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Abstract

In this paper, a class of weighted essentially non-oscillatory (WENO) schemes with a Lax–Wendroff time discretization procedure,
termed WENO-LW schemes, for solving Hamilton–Jacobi equations is presented. This is an alternative method for time discretization
to the popular total variation diminishing (TVD) Runge–Kutta time discretizations. We explore the possibility in avoiding the
nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems
with strong discontinuous derivative.As a result, comparing with the original WENO with Runge–Kutta time discretizations schemes
(WENO-RK) of Jiang and Peng [G. Jiang, D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput.
21 (2000) 2126–2143] for Hamilton–Jacobi equations, the major advantages of WENO-LW schemes are more cost effective for
certain problems and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the
capability of the method.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study an alternative method for time discretization, namely the Lax–Wendroff type time dis-
cretization [15], to the popular TVD Runge–Kutta time discretization in [25], for weighted essentially non-oscillatory
(WENO) schemes[17,11,10], termed WENO-LW schemes, in solving the Hamilton–Jacobi (HJ) equations:{

�t + H(∇x�) = 0,

�(x, 0) = �0(x),
(1.1)

where x = (x1, . . . , xd) are d-spatial variables. The HJ equations appear often in applications, such as in control theory,
differential games, geometric optics and image processing. The solutions to (1.1) typically are continuous but with
discontinuous derivatives, even if the initial condition �0(x) ∈ C∞. It is well known that the HJ equations are closely
related to conservation laws, hence successful numerical methods for conservation laws can be adapted for solving
the HJ equations. Along this line, we mention the early work of Osher and Sethian [18] and Osher and Shu [19] in
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constructing high-order essentially non-oscillatory (ENO) schemes for solving the HJ equations. These ENO schemes
for solving the HJ equations were based on ENO schemes for solving hyperbolic conservation laws in [8,25,26]. ENO
schemes for solving the HJ equations on unstructured meshes were constructed in [14]. More recently, ENO schemes
based on radial basis functions were constructed in [5]. Central high resolution schemes were developed in [3,4,13].
Finite element methods suitable for arbitrary triangulations were developed in [1,2,9,16]. Finally, most relevant to our
work, we mention the WENO schemes for solving the HJ equations [10] by Jiang and Peng, based on the WENO
schemes for solving conservation laws [17,11], and Hermite WENO schemes in [22]. Zhang and Shu [29] further
developed high-order WENO schemes on unstructured meshes for solving two-dimensional HJ equations.

WENO is a spatial discretization procedure, namely, it is a procedure to approximate the spatial derivative terms in
(1.1). The time derivative term there must also be discretized. There are mainly two different approaches to approximate
the time derivative. The first approach is to use an ODE solver, such as a Runge–Kutta or a multi-step method, to
solve the method of lines ODE obtained after spatial discretization. The second approach is a Lax–Wendroff type
time discretization procedure, which is also called the Taylor type referring to a Taylor expansion in time or the
Cauchy–Kowalewski type referring to the similar Cauchy–Kowalewski procedure in PDE. This approach is based on
the idea of the classical Lax–Wendroff scheme [15], and it relies on converting all the time derivatives in a temporal
Taylor expansion into spatial derivatives by repeatedly using the PDE and its differentiated versions. The spatial
derivatives are then discretized by, e.g., the WENO approximations.

The first approach, namely the method of lines plus an ODE solver, has the advantage of simplicity, both in concept
and in coding. It also enjoys good stability properties when the TVD type Runge–Kutta or multi-step methods are used
[25,24]. Thus, the majority of the WENO codes are using this type of time discretizations.

The second approach, the Lax–Wendroff type time discretization, usually produces the same high-order accuracy
with a smaller effective stencil than that of the first approach, and it uses more extensively the original PDE. The original
finite volume ENO schemes in [8] used this approach for the time discretization. More recently, a Lax–Wendroff type
time discretization procedure for high-order finite difference WENO schemes was developed in [21]. This approach was
also used in [27,28,23], termed ADER (arbitrary high-order schemes utilizing higher-order derivatives), to construct a
class of high-order schemes for conservation laws in finite volume version. The Lax–Wendroff type time discretization
was also used in discontinuous Galerkin method [6,7,20].

