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Abstract

In this paper, we construct high-order Hermite weighted essentially non-oscillatory (HWENO)

schemes for two-dimensional hyperbolic conservation laws on triangular meshes. These

schemes integrate both zeroth- and first-order moments into spatial discretizations, yield-

ing more compact stencils than same-order WENO schemes. Specifically, the third- and

fifth-order HWENO schemes require only one and two layers of stencils, respectively, as op-

posed to the two layers needed by a third-order WENO scheme. Meanwhile, the HWENO

schemes demonstrate reduced numerical errors in smooth areas and improved resolution

near discontinuities. Although the HWENO schemes include two auxiliary equations, they

retain a unified nonlinear reconstruction process similar to that of WENO schemes. This de-

sign choice leads to a modest increase in computational expense and algorithm complexity.

Crucially, an efficient definition of smoothness indicators is introduced, based on a mid-

point numerical integration of the original indicator. This streamlined definition enhances

computational efficiencies on unstructured meshes and results in only minor variations in

smoothness measurement between the two definitions, regardless of whether the problem is

smooth or discontinuous. The HWENO schemes are distinguished by their strong practi-

cality on triangular meshes, with efficient computation of smoothness indicators, consistent

use of a single set of compact stencils, and application of artificial linear weights. Extensive

numerical experiments are conducted to verify the high-order accuracy, efficiency, resolu-

tion, robustness, scale-invariance, and the effectiveness of the smoothness indicator for the

proposed HWENO schemes.
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1 Introduction

In this paper, the third- and fifth-order Hermite weighted essentially non-oscillatory

(HWENO) scheme are developed on triangular meshes, which evolve the zeroth- and first-

order moments in time, subsequently incorporating them into spatial discretizations. The

HWENO schemes are an evolution of weighted essentially non-oscillatory (WENO) schemes,

which have been extensively utilized in the past three decades. A key distinction of HWENO

schemes is their utilization of first-order moments or derivatives, in addition to solutions,

resulting in more compact stencils compared to same-order WENO schemes. This usually

leads to reduced numerical errors in smooth regions and improved resolutions near discon-

tinuities, as supported by the formal studies [7, 8] on structured meshes. The finite volume

HWENO scheme presented in [7] is particularly noted for its streamlined framework, which

simplifies the reconstruction process to a single set of stencils. Building upon this foundation,

we construct the third- and fifth-order schemes for solving the two-dimensional hyperbolic

conservation laws on triangular meshes, as represented by the following equation:

{
ut + f(u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).

The pioneering WENO scheme was initiated by Liu et al. [17] in 1994, where they

combined all candidate stencils of essentially non-oscillatory (ENO) schemes [11, 12] (lower-

order) to obtain a third-order accuracy in the finite volume framework (higher-order). In

1996, Jiang and Shu [15] developed a fifth-order finite difference WENO scheme, providing a

general definition for smoothness indicators (SI) and nonlinear weights, with a focus on struc-

tured meshes. Friedrichs [10] extended the WENO methodology to unstructured meshes, but

the resulting schemes did not exceed the accuracy of their ENO counterparts despite em-

ploying nonlinear weights. To leverage lower degree polynomials for higher-order accuracies,

Hu and Shu [13] constructed third- and fourth-order schemes on triangular meshes by cal-

culating linear weights at each reconstruction point. However, the process was complex,

particularly in higher dimensions. Furthermore, the potential for negative or non-existent
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values in the calculation of linear weights on unstructured meshes was noted in [19, 23], due

to mesh quality variability. Later, a series of WENO schemes [6, 26, 31, 32] were developed

following the approach of [10, 13], and Liu and Zhang [19] gave a hybrid approach that

merged the methodologies of [10] and [13]. In a significant advancement, Zhu and Qiu [40]

constructed third- and fourth-order WENO schemes for triangular meshes without the need

for linear weight calculations, and surpassed the sub-stencil accuracy as in [13], which was

subsequently extended to three-dimensional cases in [41]. The innovative concept has since

been embraced in subsequent WENO schemes for unstructured meshes [1, 2, 14, 27, 42], as

highlighted in a comprehensive review of the literature [25].

The construction of higher-order in WENO schemes necessitates the employment of an

expanded stencil, which presents challenges when addressing boundary conditions on un-

structured meshes. As illustrated in [42], the third-order WENO scheme requires the uti-

lization of two layers of triangular meshes, and the fifth-order scheme escalates this to three

layers. The addition of each mesh layer introduces complexities, particularly at boundaries,

and the potential for mesh merging further complicates the scheme. To use a more com-

pact stencil, a useful idea was proposed in the first HWENO scheme [21] by bringing the

additional derivatives in each cell as auxiliary variables, and the variables also can be first-

order moments seen in the PNPM method [5] and the moment-based HWENO scheme [7].

However, the first-order derivatives or moments become quite large near discontinuities, po-

tentially undermining the robustness of HWENO schemes. Hence, the first HWENO scheme

[21] had to use two different sets of stencils in the spatial discretizations, and this similar

procedure was used in the subsequent HWENO schemes [18, 22, 37, 38]. This strategy, which

uses two sets of stencils to avoid discontinuities, is less robust than corresponding WENO

schemes, characterized by the need for smaller time steps and more dependence on problem-

specific conditions. In a recent development, a hybrid HWENO scheme [33] was proposed,

which modifies first-order moments near discontinuities for subsequent utilization in spatial

reconstructions. This proactive approach has demonstrated greater robustness than previous
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methods when facing strong shocks, as evidenced by a series of studies [7, 8, 16, 28, 34, 35].

Specifically, the time step and capacity for tackling complex problems are comparable to

analogous WENO schemes. Furthermore, the latest HWENO schemes [7, 8] have showed

higher efficiencies and resolutions over the corresponding WENO schemes on structured

meshes. Notably, the finite-volume HWENO scheme [7] maintains a unified and streamlined

framework throughout its procedures, utilizing a single set of stencils as WENO schemes.

