observe that simply using the Hermite
interpolation instead of the hybrid HWENO reconstruction gives a better result and
the filamentation structure is better captured for the SL Hermite scheme. We also find
that the troubled cell indicator misidentifies the cells near the extreme points within
those strong filamentation structure as troubled cells, which leads to dissipation as
mentioned in the previous subsection. Hence, for all the tests below, we will adopt
the SL Hermite scheme with fourth-order splitting.

The time evolutions of the electric field in L2 norm for both weak and strong
Landau dampings are given in Figure 12. For the weak Landau damping, the result
reflects the correct damping of the electric field compared with the theoretical value
\gamma =  - 0.1533 as plotted with a black solid line in Figure 12. For the strong Landau
damping, we find that the initial decay rate is approximately \gamma 1 =  - 0.2898 and the
growth rate after t = 20 is approximately \gamma 2 = 0.0825. Both the decay rate and the
growth rate are very close to the existing results in the literature [8, 27].

Fig. 11. (Strong Landau damping). Numerical solution of the SL Hermite scheme (left) and
SL hybrid HWENO scheme (right) for strong Landau damping at T = 40 with CFL = 10.2 and a
mesh of 128\times 128.

Fig. 12. (Landau damping). Time evolution of the electric field of the SL Hermite scheme for
the weak (left) and strong (right) Landau damping with CFL = 10.2 and a mesh of 128\times 128.
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In Figure 13, we present the temporal order of accuracy of the proposed scheme for
both weak and strong Landau dampings at T = 2 in the same way as the linear tests.
The reference solution is computed via taking CFL = 0.1 with a mesh of 160 \times 160
by the proposed scheme. As shown, the temporal order is fourth as expected.

Figure 14 shows the performance of the scheme for preserving mass and L1 norm
for \alpha = 0.01 and \alpha = 0.5, respectively. The result in Figure 14 takes vmax = 10 for
revealing the mass conservation property, since the v-dimension is not compact and
the zero boundary condition can bring boundary error. As can be seen, the proposed
scheme is mass conservative and positive-preserving since the relative deviation is
around 10 - 14 and the relative deviation of L1 norm is completely analogous to the
relative deviation of mass by the results in Figure 14. For other kinetic invariants,

Fig. 13. (Landau damping). Temporal order of accuracy of the SL Hermite scheme for the
weak (left) and strong (right) Landau damping at T = 2. A fixed mesh of 128\times 128 is used for this
test.

Fig. 14. (Landau damping). Performance of mass conservation and PP properties of the SL
Hermite scheme for the weak (top) and strong (bottom) Landau damping.
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we observe that the results of preserving the L2 norm, energy, and entropy are close
to the results of those high-order SL schemes [27, 25, 6] in the literature, and we skip
these results for space.

Example 3.5 (two stream instability [13]). Consider the symmetric warm two
stream instability, i.e., the VP system with the initial condition

f(x, v, t = 0)

=
2

7
\surd 
2\pi 

(1 + 5v2) (1 + \alpha ((cos(2kx) + cos(3kx)) /1.2 + cos(kx))) exp

\biggl( 
 - v2

2

\biggr) 
,

(3.13)

where \alpha = 0.01 and k = 0.5. We present the time evolutions of electric field in L2

norm for this problem in Figure 15. The result is close to the ones in the literature.
On the left of Figure 16, we show the numerical solution of the SL Hermite scheme
for the two stream instability at T = 53. As is observed, the numerical solution is
consistent with the existing ones in the literature [25].

Example 3.6 (bump-on-tail instability [1, 6]). Consider the bump-on-tail instabil-
ity with the initial condition

f(x, v, t = 0) =

\biggl( 
npexp

\biggl( 
 - v2

2

\biggr) 
+ nbexp

\biggl( 
 - (v  - u)2

2v2t

\biggr) \biggr) 
(1 + 0.04cos(kx)) ,(3.14)

Fig. 15. Time evolution of the electric field of the SL Hermite scheme for the two stream
instability (left) and bump-on-tail instability (right) with CFL = 10.2 and a mesh of 128\times 128.

