
J Sci Comput (2017) 73:1316–1337
DOI 10.1007/s10915-017-0440-9

An h-Adaptive RKDGMethod for the Two-Dimensional
Incompressible Euler Equations and the Guiding Center
Vlasov Model

Hongqiang Zhu1 · Jianxian Qiu2 · Jing-Mei Qiu3

Received: 22 December 2016 / Revised: 7 April 2017 / Accepted: 19 April 2017 /
Published online: 6 May 2017
© Springer Science+Business Media New York 2017

Abstract In this paper, we generalize an h-adaptive Runge–Kutta discontinuous Galerkin
scheme developed earlier in Zhu et al. (J Sci Comput 69:1346–1365, 2016) for the 1DVlasov–
Poisson system to the guiding centerVlasovmodel and the 2D time dependent incompressible
Euler equations in the vorticity-stream function formulation. The main difficulty of this
generalization lies in solving the 2D Poisson equation due to the irregular adaptive mesh
with hanging nodes. We adopt a local discontinuous Galerkin method to solve the Poisson
equation. The full adaptive algorithm and the related numerical implementation details are
included. Extensive numerical tests have been performed to showcase the effectiveness of
the adaptive scheme and its advantage over the fixed-mesh scheme in saving computational
cost and improving solution quality.

Keywords Runge–Kutta discontinuous Galerkin · Incompressible Euler equations ·
h-Adaptive · Guiding center Vlasov model

Dedicated to Prof. Chi-Wang Shu on the occasion of his 60th birthday.

The research is partially supported by NSFC Grants 11201242 and 11571290, NSAF Grant U1630247, NSF
Grant NSF-DMS-1522777, and Air Force Office of Scientific Computing FA9550-16-1-0179.

B Jing-Mei Qiu
jingqiu@math.uh.edu

Hongqiang Zhu
zhuhq@njupt.edu.cn

Jianxian Qiu
jxqiu@xmu.edu.cn

1 School of Natural Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023,
Jiangsu, People’s Republic of China

2 School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling
and High-Performance Scientific Computing, Xiamen University, Xiamen 361005, Fujian,
People’s Republic of China

3 Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0440-9&domain=pdf

J Sci Comput (2017) 73:1316–1337 1317

1 Introduction

We are interested in solving the two-dimensional (2D) time-dependent incompressible Euler
equation in the vorticity-stream function formulation. They consist of a convective transport
equation for the scalar vorticity and a Poisson equation for the stream function

ωt + ∇ · (uω) = 0 on � × (0, T), (1.1a)

�ψ = ω on � × (0, T), (1.1b)

where ∇ =
(

∂
∂x , ∂

∂y

)
, � = ∂2

∂x2
+ ∂2

∂y2
and the velocity vector u =

(
− ∂ψ

∂y ,
∂ψ
∂x

)
. Another

model of our interest is the guiding center approximation of the 2D Vlasov–Poisson system

∂ρ

∂t
+ E⊥ · ∇ρ = 0, − � ψ = ρ, E = −∇ψ. (1.2)

where ρ is the charge density, E⊥ = (− ∂ψ
∂y ,

∂ψ
∂x) with the electric field E determined by

the 2D Poisson equation for the potential. Note that due to the incompressible condition for
the vector field E⊥, the guiding center model can also be written in a conservative form
∂ρ
∂t + ∇ · (E⊥ρ) = 0. Despite different application backgrounds, the above two models are
in an equivalent mathematical formulation up to a sign difference in the Poisson equation.
The algorithm developed for one model can be directly applied to the other without any
difficulty. We focus on algorithm development for the system (1.1), while presenting results
from numerical tests for both models.