For practical applications, we develop third- and fifth-order HWENO schemes on tri-

angular meshes, utilizing a unified single set of stencils and artificial linear weights, as

demonstrated in [7]. Although formal HWENO schemes on triangular meshes were pre-

viously constructed by Zhu and Qiu [38], offering high-order accuracy with compact stencils,

they necessitated complex linear weight calculations and dual stencil sets, posing challenges

for implementations on unstructured meshes. Utilizing the framework outlined in [7], our

approaches on triangular meshes necessitate the strategic selection of optimal candidate

stencils. Despite this, a significant challenge remains: accurately computing SI, an issue also

presents in WENO and HWENO schemes on unstructured meshes [1, 2, 13, 14, 19, 27, 30,

32, 38, 40, 41, 42]. SI, commonly used in two-dimensional schemes, was originally defined by

Hu and Shu [13] as
∑r

|l|=1 |Ω||l|−1
∫
Ω

(
∂|l|pm(x,y)

∂xl1∂yl2

)2
dΩ. This definition effectively measures the

smoothness of binary polynomials and has been widely adopted in subsequent WENO and

HWENO schemes across structured [7, 22] and unstructured [1, 2, 14, 19, 27, 32, 38, 40, 42]

meshes. However, the explicit formulation of SI cannot be easily derived for unstructured

meshes unless using local orthogonal basis functions, which are dependent on geometry and

difficult to identify for high-degree polynomials. To address this, we adopt the midpoint

numerical integration method as
∑r

|l|=1 |Ω||l|
(

∂|l|

∂xl1∂yl2
pm(xi, yi)

)2
for computing SI, allow-

ing explicit expression for natural basis functions. Formally, this new definition measures

smoothness at individual points, similar to the finite difference WENO scheme [9]. It retains

accuracy, supported by analytical methods [15, 24, 40], and varies from the original by an

order of O(|Ω|), with minimal impacts in discontinuous cases. Numerical examples 3.1 and
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3.4 substantiate this, exhibiting nearly identical results across smooth and non-smooth cases

with higher efficiencies.

Overall, the HWENO schemes are constructed via a series of steps. Firstly, a semi-

discrete scheme is presented on triangular meshes, which aligns with that in DG methods

[20, 43], utilizing P1 test functions, with the evolved variables being the zeroth- and first-

order moments. Secondly, the moments are used to reconstruct a high-degree and four linear

polynomials on a carefully selected set of candidate stencils. These polynomials are combined

with nonlinear weights for spatial discretizations, with the option of artificial positive linear

weights summing to one as [40]. Lastly, the third-order strong stability preserving Runge-

Kutta time discretization method [7, 24] is used to advance the moments to subsequent

stages. It is noteworthy that our HWENO schemes not only optimize the computation of SI

but also uphold the property of scale-invariance, characteristic of both WENO and HWENO

schemes [2, 4, 7]. This ensures identical nonlinear weights to a function and its scalar

multiples within the same cell. Comparatively, our HWENO schemes demonstrate higher

efficiencies and resolutions than the corresponding third-order WENO scheme, particularly

with a single-layer stencil in the third-order HWENO schemes, thereby avoiding the issue

of mesh merging. The advantages of these schemes will be detailed in subsequent sections

through algorithmic descriptions and numerical tests.

The paper is organized as follows: in Section 2, the detailed implementation of the third-

and fifth-order HWENO schemes on triangular meshes is introduced. Within this section, a

simple and effective definition of SI is proposed, and the compact stencils in HWENO schemes

can also be observed. In Section 3, extensive benchmarks are carried out to demonstrate

the numerical accuracy, high resolution, robustness, scale-invariance, and effective SI of the

proposed schemes. Finally, concluding remarks are given in Section 4.
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2 Description of HWENO schemes on triangle meshes

In this section, we present the construction methodologies of the third- and fifth-order

HWENO schemes for two-dimensional hyperbolic conservation laws on triangular meshes.

The overall framework closely aligns with that presented in [7], wherein a singular set of

stencils is consistently utilized. Nonetheless, adjustments are required in the selection of

candidate stencils. The HWENO schemes are capable of employing artificial positive linear

weights, provided their sum equals one. Still, the HWENO schemes preserve the characteris-

tic of scale-invariance. Furthermore, we introduce a straightforward and effective definition of

SI, which is specifically designed for unstructured meshes and exhibits only minor differences

from the original definition in [13].

2.1 Semi-discrete HWENO scheme

We begin by examining two-dimensional scalar hyperbolic conservation laws, as defined

by {
ut +∇ · F (u) = 0,
u(x, y, 0) = u0(x, y),

(2.1)

where F = (f, g). The computational domain is tessellated into triangular meshes {△i}. To

utilize additional information within each cell, we multiply the governing equation (2.1) by

{1, x−xi√
|△i|

, y−yi√
|△i|

} within the target cell △i. Here, |△i| and (xi, yi) denote the area and the

barycenter of △i, respectively. Subsequently, we compute their integral averages over the

cell △i, yielding the corresponding set of integral equations as




dui

dt
=− 1

|△i|

∫

∂△i

F · −→n ds , Lu
i ,

dvi
dt

=− 1

|△i|

∫

∂△i

(
x− xi√
|△i|

F

)
· −→n ds+

1

|△i|3/2
∫

△i

fdΩ , Lv
i ,

dwi

dt
=− 1

|△i|

∫

∂△i

(
y − yi√
|△i|

F

)
· −→n ds+

1

|△i|3/2
∫

△i

gdΩ , Lw
i ,

(2.2)

in which the zeroth- and first-order moments of u are defined as ui = 1
|△i|
∫
△i

udΩ, vi =

1
|△i|
∫
△i

u x−xi√
|△i|

dΩ, and wi = 1
|△i|
∫
△i

u y−yi√
|△i|

dΩ, respectively. Here, −→n represents the unit
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outward normal vector to the boundary ∂△i. It is important to note that the semi-discrete

scheme (2.2) is consistent with the approach taken in DG methods [20, 43], which employ P1

test functions. To obtain the numerical solution of Eqs. (2.2), the right-hand side terms are

approximated by using Gaussian quadrature formulas. More specifically, the line integrals

are discretized using a Gaussian quadrature formula along each edge, possessing

∫

∂△i

H(u) · −→n ds ≈
3∑

ℓ=1

|∂△i,ℓ|
re∑

k=1

σkH(u)|x=xℓ,k
y=yℓ,k · −→n ℓ. (2.3)