In this paper, based on the WENO-LW methodology for conservation laws in [21], we develop WENO-LW schemes
to solve the HJ equations. Comparing with the original WENO-RK schemes of Jiang and Peng [10], one major advantage
of WENO-LW schemes is their compactness in the reconstruction. For example, in the one-dimensional case, 19 or 25
points are needed in the stencil for WENO5-RK3 and WENO5-RK4, respectively, while only 15 or 17 points are needed
for WENO5-LW3 or WENO5-LW4, respectively. In this paper, we use WENOn-LWk and WENOn-RKk, to denote
the nth-order WENO scheme with the kth-order Lax–Wendroff time discretization and the kth-order Runge–Kutta time
discretization, respectively.

The organization of this paper is as follows. In Section 2, we describe in detail the construction and implementation
of the WENO-LW schemes, for one- and two-dimensional Hamilton–Jacobi equations (1.1). In Section 3, we provide
extensive numerical examples to demonstrate the behavior of the schemes and to perform a comparison with the original
WENO-RK schemes for HJ equations in [10]. Concluding remarks are given in Section 4.

2. The construction of WENO-LW schemes for the Hamilton–Jacobi equations

In this section, we will present the details of the construction of WENO-LW schemes for both one- and two-
dimensional Hamilton–Jacobi equations.

2.1. One-dimensional case

We first consider the one-dimensional Hamilton–Jacobi equation (1.1). For simplicity, we assume that the grid points
{xi} are uniformly distributed with the cell size �x = xi+1 − xi .

We denote �(r) by the rth-order time derivative of �, namely �r�/�t r . We also use �′, �′′ and �′′′ to denote the first
three time derivatives of �. By a temporal Taylor expansion we obtain

�(x, t + �t) = �(x, t) + �t�′ + �t2

2
�′′ + �t3

6
�′′′ + �t4

24
�(4) + · · · . (2.1)



J. Qiu / Journal of Computational and Applied Mathematics 200 (2007) 591–605 593

If we would like to obtain kth-order accuracy in time, we would need to approximate the first k time derivatives:
�′, . . . ,�(k). We will proceed up to fourth-order in time in this paper, although the procedure can be naturally extended
to any higher orders.

From (1.1), we obtain

�′ = −H(u), (2.2)

�′′ = −H ′(u)�′
x , (2.3)

�′′′ = −H ′′(u)(�′
x)

2 − H ′(u)�′′
x , (2.4)

�(4) = −H ′′′(u)(�′
x)

3 − 3H ′′(u)(�′
x)�

′′
x − H ′(u)�′′′

x , (2.5)

where u = �x .
After extensive numerical tests, we have found the following Lax–Wendroff procedure which produces the best

balance between cost reduction and ensuring ENO properties to reconstruct �x, �
′
x, �

′′
x, �′′′

x , and �′, �′′, �′′′, �(4):
Step 1: The reconstruction of the first time derivative �′ = −H(u).
We approximate �′ = −H(u) by the following schemes:

�′
i = −Ĥi , (2.6)

where the numerical flux Ĥi in (2.6) are subject to the usual conditions for numerical fluxes, such as Lipschitz continuity
and consistency with the physical fluxes H(u), in this paper, we use the following Lax–Friedrichs flux defined by

Ĥi = H

(
u−

i + u+
i

2

)
− �

2
(u+

i − u−
i ), (2.7)

where u±
i are numerical approximations to the point values of u(xi, t), respectively, from left and right, and � =

supu|H ′(u)|.
Let us introduce �i = �(xi), �−�i = �i − �i−1. Reconstruction of {u−

i } is obtained by following (2r + 1)th-order
WENO procedure [11,10].

1. Given the small stencils Sj ={xi+j−r−1, xi+j−r , . . . , xi+j }, j=0, . . . , r , and the bigger stencilT={S0, . . . , Sr−1},
we construct rth degree reconstruction polynomials p0(x), . . . , pr−1(x) and a 2rth degree reconstruction polynomial
q(x) such that∫ xi+l

xi+l−1

pj (x) dx = �−�i+l , j = 0, . . . , r, l = j − r, . . . , j ,

∫ xi+l

xi+l−1

q(x) dx = �−�i+l , l = −r, . . . , r .