Adaptivemethods are widely used to increase spatial and temporal resolution of numerical
simulations beyond the limits imposed by the available hardware and to save the computa-
tional cost. The discontinuous Galerkin (DG) framework offers great convenience in data
projection and data prolongation among different levels of mesh refinement in an h-adaptive
scheme, while preserving themass conservation.Moreover, comparedwith finite volume and
finite differencemethods, finite elementDGmethods are advantageous for their compactness,
handling boundary conditions in a complex geometry, as well as ease for parallelization. In
[30], we develop an h-adaptive Runge–Kutta discontinuous Galerkin (RKDG) scheme for
simulating the 1D Vlasov–Poisson (VP) system, where an adaptive RKDG scheme is used
for updating the Vlasov solution, while a local DG (LDG) scheme is used for solving the
Poisson equation. This paper is a natural extension of our previous work. The major dif-
ference between our work in [30] and the current one is the Poisson solver. For the 1D VP
system, the Poisson equation is 1D,while herewe have a 2DPoisson system. Such difference,
on one hand, makes the h-adaptive scheme more attractive since the cell number of a mesh
is essential to the computational cost (both storage and CPU time) especially for solving
elliptic equations. On the other hand, the need to solve the 2D Poisson system on an adaptive
mesh brings up additional complications in implementation due to the appearance of hang-
ing nodes. In our paper, we will provide a comprehensive description on our implementation
strategy for the LDG scheme on the h-adaptive mesh.

Existing work for model problem (1.1) include the second-order Godunov-type upwind-
ing methods [1], central finite difference methods [14], essentially non-oscillatory (ENO)
methods [24], finite element DGmethods [15,25] and semi-Lagrangianmethods [4,7,20,23].
There have beenmany existingwork on developing semi-Lagrangianmethods for the guiding
center Vlasov model [8,18,23]. Research work on the DG method with mesh adaptation for
these model problems is rare. There are plenty of h-adaptive RKDG schemes for other model
problems, for example, the ones developed by Flaherty et al. [2,10,11,21], Zhu et al.‘[26–30]
and Hartmann and Houston [12].

123

1318 J Sci Comput (2017) 73:1316–1337

This paper is organized as follows.Wefirst review theRKDGscheme for the 2Dconvective
transport equation and the LDG scheme for the 2DPoisson equation in Sect. 2. Then in Sect. 3
we provide details in implementing the proposed h-adaptiveRKDG–LDG scheme, especially
for solving the 2D Poisson equation with adaptive meshes. Numerical results are presented
in Sect. 4 and concluding remarks are followed in Sect. 5.

2 Review of RKDG–LDG Scheme

When fixed mesh is adopted, the RKDG–LDGmethod solves the model problem (1.1) in the
followingway. At each time level, the stream functionψ , hence the velocity vector u, is firstly
computed by numerically solving Eq. (1.1b) using the LDG scheme. Then, the vorticity ω is
updated by applying the DG scheme to Eq. (1.1a). Such procedure can be repeated for every
RK stage of one time step evolution, until the final time is reached. The h-adaptive approach
is obtained by inserting a mesh-adaptation step at the beginning of each time level.

In this sectionwefirst briefly review theRKDGscheme for Eq. (1.1a). Detailed description
of this method can be found in the review paper [6]. Then the LDG scheme [3] for Eq. (1.1b)
is presented.

In our descriptionbelow,weuse the subscripth to denote the numerical discretizationof the
corresponding continuous function. For example,ωh anduh are the numerical approximations
to the unknown functions ω and u respectively.

2.1 RKDG Scheme

Given a mesh discretizationMh of the domain � which only includes rectangular elements,
we seek the approximate solution ωh(x, y, t) in the finite element space of discontinuous
piecewise polynomials

V k
h =

{
φ ∈ L2(�) : φ|K ∈ P

k(K),∀K ∈ Mh

}
, (2.1)

where Pk(K) denotes the set of polynomials of total degree at most k on the element K . It
is known that the dimension of such space is Qk + 1 with Qk = k(k + 3)/2. We adopt the
following orthogonal basis on the reference cell [− 1

2 ,
1
2] × [− 1

2 ,
1
2] for V k

h ,

k = 1: φ0 = 1, φ1 = x, φ2 = y (2.2)

k = 2: φ0, φ1, φ2, φ3 = x2 − 1

12
, φ4 = xy, φ5 = y2 − 1

12
. (2.3)