Here, H represents F , x−xi√
|△i|

F , or y−yi√
|△i|

F . The pairs (xℓ,k, yℓ,k) and the scalars σk denote the

Gaussian quadrature points and weights, respectively, along the edge ∂△i,ℓ. re is set as 2

and 3 for the third- and fifth-order schemes, respectively. Additionally, the surface integrals

are discretized by a Gaussian formula on each triangular element as

∫

△i

h(u)dΩ = |△i|
rv∑

k

ζkh(u)|x=xG
k

y=yG
k

, (2.4)

where h symbolizes f or g. The Gaussian quadrature points (xG
k , y

G
k ) and the corresponding

weights ζk are detailed in [3]. For the third- and fifth-order schemes, rv is set to 4 and

7, respectively. Furthermore, the flux H(u) · −→n ℓ at the point (xℓ,k, yℓ,k) in Eq. (2.3) is

approximated by the local Lax-Friedrichs numerical flux as

H(u) · −→n ℓ ≈
1

2

[
H(u+) +H(u−)

]
· −→n ℓ −

α

2

(
u+ − u−) , (2.5)

where α is defined as the spectral radius of the Jacobian matrix, evaluated in the unit

normal vector −→n ℓ. The conservative variable approximations, u− and u+, denote the inside

and outside of the boundary ∂△i,ℓ at the Gaussian point (xℓ,k, yℓ,k), respectively.

Utilizing the approximated techniques outlined in Eqs. (2.3), (2.4) and (2.5), the spatial

discretization in the right terms of the semi-discrete scheme (2.2) is effectively reduced to

the reconstruction of the function ui(x, y, t) at specific points. The detailed procedures for

this reconstruction are elaborated in the subsection 2.3.
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2.2 Time discretization

Due to the inherent presence of discontinuities in solutions to hyperbolic conservation

laws, the magnitude of the first-order moments can escalate significantly in regions lacking

smoothness. Hence, in a recent development, the finite volume HWENO scheme on struc-

tured meshes [7] has modified the first-order moments at each stage of the third-order strong

stability preserving (SSP) Runge-Kutta time discretization method [24], where the modifi-

cation uses the same information from spatial discretizations. This temporal discretization

method is similarly adopted in the present work as








ū
(1)
i

v̄
(1)
i

w̄
(1)
i


 =



ūn
i

v̂ni
ŵn

i


+∆t



Lu
i (ū

n, v̄n, w̄n)
Lv
i (ū

n, v̄n, w̄n)
Lw
i (ū

n, v̄n, w̄n)


 ,



ū
(2)
i

v̄
(2)
i

w̄
(2)
i


 =

3

4



ūn
i

v̂ni
ŵn

i


+

1

4






ū
(1)
i

v̂
(1)
i

ŵ
(1)
i


+∆t



Lu
i (ū

(1), v̄(1), w̄(1))
Lv
i (ū

(1), v̄(1), w̄(1))
Lw
i (ū

(1), v̄(1), w̄(1))





 ,




ūn+1
i

v̄n+1
i

w̄n+1
i



 =
1

3




ūn
i

v̂ni
ŵn

i



+
2

3






ū
(2)
i

v̂
(2)
i

ŵ
(2)
i


+∆t




Lu
i (ū

(2), v̄(2), w̄(2))
Lv
i (ū

(2), v̄(2), w̄(2))
Lw
i (ū

(2), v̄(2), w̄(2))






 .

(2.6)

Here, the modified first-order moments are defined as v̂#i ≈ 1
|△i|
∫
△i

u(x, y, t#)
x−xi√
|△i|

dΩ and

w#
i ≈ 1

|△i|
∫
△i

u(x, y, t#)
y−yi√
|△i|

dΩ, where # denotes n, (1), or (2) corresponding to each time

stage. These moments are modified by HWENO methods, as detailed in the subsection 2.3.

2.3 HWENO reconstruction

We now present the detailed HWENO reconstruction procedure for the function ui(x, y, t)

and the modified first-order moments v̂#i and ŵ#
i within the cell △i, using zeroth- and first-

order moments {u, v, w}. To conserve space, the temporal stage labels will be omitted

henceforth, and the implementation process is structured into the subsequent three steps.

Step 1. Reconstruct four linear polynomials {pm(x, y)}4m=1, and a quadratic polynomial

p5(x, y) or a quartic polynomial p6(x, y).

For the sake of clarity, we rebel the target cell △i and its three immediate neighbour cells
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i1
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3

i1 i

2

i

3

Fig. 2.1. Four small stencils S1, ..., S4 for the HWENO schemes.

i1

2

3

i1

12

11

2

21

22

3

32

31

Fig. 2.2. Big stencils S5 and S6 for the third- and fifth-order HWENO schemes, respectively.
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Table 2.1: Reconstructions of polynomials {pm(x, y)}6m=1 on stencils {Sm}6m=1, respectively