In fact, we only need the values of these polynomials at the xi . For example, for r = 2, we have the following
expressions [10]:

p0(xi) = 1

6�x
(2�−�i−2 − 7�−�i−1 + 11�−�i ),

p1(xi) = 1

6�x
(−�−�i−1 + 5�−�i + 2�−�i+1),

p2(xi) = 1

6�x
(2�−�i + 5�−�i+1 − �−�i+2),

q(xi) = 1

60�x
(2�−�i−2 − 13�−�i−1 + 47�−�i + 27�−�i+1 − 3�−�i+2).



594 J. Qiu / Journal of Computational and Applied Mathematics 200 (2007) 591–605

2. We find the combination coefficients, also called linear weights, denoted by �0, . . . , �r , satisfying

q(xi) =
r∑

j=0

�jpj (xi), (2.8)

for all point values � in the bigger stencil T. For example, for r = 2, we have

�0 = 1

10
, �1 = 6

10
, �2 = 3

10
.

3. We compute the smoothness indicator, denoted by �j , for each stencil Sj , which measures how smooth the function
pj (x) is in the target point xi . The smaller this smoothness indicator �j , the smoother the function pj (x) is in the
target point. We use the same recipe for the smoothness indicator as in [10]:

�j =
r∑

l=1

∫ xi

xi−1

�x2l−1
(

�l

�xl
pj (x)

)2

dx. (2.9)

In the actual numerical implementation the smoothness indicators �j are written out explicitly as quadratic forms
of the point values of � in the stencil, for example for r = 2, we obtain [11,10]

�0 = 13

12�x
(�−�i−2 − 2�−�i−1 + �−�i )

2 + 1

4�x
(3�−�i−2 − 4�−�i−1 + �−�i )

2,

�1 = 13

12�x
(�−�i−1 − 2�−�i + �−�i+1)

2 + 1

4�x
(�−�i−1 − �−�i+1)

2,

�2 = 13

12�x
(�−�i − 2�−�i+1 + �−�i+2)

2 + 1

4�x
(�−�i − 4�−�i+1 + 3�−�i+2)

2.

4. We compute the nonlinear weights based on the smoothness indicators

�j = �j∑
k �k

, �k = �k

(� + �k)
2 , (2.10)

where �k are the linear weights determined in sub-step 2 above, and � is a small number to avoid the denominator to
become 0. We are using � = 10−6 in all the computation in this paper. The final WENO reconstruction is then given
by

u−
i ≈

r∑
j=0

�jpj (xi). (2.11)

The reconstruction to u+
i is mirror symmetric with respect to xi of the above procedure.

Then we get an approximation of �x at point xi : (�x)i ≈ (u+
i + u−

i )/2, and �′
i by (2.6).

Step 2. In order to reconstruct the second time derivative �′′ = −H ′(�x)�
′
x , we only need to reconstruct �′

x . The
reconstruction of �′

x is obtained as following. Note that we will only need an approximation of order 2r , one order
lower than before, because of the extra �t factor. Let gi = �′

i , where �′
i is the point value of �′ at the point (xi, t

n)

computed in Step 1 described above. We can use a simple 2rth-order central difference formula to approximate �′
x at

the point (xi, t
n). For example, when r = 1 we use the following second-order central difference approximation

(�′
x)i ≈ − 1

2�x
(gi+1 − gi−1) (2.12)

and when r = 2 we use the following fourth-order central difference approximation

(�′
x)i ≈ − 1

12�x
(gi−2 − 8gi−1 + 8gi+1 − gi+2) (2.13)
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then we get an approximation of �′′ at point xi :

�′′
i ≈ −H ′((�x)i)(�

′
x)i (2.14)

It seems that a more costly WENO approximation is not needed here to control spurious oscillations, presumably
because this term is multiplied by an extra �t anyway.

Step 3: The third time derivative �′′′ = −H ′′(�x)(�
′
x)

2 − H ′(�x)�
′′
x . Similar to Step 2, we only need to reconstruct

�′′
x . Let gi = �′′

i , here �′′
i is the point value of �′′ at the point (xi, t

n) computed in Step 2 above. Then we repeat
Step 2 to get the approximation of �′′

x using a central difference approximation of order 2r . In fact, we only need an
approximation of order (2r − 1), because of the extra �t2 factor, but we would like to use simple central differences
which are all of even order. Then we get an approximation of �′′′ at point xi :

�′′′
i ≈ −H ′′((�x)i)(�

′
x)

2
i − H ′((�x)i)(�

′′
x)i . (2.15)