Fig. 16. Numerical solution of the SL Hermite scheme for the two stream instability at T = 53
(left) and bump-on-tail instability (right) at T = 40 with CFL = 10.2 and a mesh of 128\times 128.
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where np = 9
10

\surd 
2\pi 

, nb = 2
10

\surd 
2\pi 

, u = 4.5, vt = 0.5, and k = 0.3. The computational

domain for this test is [0, 20
3 \pi ]\times [ - 13, 13] similar to the setting in [6]. Figure 15 gives

the time evolution of the electric field of the SL Hermite scheme for the bump-on-tail
instability. In Figure 16, we provide the numerical solution of the proposed scheme
for bump-on-tail instability at T = 40. As shown, the numerical results are consistent
with the results in [6].

4. Conclusions. In this paper, we present the SL hybrid HWENO scheme and
the SL Hermite scheme for linear transport equations and the nonlinear VP system.
The new point of the proposed scheme is that we combine the weak formulation of
the characteristic Galerkin method with a hybrid HWENO reconstruction operator or
Hermite interpolation operator. This scheme enjoys many good properties including
high-order accuracy, nonoscillation, positivity preservation, mass conservation, and
high efficiency. Standard models including rigid body rotation, swirling deformation
flow, Landau damping, two stream instability, and bump-on-tail instability are tested
to verify the properties of the proposed scheme.

Appendix A. Fourth-order dimensional splitting. The fourth-order dimen-
sional splitting for the transport equation (1.1) in the 2-D case can be summarized as
follows:

stage 1: evolve ut + (au)x = 0 for c1\Delta tn,

stage 2: evolve ut + (bu)y = 0 for d1\Delta tn,

stage 3: evolve ut + (au)x = 0 for c2\Delta tn,

stage 4: evolve ut + (bu)y = 0 for d2\Delta tn,

stage 5: evolve ut + (au)x = 0 for c3\Delta tn,

stage 6: evolve ut + (bu)y = 0 for d3\Delta tn,

stage 7: evolve ut + (au)x = 0 for c4\Delta tn,

(A.1)

where the coefficients are defined as follows:

d1 = d3 = 1/(2 - 21/3) \approx 1.3512, d2 =  - 21/3/(2 - 21/3) \approx  - 1.7024,

c1 = c4 = d1/2 \approx 0.6756, c2 = c3 = (d1 + d2)/2 \approx  - 0.1756.
(A.2)

Appendix B. Calculation of the nonlinear weights. For \{ \omega l\} , we first
calculate the smoothness indicator [21, 18, 29] \{ \beta l\} (we use the same notations as
(2.15) for convenience) of \{ ql(x)\} . One can refer to [40] for the explicit expression of
\{ \beta l\} .

Then, similar to (2.16), calculate the parameter \tau for \{ \beta l\} above, and the non-
linear weights are defined by

\omega l =
\omega l\sum 
k \omega k

with \omega l = \gamma l

\biggl( 
1 +

\tau 

\epsilon + \beta l

\biggr) 
, l = 1, 2, 3,(B.1)

where \epsilon = 10 - 6.
For \{ \widetilde \omega l\} , the same procedures for calculating \{ \omega l\} are applied based on \{ Ql(x)\} .

The expression of smoothness indicators \{ \widetilde \beta l\} for \{ Ql(x)\} can be found in [3].

Appendix C. Proof of Proposition 2.3.

Proof. Consider the linear transport equation (2.1) with constant coefficient,
a(x, t) \equiv a, and periodic boundary condition. Without loss of generality, we as-
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sume that a > 0 and that CFL is less than 1. When CFL is greater than 1, the
linear scheme could always be reduced to a whole solution shifting on a uniform mesh
together with the scheme having CFL less than 1.

The numerical update given by the SL Hermite scheme is then summarized as

un+1
j =

1

h

\int xj - 1/2

xj - 1/2 - (1 - \nu )h

\scrH j - 1(u
n
j - 2, u

n
j - 1, u

n
j , v

n
j - 2, v

n
j - 1, v

n
j )dx

+
1

h

\int xj - 1/2+\nu h

xj - 1/2

\scrH j(u
n
j - 1, u

n
j , u

n
j+1, v

n
j - 1, v

n
j , v

n
j+1)dx,

vn+1
j =

1

h

\int xj - 1/2

xj - 1/2 - (1 - \nu )h

\scrH j - 1(u
n
j - 2, u

n
j - 1, u

n
j , v

n
j - 2, v

n
j - 1, v

n
j )