Polynomials Stencils Values Basis functions with ξ = x−xi√
|△i|

, η = y−yi√
|△i|

p1(x, y) S1 uS1
1, ξ, η

p2(x, y) S2 uS2
, vS2\{i}, wS2\{i} 1, ξ, η

p3(x, y) S3 uS3
, vS3\{i}, wS3\{i} 1, ξ, η

p4(x, y) S4 uS4
, vS4\{i}, wS4\{i} 1, ξ, η

p5(x, y) S5 uS5
, vS5\{i}, wS5\{i} 1, ξ, η, ξ2, ξη, η2

p6(x, y) S6 uS6
, vS6\{i}, wS6\{i} 1, ξ, η, ξ2, ξη, η2, ξ3, ξ2η, ξη2, η3, ξ4, ξ3η, ξ2η2, ξη3, η4

with the indices i, 1, 2, 3. The immediate neighbour cells of△l, excluding△i itself, are labeled

as l1 and l2 on the candidate stencils {Sm}6m=1, shown in Figs. 2.1 and 2.2, where l = 1, 2, 3,

respectively. Here, uk, vk and wk represent the moments within the cell △k. Subsequently,

we reconstruct four linear polynomials {pm(x, y)}4m=1, a quadratic polynomial p5(x, y), and a

quartic polynomial p6(x, y) on the corresponding stencils {Sm}6m=1, respectively. To facilitate

clear understanding, an outline of reconstruction process for the polynomials {pm(x, y)}6m=1

is provided in Tab. 2.1. These six polynomials {pm(x, y)}6m=1 can be uniquely determined

by ensuring they exactly match ūi for conservations, utilizing the least squares methodology

as detailed in [7, 13, 36]. To streamline notation, we shall denote the subscripts “5” and “6”

with the symbol “*” throughout the subsequent procedures. Later, we reformulate p∗(x, y)

as

p∗(x, y) = γ∗

(
1

γ∗
p∗(x, y)−

4∑

m=1

γm
γ∗

pm(x, y)

)
+

4∑

m=1

γmpm(x, y), γ∗ 6= 0. (2.7)

To ensure the stability of the subsequent HWENO reconstruction, the set of linear weights

{γm}6m=1 must be positive, with the requirement
∑4

m=1 γm + γ∗ = 1.

Step 2. Compute SI for {pm(x, y)}6m=1, which measure the level of smoothness for

each polynomial. These indicators can also be determined using the original definition from

WENO and HWENO schemes [13, 19, 27, 31, 38, 40] for triangular meshes as

βold
m =

r∑

|l|=1

|△i||l|−1

∫

△i

(
∂|l|pm(x, y)

∂xl1∂yl2

)2

dΩ, m = 1, ..., 6, (2.8)

where l = (l1, l2), |l| = l1 + l2, and r is the degree of pm(x, y). However, calculating these
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indicators using formula (2.4) is computationally expensive even if we adjust the polyno-

mial ∂|l|pm(x,y)

∂xl1∂yl2
by local orthogonal basis functions within the cell △i. The basis functions

are dependent on geometry and are difficult to identify for high-degree polynomials. To

reduce computational cost and improve practicality, we directly use the midpoint numerical

integration formula to calculate it, actually computing the value of the formula (2.8) at the

barycenter (xi, yi). This leads to a new definition of SI within the finite volume framework:

βm =

r∑

|l|=1

|△i||l|
(

∂|l|

∂xl1∂yl2
pm(xi, yi)

)2

, m = 1, ..., 6. (2.9)

Formally, this new definition measures smoothness at individual points, similar to the finite

difference WENO scheme [9], but the explicit expressions of βm can be concisely formulated

as 




βm =c2m,2 + c2m,3, m = 1, 2, 3, 4,

β5 =c25,2 + c25,3 + 4c25,4 + c25,5 + 4c25,6,

β6 =c26,2 + c26,3 + 4c26,4 + c26,5 + 4c26,6 + 36c26,7 + 16c26,8 + 16c26,9 + 36c26,10

+ 576c26,11 + 36c26,12 + 16c26,13 + 36c26,14 + 576c26,15,

(2.10)

where cm,l are the coefficients of the polynomials {pm(x)}6m=1 based on the natural basis

functions listed in Tab. 2.1.

Remark 2.1 The new definition of SI (2.9) offers several advantages over the original one

(2.8). It maintains the essential properties of the original one within the finite volume frame-

work, such as accuracy and the capacity to measure smoothness within cells, while providing

more streamlined expressions and increased computational efficiencies. The reasons are given

as follows. Firstly, the new definition measures the level of smoothness at the barycenter

(xi, yi), while the original definition does so across the entire target cell. There is no essential

differences for the accuracy, as supported by the analytical method of [15, 24, 40]. Secondly,

the new definition can be viewed as a midpoint numerical integration of the original one,

leading to that the difference between βm and βold
m is an order of O(|△i|) numerically. This

small difference does not significantly impact the performance of two definitions in the pres-

ence of discontinuities. In such cases, both indicators reach O(1), indicating that their ability
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to measure smoothness remains essentially unchanged. However, the streamlined expression

of the new SI (2.9) translates to higher computational efficiencies on unstructured meshes, a

critical advantage in practical applications. Theses properties are further illustrated by the

comparison of numerical tests, as detailed in Examples 3.1 and 3.4.

Step 3. Reconstruct the solution ui(x, y) and its modified first-order moments v̂i and ŵi

by HWENO methods.

In this step, we will introduce the nonlinear third- and fifth-order HWENO reconstruc-

tions for ui(x, y), v̂i and ŵi, respectively. These reconstructions are capable of maintaining

high-order accuracies in smooth areas while essentially ensuring non-oscillatory behaviors

near discontinuities. As in the WENO and HWENO schemes [7, 34, 39, 40], a parameter τ

is used to measure the overall difference between the set of {βm}4m=1 and β∗, having

τ =

∑4
l=1 |β∗ − βl|

4
, (2.11)

then, the nonlinear weights are computed by

ωm =
ω̃m∑4

l=1 ω̃l + ω̃∗
, with ω̃m = γm(1 +

τ 2

u2−p
ave β

p
m + u4

aveε
), m = 1, . . . , 4, ∗, (2.12)

where uave =
∑

k∈S∗
uk

cardS∗
+10−40, and cardS∗ represents the count of elements in the set S∗. The

incorporation of uave as a normalization procedure is essential to preserve the scale-invariant

property as in the WENO and HWENO schemes [4, 7]. Here, ε is a small positive number

to prevent zero denominator, and we set ε = 10−8 in this paper. For the HWENO schemes,

the parameter p is assigned as 2 for the third-order and 1 for the fifth-order, consistent with

the settings in the third-order WENO scheme [2] and the fifth-order HWENO scheme [7].