Again, it seems that a more costly WENO approximation is not needed here to control spurious oscillations.
Step 4. The fourth time derivative �(4) = −H ′′′(�x)(�

′
x)

3 − 3H ′′(�x)�
′′
x�

′
x − H ′(�x)�

′′′
x is obtained in a similar

fashion. Let gi = �′′′
i , where �′′′

i is the point value of �′′′ at the point (xi, t
n) computed in Step 3 above. In order to get

a (2r + 1)th-order scheme, we only need to use a (2r − 2)th-order central difference approximation to �′′′
x at the point

(xi, t
n), because of the extra �t3 factor. For example, when r =2 we can use the following second-order approximation:

(�′′′
x )i ≈ − 1

2�x
(gi+1 − gi−1). (2.16)

Then we get an approximation of �(4) at point xi :

�(4)
i = −H ′′′((�x)i)(�

′
x)

3
i − 3H ′′((�x)i)(�

′′
x)i(�

′
x)i − H ′((�x)i)(�

′′′
x )i . (2.17)

If we require higher order accuracy in time this procedure can be continued in a similar fashion. The final approximation
at the next time step is then given by

�(xi, t
n+1) ≈ �i + �t�′

i + �t2

2
�′′

i + �t3

6
�′′′

i + �t4

24
�(4)

i + · · · + �tk

k! �(k)
i . (2.18)

2.2. Two-dimensional case

We now proceed to consider the two-dimensional Hamilton–Jacobi equation (1.1). For simplicity of presentation, we
again assume that the grid points {(xi, yj )} are uniformly distributed with the cell size �x =xi+1 −xi, �y =yj+1 −yj .

From (1.1) in two-dimensional case, we have

�′ = −H , (2.19)

�′′ = −H1�
′
x − H2�

′
y , (2.20)

�′′′ = −H11(�
′
x)

2 − 2H12�
′
x�

′
y − H22(�

′
y)

2 − H1�
′′
x − H2�

′′
y , (2.21)

�(4) = − H111(�
′
x)

3 − 3H112(�
′
x)

2�′
y − 3H122�

′
x(�

′
y)

2 − H222(�
′
y)

3

− 3H11�
′
x�

′′
x − 3H12(�

′′
x�

′
y + �′

x�
′′
y) − 3H22�

′
y�

′′
y − H1�

′′′
x − H2�

′′′
y , (2.22)

where Hi is the partial derivative of H with respect to ith argument, Hij is the second partial derivative of H with respect
to ith and jth arguments and Hijk is the third partial derivative of H with respect to ith , jth and kth arguments.
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Table 1
CPU time (in seconds) for the WENO5-LW4 and WENO5-RK4 schemes for the two-dimensional Burgers’ equation at final time t = 0.5/�2 and
3.5/�2

t WENO5-LW4 WENO5-RK4

0.5/�2 5.23 9.28
3.5/�2 37.28 62.16

Total CPU time for N = 10, 20, 40, 80, 160 and 320 cells is recorded.

Similar to the one-dimensional case, what we want to do is to reconstruct �x, �y, �
′
x, �

′
y, �

′′
x, �′′

y, �
′′′
x , �′′′

y and

�′, �′′, �′′′, �(4) from point values {�ij = �(xi, yj , t
n)}, respectively.

Let u = �x, v = �y , the first time derivative �′ = −H(u, v) is approximated by the following scheme:

�′
ij = −Ĥ (u−

ij , u
+
ij ; v−

ij , v
+
ij ),

where Ĥ is a numerical flux. In this paper, we use the following Lax–Friedrichs flux:

Ĥij = H

(
u−

ij + u+
ij

2
,
v−
ij + v+

ij

2

)
− �x

2
(u+

ij − u−
ij ) − �y

2
(v+

ij − v−
ij ), (2.23)

where u±
ij are numerical approximations to the point values of �x(xi, yj , t), respectively, from left and right, v±

ij are
numerical approximations to the point values of �y(xi, yj , t), respectively, from bottom and top, �x =supu,v |H1(u, v)|
and �y = supu,v |H2(u, v)|.

The u±
ij and v±

ij are obtained by WENO reconstruction procedure described in Step 1 for one-dimensional case in a
dimension-by-dimension fashion, and similar to one-dimensional case, we get an approximation of �x and �y at point
(xi, yj ): (�x)ij ≈ (u+

ij + u−
ij )/2 and (�y)ij ≈ (v+

ij + v−
ij )/2, respectively.