\biggl( 
x+(1 - \nu )h - xj

h

\biggr) 
dx

+
1

h

\int xj - 1/2+\nu h

xj - 1/2

\scrH j(u
n
j - 1, u

n
j , u

n
j+1, v

n
j - 1, v

n
j , v

n
j+1)

\biggl( 
x+ (1 - \nu )h - xj

h

\biggr) 
dx \forall j,

(C.1)

where \nu = 1 - a\Delta tn/h.
We prove the proposition via von Neumann stability analysis by assuming

un
l = uneI\xi lh, vnl = vneI\xi lh for l = j  - 2, j  - 1, j, j + 1(C.2)

and

un+1
j = un+1eI\xi jh, vn+1

j = vn+1eI\xi jh,(C.3)

where I is the imaginary unit. Substituting (C.2) and (C.3) into (C.1), we obtain\biggl[ 
un+1

vn+1

\biggr] 
= A(\nu , \xi )

\biggl[ 
un

vn

\biggr] 
,(C.4)

where A(\nu , \xi ) is the 2 \times 2 amplification matrix. We skip the explicit expression
of A(\nu , \xi ) for brevity and denote the spectral radius of A(\nu , \xi ) by \rho (A(\nu , \xi )). For
numerical stability, it is sufficient to show that \rho (A(\nu , \xi )) \leq 1 for any \nu \in [0, 1] and
\xi h \in [0, 2\pi ]. We numerically check the spectral radius by sampling 1000 uniform
points in the \nu and \xi domains, respectively. As can be seen in Figure 17, all the
values \rho (A(\nu i, \xi j)) - 1 do not exceed 0, which validates Proposition 2.3.

Fig. 17. Numerical plot of \rho (A(\nu , \xi )) - 1 for all sampling points.
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Appendix D. PP limiters for Algorithms 2.1 and 2.2. The PP limiter
applied on Algorithm 2.1 is shown in Algorithm D.1.

Algorithm D.1. PP limiter for Algorithm 2.1 for given yjjg and i (pseudo code).

1: if uj,jg
i < 0

2: ex = 0; accum = uj,jg
i ;

3: while ( accum < 0 )
4: ex = ex + 1;
5: accum = accum + uj,jg

i - ex + uj,jg
i+ex;

6: end
7: accum = accum / (1 + 2ex);
8: \theta = min\{ | accum/(uj,jg

i  - accum)| , 1\} ;
9: uj,jg

i - ex:i+ex = \theta (uj,jg
i - ex:i+ex  - accum) + accum;

10: end

For convenience, we define a new array \{ x(k)\} such that x(2i  - 1) = xi
1 and

x(2i) = xi
2. The PP limiter applied on Algorithm 2.2 is presented in Algorithm D.2.

Algorithm D.2. PP limiter for Algorithm 2.2 for given yjjg and i (pseudo code).

1: if Hi(x(2i - 1)) < 0
2: ex = 0; accum = Hi(x(2i - 1));
3: while ( accum < 0 )
4: ex = ex + 1;
5: accum = accum + Hi(x(2i - 1 - ex)) + Hi(x(2i - 1 + ex));
6: end
7: accum = accum / (1 + 2ex);
8: \theta = min\{ | accum/(Hi(x(2i - 1)) - accum)| , 1\} ;
9: Hi(x(2i - 1 - ex : 2i - 1 + ex)) = \theta (Hi(x(2i - 1 - ex : 2i - 1 + ex))  - accum)

+ accum;
10: end
11: if Hi(x(2i)) < 0
12: ex = 0; accum = Hi(x(2i));
13: while ( accum < 0 )
14: ex = ex + 1;
15: accum = accum + Hi(x(2i - ex)) + Hi(x(2i+ ex));
16: end
17: accum = accum / (1 + 2ex);
18: \theta = min\{ | accum/(Hi(x(2i)) - accum)| , 1\} ;
19: Hi(x(2i - ex : 2i+ ex)) = \theta (Hi(x(2i - ex : 2i - 1 + ex))  - accum) + accum;
20: end

REFERENCES

[1] T. Arber and R. Vann, A critical comparison of Eulerian-grid-based Vlasov solvers, J.
Comput. Phys., 180 (2002), pp. 339--357.