Then the local orthogonal basis over cell K is given by

φ
(K)
l (x, y) = φl

(
x − xK

�xK
,

y − yK

�yK

)
, l = 0, . . . , Qk, (2.4)

in which (xK , yK) is the center of rectangle K and �xK and �yK are lengths of K ’s sides
in the direction of x and y respectively. Now the numerical solution ωh(x, y, t) in the space
V k

h can be expressed as

ωh(x, y, t)|K =
Qk∑
l=0

ω
(l)
K (t)φ(K)

l (x, y) (2.5)

123

J Sci Comput (2017) 73:1316–1337 1319

where ω
(l)
K (t), l = 0, . . . , Qk are the degrees of freedom. Particularly, ω

(0)
K (t) is the cell

average of ωh over K .
To obtain the RKDG scheme, we multiply Eq. (1.1a) by each of the basis, integrate over

each computational cell and perform integration by parts to formulate the following weak
form for the approximate solution ωh : for all test functions φ

(K)
l , with l = 0, . . . , Qk and all

K ∈ Mh ,

d

dt

∫

K
ωhφ

(K)
l dxdy −

∫

K
F(ωh) · ∇φ

(K)
l dxdy +

∑
e∈∂K

∫

e
F(ωh) · ne,K φ

(K)
l ds = 0

(2.6)

where F(ωh) = uhωh and ne,K is the outward unit normal to the edge e. The volume integral
term

∫
K F(ωh) · ∇φ

(K)
l dxdy can be computed either exactly or by a numerical quadrature of

sufficiently high order of accuracy. The line integral in Eq. (2.6) is typically discretized by a
Gaussian quadrature with sufficient accuracy

∫

e
F(ωh) · ne,K φ

(K)
l ds ≈ |e|

m∑
l=1

ωl F(ωh(Gl , t)) · ne,K φ
(K)
l (Gl , t) (2.7)

where F(ωh(Gl , t)) · ne,K is replaced by a monotone numerical flux. In this paper, we use
the simple Lax–Friedrichs flux

F(ωh(Gl , t)) · ne,K ≈ 1

2

[(
F

(
ω−

h (Gl , t)
) + F

(
ω+

h (Gl , t)
)) · ne,K

−α
(
ω+

h (Gl , t) − ω−
h (Gl , t)

)]
(2.8)

where α is taken as an upper bound for the eigenvalues of the Jacobian in the direction of
ne,K , and ω−

h and ω+
h are the traces of ωh at the Gaussian point Gl inside and outside the

cell K respectively.
Using Eq. (2.5), the first term in Eq. (2.6) can be rewritten by cl�xK �yK

d
dt ω

(l)
K (t) where

cl = ∫ 1/2
−1/2

∫ 1/2
−1/2 φ2

l (x, y) dxdy, l = 0, . . . , Qk are constants. As a result, the semi-discrete

scheme (2.6–2.8) is an ODE system for ω
(l)
K (t), l = 0, . . . , Qk, K ∈ Mh . This system cou-

pled with a suitable time discretization scheme, such as the TVD (total variation diminishing)
RK method [22], completes the RKDG scheme. In this paper for k = 1, we use the second
order RK time stepping

(1) =
n + �t L(
n),

n+1 = 1

2

n + 1

2

(1) + 1

2
�t L(
(1)) (2.9)

for the ODE system
t = L(
). For k = 2, we adopt the following third order version

(1) =
n + �t L(
n),

(2) = 3

4

n + 1

4

(1) + 1

4
�t L(
(1)),

n+1 = 1

3

n + 2

3

(2) + 2

3
�t L(
(2)). (2.10)

123

1320 J Sci Comput (2017) 73:1316–1337

2.2 LDG Scheme

To define the LDG scheme for the 2D Poisson Eq. (1.1b), we introduce the auxiliary variable
g = ∇ψ and rewrite the equation as a system of first-order equations:

∇ψ = g in �, (2.11a)