On the other hand, as in the one-dimensional situation, the derivatives �′
x, �

′
y, �

′′
x, �′′

y, �
′′′
x and �′′′

y etc., can be
approximated by simple central differences of suitable orders of accuracy, again in a dimension-by-dimension fashion,
and the approximation of �′′ , �′′′, �(4) are obtained from (2.20)–(2.22), respectively.

3. Numerical results

In this section, we present the results of our numerical experiments for the third- and the fifth-order WENO schemes
for one-dimensional and two-dimensional examples with the third-order and the fourth-order Lax–Wendroff time
discretization. A uniform mesh is used for all the test cases. The CFL number is taken as 0.6 for all test cases except for
some accuracy tests where a suitably reduced time step is used to guarantee that spatial error dominates. The original
WENO scheme with Runge–Kutta time discretization method for Hamilton–Jacobi equations in [10] with the same
Lax–Friedrichs flux is used for comparison.

We first remark on the important issue of CPU timing and relevant efficiency of WENO-LW schemes compared with
WENO-RK schemes. In general, the WENO-LW schemes have smaller CPU cost for the same mesh and same order of
accuracy in our implementation. For example, in Table 1, we provide a CPU time comparison between WENO5-LW4
and WENO5-RK4 schemes for the two-dimensional Burgers’ equation in Examples 3.3 and 3.8. We can see that the
CPU cost for the WENO-LW schemes is about 60% for the WENO-RK schemes. The computations are performed on
a Dell Precision Workstation 370, P4-2.8 with 2 GB ram.

3.1. Accuracy tests

We first test the accuracy of the schemes on linear and nonlinear problems. We have tested both WENO3 and WENO5,
only the results of WENO5 are shown to save space in this subsection.
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Table 2
�t + �x = 0. �(x, 0) = sin(�x). WENO5-LW4 and WENO5-RK4 schemes with periodic boundary conditions

N WENO5-LW4 WENO5-RK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 2.51E−02 4.48E−02 2.69E−02 4.59E−02
20 1.05E−03 4.59 2.19E−03 4.36 1.11E−03 4.60 2.30E−03 4.32
40 3.86E−05 4.76 6.77E−05 5.01 4.03E−05 4.78 7.04E−05 5.03
80 1.30E−06 4.89 2.12E−06 5.00 1.35E−06 4.91 2.19E−06 5.01

160 4.18E−08 4.96 6.66E−08 4.99 4.31E−08 4.96 6.85E−08 5.00
320 1.32E−09 4.98 2.09E−09 4.99 1.36E−09 4.99 2.14E−09 5.00

t = 2. L1 and L∞ errors and numerical orders of accuracy. Uniform meshes with N cells.

Table 3
Burgers’ equation �t + (�x + 1)2/2 = 0 with initial condition �(x, 0) = − cos(�x) by WENO5-LW4 and WENO5-RK4 schemes with periodic
boundary conditions

N WENO5-LW4 WENO5-RK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 3.57E−03 1.26E−02 4.41E−03 1.84E−02
20 2.20E−04 4.02 1.81E−03 2.80 2.62E−04 4.07 2.31E−03 2.99
40 1.17E−05 4.24 1.20E−04 3.91 1.32E−05 4.32 1.41E−04 4.04
80 4.93E−07 4.57 5.89E−06 4.35 5.23E−07 4.65 6.40E−06 4.46

160 1.85E−08 4.73 2.14E−07 4.78 1.91E−08 4.78 2.23E−07 4.85
320 6.51E−10 4.83 7.00E−09 4.93 6.62E−10 4.85 7.14E−09 4.96

t = 0.5/�2. L1 and L∞ errors and numerical orders of accuracy. Uniform meshes with N cells.

Example 3.1. We solve the following linear equation:

�t + �x = 0, (3.1)

with the initial condition �(x, 0)= sin(�x), and a 2-periodic boundary condition. We compute the solution up to t = 2,
i.e., after one period by the WENO5-LW4 scheme and the WENO5-RK4 scheme. The numerical results are shown in
Table 2. We can see that both schemes achieve their designed order of accuracy with comparable errors for the same
mesh. In fact, the WENO5-LW4 scheme has smaller errors than the WENO5-RK4 schemes for most meshes.