[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749--1779.

D
ow

nl
oa

de
d 

11
/0

2/
21

 to
 1

17
.2

8.
25

1.
13

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A CONSERVATIVE SEMI-LAGRANGIAN HYBRID HWENO SCHEME A3605

[3] D. S. Balsara, S. K. Garain, and C. Shu, An efficient class of WENO schemes with adaptive
order, J. Comput. Phys., 326 (2016), pp. 780--804.

[4] P. A. Bosler, A. M. Bradley, and M. A. Taylor, Conservative multimoment transport
along characteristics for discontinuous Galerkin methods, SIAM J. Sci. Comput., 41 (2019),
pp. B870--B902.

[5] A. Burbeau and P. Sagaut, A dynamic p-adaptive discontinuous Galerkin method for viscous
flow with shocks, Comput. \& Fluids, 34 (2005), pp. 401--417.

[6] X. Cai, W. Guo, and J.-M. Qiu, A high order semi-Lagrangian discontinuous Galerkin method
for Vlasov-Poisson simulations without operator splitting, J. Comput. Phys., 354 (2018),
pp. 529--551.

[7] X. Cai, X. Zhang, and J. Qiu, Positivity-preserving high order finite volume HWENO schemes
for compressible Euler equations, J. Sci. Comput., 68 (2016), pp. 464--483.

[8] C.-Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space,
J. Comput. Phys., 22 (1976), pp. 330--351.

[9] N. Crouseilles, M. Mehrenberger, and F. Vecil, Discontinuous Galerkin semi-Lagrangian
method for Vlasov-Poisson, ESAIM Proc., 32 (2011), pp. 211--230.

[10] H. K. Dahle, R. E. Ewing, and T. F. Russell, Eulerian-Lagrangian localized adjoint methods
for a nonlinear advection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 122
(1995), pp. 223--250.

[11] M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz, A unified framework for the
construction of one-step finite volume and discontinuous Galerkin schemes on unstructured
meshes, J. Comput. Phys., 227 (2008), pp. 8209--8253.

[12] L. Einkemmer, A performance comparison of semi-Lagrangian discontinuous Galerkin and
spline based Vlasov solvers in four dimensions, J. Comput. Phys., 376 (2019), pp.
937--951.

[13] F. Filbet and E. Sonnendr\"ucker, Comparison of Eulerian Vlasov solvers, Comput. Phys.
Commun., 150 (2003), pp. 247--266.

[14] E. Forest and R. D. Ruth, Fourth-order symplectic integration, Phys. D, 43 (1990), pp.
105--117.

[15] W. Guo, R. D. Nair, and J. M. Qiu, A conservative semi-Lagrangian discontinuous Galerkin
scheme on the cubed sphere, Monthly Weather Rev., 142 (2014), pp. 457--475.

[16] C. Huang, T. Arbogast, and J. Qiu, An Eulerian-Lagrangian WENO finite volume scheme
for advection problems, J. Comput. Phys., 231 (2012), pp. 4028--4052.

[17] C.-S. Huang, T. Arbogast, and C.-H. Hung, A semi-Lagrangian finite difference WENO
scheme for scalar nonlinear conservation laws, J. Comput. Phys., 322 (2016), pp. 559--585.

[18] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.
Phys., 126 (1996), pp. 202--228.

[19] D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin
methods, J. Comput. Appl. Math., 233 (2010), pp. 3077--3085.

[20] D. Lee, R. B. Lowrie, M. R. Petersen, T. D. Ringler, and M. W. Hecht, A high order
characteristic discontinuous Galerkin scheme for advection on unstructured meshes, J.
Comput. Phys., 324 (2016), pp. 289--302.

[21] X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.
Phys., 115 (1994), pp. 200--212.

[22] K. W. Morton, On the analysis of finite volume methods for evolutionary problems, SIAM J.
Numer. Anal., 35 (1998), pp. 2195--2222.

[23] J. Qiu and C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge--
Kutta discontinuous Galerkin method: One-dimensional case, J. Comput. Phys., 193
(2004), pp. 115--135.