Finally, a nonlinear HWENO reconstruction of the polynomial ui(x, y) for u(x, y) within

the target cell △i is obtained by substituting a part of linear weights in (2.7) with the

nonlinear weights (2.12). Concurrently, the modified first-order moments v̂i and ŵi are

directly determined from ui(x, y) and are only used in the time discretization outlined in
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(2.6). Then, we have





ui(x, y) = ω∗

(
1
γ∗
p∗(x, y)−

4∑
m=1

γm
γ0
pm(x, y)

)
+

4∑
m=1

ωmpm(x, y),

v̂i =
1

|△i|
∫
△i

ui(x, y)
x−xi√
|△i|

dΩ = ω∗

(
1
γ∗
qv∗ −

4∑
m=1

γm
γ0
qvm

)
+

4∑
m=1

ωmq
v
m,

ŵi =
1

|△i|
∫
△i

ui(x, y)
y−yi√
|△i|

dΩ = ω∗

(
1
γ∗
qw∗ −

4∑
m=1

γm
γ0
qwm

)
+

4∑
m=1

ωmq
w
m,

(2.13)

where qvm = 1
|△i|
∫
|△i| pm(x, y)

x−xi√
△i

dΩ and qwm = 1
|△i|
∫
|△i| pm(x, y)

y−yi√
△i

dΩ. Subsequently, the

values of the solution ui(x, y) at specific points are calculated to meet the needs of (2.3)

and (2.4). Notably, the reconstructions presented in Eq. (2.13) are designed to achieve the

third- and fifth-order accuracy when the subscript “*” is assigned to the symbols “5” and

“6”, respectively. The analytical procedures for the accuracy of these reconstructions are

consistent with those found in the WENO schemes [15, 24, 40].

Remark 2.2 For the construction of fourth-order HWENO scheme, we are capable of di-

rectly reconstructing a cubic polynomial on the stencil S6 utilizing the values of uS6
, vS6\{i},

wS6\{i} by using the same definition of nonlinear weights (2.12) for the fifth-order HWENO

scheme. However, this approach incurs some numerical wastes, as the WENO scheme [40]

has demonstrated the ability to achieve fourth-order accuracies with the same stencil, under

the condition that mesh merging is not performed. For the more compact stencil S5, it is

feasible to employ the values of uS5
, vS5\{i}, wS5\{i} in the reconstruction process, resulting in

a cubic polynomial. Nevertheless, the final HWENO scheme loses its accuracy as the mesh

undergoes refinement.

Remark 2.3 For systems such as the two-dimensional compressible Euler equations, the

HWENO procedures are initially used in cooperation with the local characteristic decom-

position on the directions provided by two fluxes, respectively, yielding two distinct sets of

values. Subsequently, a simple average of these sets is computed to obtain the approximate

values. These approximations are finally used in the semi-discrete scheme (2.2) and the time

discretization (2.6).
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3 Numerical tests

In this section, we present the numerical results to validate the third- and fifth-order

accuracy, efficiency, high resolution, and robustness of the proposed HWENO schemes, de-

noted as the HWENO3 and HWENO5 schemes, respectively. For comparisons, we also

present the results of a third WENO scheme, referred as the WENO3 scheme. The WENO3

scheme employs the same nonlinear weights definition as the HWENO3 scheme but utilizes

the candidate stencils from the third-order WENO scheme of Zhu and Qiu [40]. It should

be noted that, despite both achieving the third-order accuracy, the stencil for the WENO3

scheme is wider than that for the HWENO3 scheme. Moreover, the higher-order HWENO5

scheme employs the same big stencil as the WENO3 scheme. The linear weights of the four

linear polynomials γ1,...,4 are set as 0.01 with the remainder allocated to 0.96, following the

recommendations of [40]. This allocation effectively balances the accuracy, resolution and

robustness for the numerical tests presented. The Courant-Friedrichs-Lewy (CFL) number

is set as 0.6. Besides, the simulations were conducted on the environment of Inter(R) Xeon

(R) Gold 6130 CPU @ 2.10 GHz using Fortran 95 as the programming language, and the

computational meshes are generated by the software COMSOL Multiphysics 5.3.

3.1 Accuracy tests

In this subsection, we initially validate the accuracy of the proposed HWENO3 and

HWENO5 schemes on the sample mesh depicted in Figure 3.1, as well as on its refined

meshes. It should be noted that the refinement process involves subdividing each element

into four equivalent sub-elements uniformly across all examples. Subsequently, we compare

the numerical results to demonstrate the higher efficiency of our proposed schemes over the

WENO3 scheme, despite using more time in the HWENO schemes. Lastly, we confirm that

the newly proposed SI (2.9) exhibits nearly equivalent performances to its original one (2.8)

in smooth cases.

14
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Fig. 3.1. Sample mesh for accuracy tests. Triangles: 268. Vertexes: 155.

Example 3.1 We consider the two-dimensional nonlinear Burgers’ equation with the initial

conditions: {
ut + (u

2

2
)x + (u

2

2
)y = 0, (x, y) ∈ [−2, 2]× [−2, 2],

u(x, y, 0) = 0.5 + sin(0.5π(x+ y)),
(3.1)

where periodic boundary conditions are implemented in each direction. We simulate this

problem for the final time T = 0.5/π, at which the solution remains smooth. Firstly, we

present the L1 and L∞ numerical errors and orders of the WENO3, HWENO3 and HWENO5

schemes in Tab. 3.1, utilizing both the newly proposed and original SI, as defined by Eqs.