Example 3.2. We solve the following nonlinear scalar Burgers’ equation:

�t + (�x + 1)2

2
= 0, (3.2)

with the initial condition �(x, 0)=− cos(�x), and a 2-periodic boundary condition. When t = 0.5/�2 the derivative of
solution is still smooth. The errors and numerical orders of accuracy by the WENO5-LW4 scheme and the WENO5-
RK4 scheme are shown in Table 3. We can also see that both schemes achieve their designed order of accuracy, and
the WENO5-LW4 scheme has smaller errors than the WENO5-RK4 scheme for the same mesh.

Example 3.3. We solve the following nonlinear scalar two-dimensional Burgers’ equation:

�t + (�x + �y + 1)2

2
= 0, (3.3)

with the initial condition �(x, y, 0) = − cos(�(x + y)/2), and a 4-periodic boundary condition. When t = 0.5/�2

the solution is still smooth. The errors and numerical orders of accuracy by the WENO5-LW4 scheme and the
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Table 4
Two-dimensional Burgers’ equation �t + (�x + �y + 1)2/2 = 0 with the initial condition �(x, y, 0) = − cos(�(x + y)/2) by WENO5-LW4 and
WENO5-RK4 schemes with periodic boundary conditions

Nx × Ny WENO5-LW4 WENO5-RK4
L1 error Order L∞ error Order L1 error Order L∞ error Order

20 × 20 1.39E−04 7.49E−04 2.58E−04 1.75E−03
40 × 40 6.09E−06 4.51 5.57E−05 3.75 1.29E−05 4.32 1.56E−04 3.48
80 × 80 2.03E−07 4.91 2.28E−06 4.61 5.12E−07 4.66 6.59E−06 4.57

160 × 160 5.99E−09 5.08 7.45E−08 4.94 1.86E−08 4.78 2.24E−07 4.88
320 × 320 1.61E−10 5.22 1.55E−09 5.59 6.45E−10 4.85 7.14E−09 4.97

t = 0.5/�2. L1 and L∞ errors and numerical orders of accuracy. Uniform meshes with Nx × Ny cells.
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Fig. 1. One-dimensional linear equation. N = 200 cells. WENO3. Left: t = 2; right: t = 10. Solid lines: the exact solution; square symbols: the
WENO-LW scheme; plus symbols: the WENO-RK scheme.

WENO5-RK4 scheme are shown in Table 4. We can also see that both schemes achieve their designed order of accuracy,
and the WENO5-LW4 scheme has smaller errors than the WENO5-RK4 scheme for the same mesh.

3.2. Test cases with discontinuous derivatives

Example 3.4. We solve the same linear equation (3.1) as in Example 3.1 but with the discontinuous initial condition
�(x, 0) = �0(x − 0.5), with periodic condition, where

�0(x) = −
(√

3

2
+ 9

2
+ 2�

3

)
(x + 1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 cos

(
3�x2

2

)
− √

3, −1�x < − 1
3 ,

3
2 + 3 cos(2�x), − 1

3 �x < 0,

15
2 − 3 cos(2�x), 0�x < 1

3 ,

28 + 4� + cos(3�x)

3
+ 6�x(x − 1), 1

3 �x < 1.

(3.4)
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Fig. 3. Burgers’ equation. t = 3.5/�2. N = 40. Left: WENO3; right: WENO5. Solid lines: the exact solution; square symbols: the WENO-LW
scheme; plus symbols: the WENO-RK scheme.

We plot the results at t = 2.0 and 10.0 in Fig. 1 for WENO3 and Fig. 2 for WENO5, respectively. We can observe
that the results by both the WENO-LW schemes and WENO-RK schemes have a good resolution.