[24] J.-M. Qiu and A. Christlieb, A conservative high order semi-Lagrangian WENO method for
the Vlasov equation, J. Comput. Phys., 229 (2010), pp. 1130--1149.

[25] J.-M. Qiu and C. W. Shu, Positivity preserving semi-Lagrangian discontinuous Galerkin
formulation: Theoretical analysis and application to the Vlasov-Poisson system, J.
Comput. Phys., 230 (2011), pp. 8386--8409.

[26] M. Restelli, L. Bonaventura, and R. Sacco, A semi-Lagrangian discontinuous Galerkin
method for scalar advection by incompressible flows, J. Comput. Phys., 216 (2006), pp.
195--215.

[27] J. A. Rossmanith and D. C. Seal, A positivity-preserving high-order semi-Lagrangian discon-
tinuous Galerkin scheme for the Vlasov--Poisson equations, J. Comput. Phys., 230 (2011),
pp. 6203--6232.

[28] T. F. Russell and M. A. Celia, An overview of research on Eulerian-Lagrangian localized
adjoint methods (ELLAM), Adv. Water Res., 25 (2002), pp. 1215--1231.

D
ow

nl
oa

de
d 

11
/0

2/
21

 to
 1

17
.2

8.
25

1.
13

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3606 N. ZHENG, X. CAI, J.-M. QIU, AND J. QIU

[29] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyper-
bolic Equations, Springer, Cham, 1998, pp. 325--432.

[30] Z. Tao, F. Li, and J. Qiu, High-order central Hermite WENO schemes: Dimension-by-
dimension moment-based reconstructions, J. Comput. Phys., 318 (2016), pp. 222--251.

[31] L. Wang and D. J. Mavriplis, Adjoint-based h - p adaptive discontinuous Galerkin methods
for the 2D compressible Euler equations, J. Comput. Phys., 228 (2009), pp. 7643--7661.

[32] T. Xiong, J.-M. Qiu, Z. Xu, and A. Christlieb, High order maximum principle preserving
semi-Lagrangian finite difference WENO schemes for the Vlasov equation, J. Comput.
Phys., 273 (2014), pp. 618--639.

[33] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990),
pp. 262--268.

[34] H. Yoshida, Recent progress in the theory and application of symplectic integrators, in Quali-
tative and Quantitative Behaviour of Planetary Systems, Springer, Cham, 1993, pp. 27--43.

[35] X. Zhang and C. W. Shu, On maximum-principle-satisfying high order schemes for scalar
conservation laws, J. Comput. Phys., 229 (2010), pp. 3091--3120.

[36] X. Zhang and C. W. Shu, On positivity-preserving high order discontinuous Galerkin schemes
for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229 (2010),
pp. 8918--8934.

[37] X. Zhang and C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high-order
schemes for conservation laws: Survey and new developments, Proc. A, 467 (2011),
pp. 2752--2776.

[38] Y. Zhang and R. Nair, A nonoscillatory discontinuous Galerkin transport scheme on the
cubed sphere, Monthly Weather Rev., 140 (2012), pp. 3106--3126.

[39] Z. Zhao, Y. Chen, and J. Qiu, A hybrid Hermite WENO scheme for hyperbolic conservation
laws, J. Comput. Phys., 405 (2020), 109175.

[40] Z. Zhao and J. Qiu, A Hermite WENO scheme with artificial linear weights for hyperbolic
conservation laws, J. Comput. Phys., 417, 109583.

[41] J. Zhu and J. Qiu, A new fifth order finite difference WENO scheme for solving hyperbolic
conservation laws, J. Comput. Phys., 318 (2016), pp. 110--121.

D
ow

nl
oa

de
d 

11
/0

2/
21

 to
 1

17
.2

8.
25

1.
13

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s


	Introduction
	The SL hybrid HWENO scheme
	Review of the P1 SL DG formulation
	Hybrid HWENO reconstruction operator
	Dimensional splitting
	PP limiter

	Numerical tests
	Numerical tests for linear transport equations
	Vlasov simulations

	Conclusions
	Appendix A. Fourth-order dimensional splitting
	Appendix B. Calculation of the nonlinear weights
	Appendix C. Proof of stability
	Appendix D. PP limiters for algo:n2m,algo:m2n
	References