(2.9) and (2.8), respectively. The results indicate that all schemes achieve their designed

order of accuracy. However, the HWENO3 and HWENO5 schemes exhibit smaller numerical

errors. It is also observable that the numerical errors and orders of the listed schemes are

nearly identical when employing the new and original SI, with minor differences observable

only on coarser meshes. Furthermore, we present a comparison of CPU time against the

L1 and L∞ errors for the WENO3, HWENO3 and HWENO5 schemes in Fig. 3.2. This

15



Table 3.1: Burgers’ equation. L1, L∞ errors and orders of the WENO3, HWENO3, and
HWENO5 schemes with the new and original SI, respectively. T = 0.5/π.

N cells WENO3 WENO3 with original SI
L1 error order L∞error order L1 error order L∞ error order

268 2.04E-02 8.62E-02 2.08E-02 8.74E-02
1072 4.85E-03 2.08 3.10E-02 1.48 5.02E-03 2.05 3.18E-02 1.46
4288 4.20E-04 3.53 4.99E-03 2.63 4.36E-04 3.53 5.16E-03 2.63
17152 2.77E-05 3.92 3.68E-04 3.76 2.78E-05 3.97 3.68E-04 3.81
68608 3.52E-06 2.98 5.57E-05 2.72 3.52E-06 2.98 5.57E-05 2.72
274432 4.51E-07 2.96 7.50E-06 2.89 4.51E-07 2.96 7.50E-06 2.89

N cells HWENO3 HWENO3 with original SI
L1 error order L∞error order L1 error order L∞ error order

268 1.78E-02 7.63E-02 1.83E-02 7.74E-02
1072 3.43E-03 2.37 2.12E-02 1.85 3.68E-03 2.31 2.26E-02 1.78
4288 2.19E-04 3.97 3.40E-03 2.64 2.41E-04 3.93 3.79E-03 2.58
17152 1.36E-05 4.02 1.69E-04 4.33 1.36E-05 4.15 1.69E-04 4.48
68608 1.97E-06 2.78 3.60E-05 2.23 1.97E-06 2.79 3.60E-05 2.23
274432 2.70E-07 2.86 4.94E-06 2.87 2.70E-07 2.86 4.94E-06 2.87

N cells HWENO5 HWENO5 with original SI
L1 error order L∞error order L1 error order L∞ error order

268 2.94E-03 3.13E-02 3.39E-03 3.18E-02
1072 1.25E-04 4.56 2.17E-03 3.85 1.40E-04 4.59 2.47E-03 3.69
4288 3.42E-06 5.18 6.55E-05 5.05 3.62E-06 5.28 6.55E-05 5.23
17152 1.25E-07 4.78 4.99E-06 3.72 1.27E-07 4.84 4.99E-06 3.72
68608 4.63E-09 4.75 2.07E-07 4.59 4.64E-09 4.77 2.07E-07 4.59
274432 1.66E-10 4.81 8.63E-09 4.58 1.66E-10 4.81 8.63E-09 4.58

comparison reveals that the proposed HWENO schemes have higher efficiencies than the

WENO3 scheme, particularly as the mesh becomes denser. Additionally, the HWENO5

scheme shows higher efficiencies compared to the HWENO3 scheme.

Example 3.2 We solve the two-dimensional compressible Euler equations:

∂

∂t




ρ
ρµ
ρν
E


+

∂

∂x




ρµ
ρµ2 + p
ρµν

µ(E + p)


+

∂

∂y




ρν
ρµν

ρν2 + p
ν(E + p)


 = 0, (3.2)

in which ρ, µ, ν, E and p represent the density, velocity in the x direction, velocity in
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Fig. 3.2. Burgers’ equation. Comparison of CPU time against L1, L∞ errors for Example
3.1.

the y direction, total energy, pressure, respectively. We solve this systems on the compu-

tational domain [−2, 2] × [−2, 2] with the initial condition given by (ρ, µ, ν, p, γ) = (1 +

0.2 sin(0.5π(x+ y)), 1, 1, 1, 1.4). Periodic boundary conditions are applied to two directions.

The computation is carried out until the final time T = 1 with the exact solutions speci-

fied (ρ, µ, ν, p) = (1 + 0.2 sin(0.5π(x + y − 2T )), 1, 1, 1). Firstly, we present the L1 and L∞

numerical errors and orders for the WENO3, HWENO3 and HWENO5 schemes in Tab.

3.2, which shows that all three schemes achieve the designed order of accuracy. It is note-

worthy that the HWENO3 scheme has smaller numerical errors and more compact stencils

than the WENO3 scheme, despite both achieving the same-order of accuracy. Furthermore,

the HWENO5 scheme achieves a higher-order of accuracy than the WENO3 scheme, even

though they employ the same big stencil. Additionally, we present the CPU time against

the L1 and L∞ errors for the WENO3, HWENO3 and HWENO5 schemes in Fig. 3.3. This

comparison intuitively reveals that the proposed HWENO schemes have higher efficiencies

than the WENO3 scheme, particularly as the mesh is refined, and the HWENO5 scheme

also has higher efficiencies than the HWENO3 scheme.
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Table 3.2: Euler equations. L1, L∞ errors and orders of the WENO3, HWENO3, and
HWENO5 schemes. T = 1.

N cells WENO3 HWENO3
L1 error order L∞error order L1 error order L∞ error order

268 2.31E-02 5.81E-02 1.67E-02 4.04E-02
1072 3.79E-03 2.61 1.46E-02 1.99 2.14E-03 2.97 9.11E-03 2.15
4288 2.18E-04 4.12 9.56E-04 3.93 5.81E-05 5.20 4.58E-04 4.31
17152 2.76E-05 2.98 6.01E-05 3.99 6.26E-06 3.21 2.18E-05 4.39
68608 3.49E-06 2.99 7.44E-06 3.01 7.93E-07 2.98 3.59E-06 2.60

N cells HWENO5
L1 error order L∞error order

268 8.21E-04 3.48E-03
1072 1.38E-05 5.90 2.16E-04 4.01
4288 2.15E-07 6.00 4.71E-06 5.52
17152 4.82E-09 5.48 4.55E-08 6.69
68608 1.45E-10 5.06 6.47E-10 6.14
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Fig. 3.3. Euler equations. Comparison of CPU time against L1, L∞ errors for Example
3.2.
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3.2 Discontinuous tests

In this subsection, we demonstrate the performance of the proposed HWENO3 and

HWENO5 schemes in the presence of discontinuities. We also evaluate the efficiency and

resolution of the newly proposed SI, as defined by (2.9), as well as the scale-invariant prop-

erties of the nonlinear weights, as outlined in (2.12). For a more intuitive comparison of the

results, we extend the classic one-dimensional benchmark problems-the Lax shock tube, the

two-blast wave, and the Shu-Osher test-to two-dimensional settings, utilizing non-uniform

computational meshes.