Example 3.5. We solve the same nonlinear Burgers’ equation (3.2) as in Example 3.2 with the same initial condition
�(x, 0) = − cos(�x), except that we now plot the results at t = 3.5/�2 when discontinuous derivative has already
appeared in the solution. In Fig. 3, the solutions of the WENO-LW scheme and the WENO-RK scheme with N = 40
cells are shown. We can see that both schemes give good results for this problem.
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Example 3.6. We solve the nonlinear equation with a non-convex flux:

�t − cos(�x + 1) = 0, (3.5)

with the initial data �(x, 0) = − cos(�x) and periodic boundary conditions. We plot the results at t = 1.5/�2 when
the discontinuous derivative has already appeared in the solution. In Fig. 4, the solutions of the WENO-LW scheme
and the WENO-RK scheme with N = 40 cells are shown. We also can see that both schemes give good results for this
problem.
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Example 3.7. We solve the one-dimensional Riemann problem with a non-convex flux:

{�t − 1
4 (�2

x − 1)(�2
x − 4) = 0, −1 < x < 1,

�(x, 0) = −2|x|. (3.6)

This is a demanding test case, for many schemes have poor resolutions or could even converge to a non-viscosity
solution for this case. We plot the results at t = 1 by the WENO-LW scheme and the WENO-RK scheme with N = 40
cells in Fig. 5. We can also see that both schemes give good results for this problem again.

Example 3.8. We solve the same two-dimensional nonlinear Burgers’ equation (3.3) as in Example 3.3 with the same
initial condition �(x, 0)=− cos(�(x +y)/2), except that we now plot the results at t =1.5/�2 when the discontinuous
derivative has already appeared in the solution. The solution of the WENO-LW scheme with Nx × Ny = 40 × 40 cells
are shown in Fig. 6. We observe good resolution for this example.

Example 3.9. The two-dimensional Riemann problem with a non-convex flux:

{�t + sin(�x + �y) = 0, −1 < x, y < 1,

�(x, y, 0) = �(|y| − |x|). (3.7)
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The solution of the WENO-LW scheme with Nx ×Ny =40×40 cells are shown in Fig. 7. We observe good resolution
for this example.

Example 3.10. A problem from optimal control:

{�t + sin(y)�x + (sin x + sign(�y))�y − 1
2 sin2y − (1 − cos x) = 0, −� < x, y < �,

�(x, y, 0) = 0.
(3.8)

with periodic conditions, see [19]. The solution of the WENO-LW scheme with Nx × Ny = 60 × 60 cells and the
optimal control � = sign(�y) are shown in Figs. 8 and 9.

Example 3.11. A two-dimensional eikonal equation with a non-convex Hamiltonian, which arises in geometric optics
[12], is given by

⎧⎨
⎩

�t +
√

�2
x + �2

y + 1 = 0, 0�x, y < 1,

�(x, y, 0) = 1
4 (cos(2�x) − 1)(cos(2�y) − 1) − 1.

(3.9)

The solutions of the WENO-LW scheme with Nx ×Ny =80×80 cells is shown in Fig. 10. Good resolution is observed.
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Example 3.12. The problem of a propagating surface [18]:⎧⎨
⎩

�t − (1 − �K)

√
�2

x + �2
y + 1 = 0, 0�x, y < 1,

�(x, y, 0) = 1 − 1
4 (cos(2�x) − 1)(cos(2�y) − 1),

(3.10)

where K is the mean curvature defined by

K = − �xx(1 + �2
y) − 2�xy�x�y + �yy(1 + �2

x)

(1 + �2
x + �2

y)
3/2

.

and � is a small constant. A periodic boundary condition is used. The approximation of the second derivative terms
are constructed by the methods similar to that of the first derivative terms, but we only use linear weights in the
reconstruction. The results of � = 0 (pure convection) and � = 0.1 by the WENO-LW method with Nx × Ny = 60 × 60
cells are presented in Figs. 11 and 12. The surfaces at t = 0 for � = 0 and for � = 0.1, and at t = 0.1 for � = 0.1, are
shifted downward in order to show the detail of the solution at later time.

4. Concluding remarks

In this paper, a class of weighted essentially non-oscillatory (WENO) schemes with a Lax–Wendroff time discretiza-
tion procedure, termed WENO-LW schemes, for solving one- and two-dimensional Hamilton–Jacobi equations has
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been constructed. This is an alternative method for time discretization to the popular TVD Runge–Kutta time discretiza-
tions. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but
still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing
with the original WENO with Runge–Kutta time discretizations schemes (WENO-RK) of Jiang and Peng [10] for
Hamilton–Jacobi equations, the major advantages of WENO-LW schemes are more cost effective for certain problems
and their compactness in the reconstruction. The accuracy by WENO-LW is slightly better than or is comparable with
that given by WENO-RK at same meshes for all cases we have computed.
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