Example 3.3 We solve the two-dimensional Lax problem modeled by the Euler equations

(3.2) with the initial conditions:

(ρ, µ, ν, p, γ)T =

{
(0.445, 0.698, 0, 3.528, 1.4)T, −0.5 ≤ x < 0,

(0.5, 0, 0, 0.571, 1.4)T, 0 ≤ x ≤ 0.5.

The computational domain for this problem is [−0.5, 0.5] × [−0.03, 0.03] with a final sim-

ulation time of T = 0.16. Outflow and periodic boundary conditions are applied to the x

and y directions, respectively. This problem is simulated by the WENO3, HWENO3, and

HWENO5 schemes on a nonuniform mesh with a triangulation of 100 edges in the x-direction

and 6 edges in the y-direction. Firstly, we present the computed density at y = 0 for these

three schemes in Fig. 3.4, which illustrates that the HWENO schemes offer slightly higher

resolutions than the WENO3 scheme. Subsequently, we give the total computational time

for these three schemes in Tab. 3.3, using both the original one (2.8) and the newly proposed

SI (2.9), where we take the average time of multi-calculations as the final CPU time. The

results show that the new SI can slightly reduce the total CPU time, particularly for higher-

order schemes. Additionally, the CPU time for the HWENO3 scheme increases nearly 24%

than that of the WENO3 scheme. Furthermore, the new definition of SI can easily obtain

the explicit expression even for a very high-degree polynomial, observed in (2.10).

Example 3.4 We solve the two-dimensional two blast wave problem modeled by the Euler

19
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Fig. 3.4. Example 3.3. Lax problem. Computed density of the WENO3, HWENO3, and
HWENO5 schemes at y = 0. Nonuniform meshes. x-direction: 100 edges. y-direction: 6
edges.

Table 3.3: Example 3.3. Lax problem. Total CPU time (s) of the WENO3, HWENO3 and
HWENO5 schemes with the original and new proposed SI, respectively.

Scheme Original SI New proposed SI Ratio
WENO3 89.55 85.14 95.08%
HWENO3 110.34 (+23.21%) 105.27 (+23.64%) 95.41%
HWENO5 333.99 (+272.96%) 298.22 (+250.27%) 89.29%
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equations (3.2) with the initial conditions:

(ρ, µ, ν, p, γ)T =





(1, 0, 0, 1000, 1.4)T, 0 ≤ x < 0.1,

(1, 0, 0, 0.01, 1.4)T, 0.1 ≤ x < 0.9,

(1, 0, 0, 100, 1.4)T, 0.9 ≤ x ≤ 1.

The computational domain is set as [0, 1]× [−0.0075, 0.0075] with a final time of T = 0.038.

Reflective and periodic boundary conditions are applied to the x and y directions, respec-

tively. The problem is simulated using the WENO3, HWENO3, and HWENO5 schemes on

a nonuniform mesh with a triangulation of 400 edges in the x-direction and 6 edges in the

y-direction. Firstly, we present the computed densities for the three schemes in Fig. 3.5 at

y = 0, demonstrating that the HWENO schemes exhibit higher resolutions than the WENO3

scheme, where the reference solution is obtained by the classical WENO scheme [15], utiliz-

ing 2001 points. Subsequently, we present the results for the three schemes using the newly

proposed SI (2.9) and the original indicator (2.8), as shown in Fig. 3.7, which are nearly

identical for each scheme, further indicating that the new SI possesses a comparable ability

to measure the level of smoothness as the original one. Additionally, we test this problem

across various scales, with the initial conditions given by (ζρ, µ, νζp, γ), with ζ = 10±12, and

the corresponding exact solution for density at time T is ζρ(x, T ). The results, normalized,

are presented in Fig. 3.7, which are consistent for each scheme, thereby validating the scale

invariance of the three schemes due to the definition of the nonlinear weights (2.12).

Example 3.5 We solve the two-dimensional Shu-Osher problem [24] modeled by the Euler

equations (3.2) with the initial conditions:

(ρ, µ, ν, p, γ)T =

{
(3.857143, 2.629369, 0, 10.333333, 1.4)T, −5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 0, 1, 1.4)T, −4 ≤ x ≤ 5.

The computational domain is set as [−5, 5]× [−0.1, 0.1] with a final time of T = 1.8. Outflow

and periodic boundary conditions are applied to the x and y directions, respectively. This

problem involves the interaction between shock and entropy waves, and is simulated by the

WENO3, HWENO3, and HWENO5 schemes on a nonuniform mesh with a triangulation
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Fig. 3.5. Example 3.4. Two blast wave problem. Computed density of the WENO3,
HWENO3, and HWENO5 schemes at y = 0. Nonuniform meshes. x-direction: 400 edges.
y-direction: 6 edges.
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Fig. 3.6. Example 3.4. Two blast wave problem. Comparison of the WENO3, HWENO3,
and HWENO5 schemes with the new proposed SI (2.9) and the original SI (2.8).
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Fig. 3.7. Example 3.4. Two blast wave problem. Comparison of the WENO3, HWENO3,
and HWENO5 schemes with various scales.

of 300 edges in the x-direction and 6 edges in the y-direction. We present the computed

densities for the three schemes in Fig. 3.8, demonstrating that the HWENO schemes exhibit

higher resolutions than the WENO3 scheme, where the reference solution is obtained by the

classical WENO scheme [15] with 2001 points.

Example 3.6 We solve the Burgers’ equation given by (3.1) in Example 3.1 using the same

initial and boundary conditions on a refined mesh with 4228 triangles and 2225 vertexes as

depicted in Fig. 3.1. The final computational time is set to T = 1.5/π, at which the solution

exhibits discontinuities. We present the numerical results for the WENO3, HWENO3, and

HWENO5 schemes in Fig. 3.9, demonstrating that the three schemes exhibit good resolutions

near discontinuities on this unstructured meshes.

Example 3.7 We solve the double Mach reflection problem [29], which is modeled by the

Euler equations (3.2). The computational domain is set as [0, 4] × [0, 1] and the initial

condition is

(ρ, µ, ν, p, γ) =

{
(8, 33

4
sin(π

3
),−33

4
cos(π

3
), 116.5, 1.4), x < 1

6
+ y√

3
,

(1.4, 0, 0, 1, 1.4), otherwise.

Inflow and outflow boundary conditions are applied to the left and right edges, respectively.

An exact post-shock boundary condition is imposed along the bottom from x = 0 to x = 1
6
,

and the remaining bottom portion is subject to a reflection boundary condition. Additionally,
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Fig. 3.8. Example 3.5. Shu-Osher problem. Computed density of the WENO3, HWENO3,
and HWENO5 schemes at y = 0. Nonuniform meshes. x-direction: 300 edges. y-direction:
6 edges.
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Fig. 3.9. Example 3.6. Burgers’ problem. Numerical solution of WENO3, HWENO3, and
HWENO5 schemes at x = y. Triangles: 4228. Vertexes: 2225.
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Fig. 3.10. Example 3.7. Sample mesh for double Mach reflection problem. Triangles: 2302.
Vertexes: 1227.

the motion of a Mach 10 shock is applied at the top boundary. The simulation stops at a

final time of T = 0.2 using the WENO3, HWENO3, and HWENO5 schemes on a refined

mesh with 589312 triangles and 295857 vertexes, as depicted in the sample mesh of Fig.

3.10. We present the computed densities for the three schemes in Fig. 3.11, demonstrating

that the HWENO schemes offer higher resolutions than the WENO3 scheme, particularly in

the results obtained by the HWENO5 scheme.

Example 3.8 We finally address the forward step problem [29], which is modeled by the

Euler equations (3.2) on the computational domain of [0, 0.6] × [0, 1] ∪ [0.6, 1] × [0.2, 1],

featuring a Mach 3 wind tunnel incorporating a step. The initial condition consists of

a rightward-propagating Mach 3 flow, with a final simulation time of T = 4. Reflective

boundary conditions are imposed on the tunnel walls, while inflow and outflow conditions

are specified on the left and right boundaries, respectively. This problem is simulated by

the WENO3, HWENO3, and HWENO5 schemes on a refined mesh with a triangulation

containing 164608 triangles and 82945 vertexes, as depicted in the sample mesh of Fig. 3.12.

We present the computed density for the three schemes in Fig. 3.13. Similarly, the HWENO

schemes demonstrate higher resolutions than the WENO3 scheme, particularly evident in

the results from the HWENO5 scheme.
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(c) HWENO5

Fig. 3.11. Example 3.7. Double Mach reflection problem. Contour plots of density with 30
equally spaced lines from 1.5 to 22.7. Triangles: 589312. Vertexes: 295857. x-direction: 960
edges. y-direction: 240 edges.
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Fig. 3.12. Example 3.8. Sample mesh for step forward problem. Triangles: 2572. Vertexes:
1367.

4 Concluding remarks

In this paper, we developed the third- and fifth-order HWENO schemes for solving two-

dimensional hyperbolic conservation laws on triangular meshes. The HWENO schemes em-

ploy a nonlinear combination of a high-degree polynomial and four linear polynomials within

the spatial reconstruction process. This methodology not only controls spurious oscillations

well but also ensures high-order accuracies, while the linear weights are unrestricted positive

values, provided their sum equals one. Concurrently, these polynomials, in conjunction with

nonlinear weights, have been applied into the modification of first-order moments within the

temporal discretization, where the nonlinear weights keep the properties of scale-invariance

as evidenced in Example 3.4. Additionally, we have implemented the midpoint numerical

integration technique to compute SI, as originally defined by [13]. This approach actually

provides a more straightforward and effective method for unstructured meshes, avoiding the

consideration of mesh integration. Significantly, the two distinct definitions of SI exhibit

minimal differences in their measurement of smoothness, regardless of whether the problem

exhibits smoothness or discontinuity, as observed in Examples 3.1 and 3.4.

Compared with the corresponding third-order WENO scheme, the third-order HWENO

scheme requires just a single stencil layer, while with the equivalent two layers of stencils, the

HWENO scheme achieves the fifth-order accuracy. The numerical results illustrate the higher
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Fig. 3.13. Example 3.8. Step forward problem. Contour plots of density with 30 equally
spaced lines from 0.32 to 6.15. Triangles: 164608. Vertexes: 82945. The longest side in
x-direction: 480 edges. The longest side in y-direction: 160 edges.
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efficiency of the proposed HWENO schemes, characterized by diminished numerical errors

and enhanced resolutions with a reduced number of transition points. It is important to note

that the third-order HWENO scheme incurs only a modest in CPU expense compared to the

third-order WENO scheme, as shown in Table 3.3. This is the case even though it requires

two additional auxiliary equations, as indicated by Eq. (2.2). This computational cost-

saving feature is attributed to the use of unified stencils, employing the same approximated

polynomials and nonlinear weights, as detailed in (2.13).

Overall, these HWENO schemes present a unified and streamlined framework that is

both practical and efficient for triangular meshes. This framework contains compact stencils,

artificial linear weights, a streamlined formulation of SI, scale-invariant nonlinear weights,

and is currently being extended to three-dimensional applications.
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