∇ · g = ω in �. (2.11b)

Periodic boundary conditions are assumed. Beyond periodicity, we need to enforce some
additional conditions to uniquely determineψ . In currentworkwe set

∫
�

ψ(x, y, t) dxdy = 0.
The LDG scheme is established on the same mesh Mh as the RKDG scheme. We make

use of the approximation space V k
h in (2.1) and

Zk
h =

{
r ∈ (L2(�))2 : r|K ∈ (Pk(K))2,∀K ∈ Mh

}
,

then the approximate solution (ψh, gh) is defined by the following weak formulation: for all
K ∈ Mh and all test functions (r, v) ∈ Zk

h × V k
h ,

∑
e∈∂K

∫

e
ψ̂hr · ne,K ds −

∫

K
ψh∇ · r dxdy =

∫

K
gh · r dxdy, (2.12a)

∑
e∈∂K

∫

e
vĝh · ne,K ds −

∫

K
gh · ∇v dxdy =

∫

K
ωv dxdy. (2.12b)

The functions ψ̂h and ĝh in Eq. (2.12) are the so called numerical fluxes. To define them, we
need to introduce some notations. We define the averages {{·}} and jumps [[·]] at (x, y) ∈ e ⊂
K :

{{ψ}} = (ψ+ + ψ−)/2, {{g}} = (
g+ + g−)

/2, (2.13)

[[ψ]] = (
ψ− − ψ+)

ne,K , [[g]] = (
g− − g+) · ne,K (2.14)

where the superscripts “−” and “+” again denotes the traces of corresponding functions
inside and outside the cell K . Then the numerical fluxes in Eq. (2.12) are defined as follows:

ĝ = {{g}} − C11[[ψ]] − C12[[g]], (2.15a)

ψ̂ = {{ψ}} + C12 · [[ψ]]. (2.15b)

As suggested in [3,5], we set the stabilization parameter C11(e) = 1 and the auxiliary
parameter C12(e) so that

C12(e) · ne,K = 0.5 · sign(v0 · ne,K) (2.16)

where v0 is an arbitrary but fixed vector with nonzero components.
The function gh can be locally solved in terms ofψh through Eq. (2.12a) since ψ̂h does not

depend on gh . Hence it can be eliminated from Eq. (2.12b), leaving ψh as the only unknown.
The resulting system is a linear system for ψh which is solved in our numerical tests by the
generalized minimum residual method equipped with the incomplete LU decomposition for
the preconditioning.

123

J Sci Comput (2017) 73:1316–1337 1321

coarsening refinement

K1 K2

K3 K4

K ′
1 K ′

2

K ′
3 K ′

4

K ′ K

Fig. 1 Sketches of local mesh coarsening (left) and refinement (right)

3 Algorithm and Implementation Details

In this section, we propose the h-adaptive RKDG–LDG scheme for the model problem and
discuss the related implementation issues. This scheme is a generalization of the scheme
in [30], so we would like to focus this section on “what the scheme is” and “how it is
implemented”, and omit the reasoning if it remains the same as in [30]. From the standpoint
of numerical simulations, the main difference of the scheme in this paper lies in the 2D
Poisson solver, which will receive great emphasis in this section.

We will first present the grid and data structure, followed by the flow chart of our
proposed adaptive algorithm. Specific issues, such as the adaptation criteria, data prolon-
gation/projection and the coding of the LDG scheme will be discussed afterwards.

3.1 Grid and Data Structure

Each cell in the initial partition of the computational domain is considered as the root of a tree.
We use a simple way to perform local mesh refinement and coarsening. More specifically,
mesh refinement is achieved by dividing a cell into four new cells (children) of equal size (see
the sketch on the right in Fig. 1). The four new cells, which are generated simultaneously in a
single division, are called a ‘GROUP’. To coarsen the mesh, we can only merge the cells that
form a GROUP (see the left sketch in Fig. 1). A cell is called a leaf cell if it does not have any
children. All the leaf cells constitute the computational mesh. Each leaf cell has a variable
L denoting its mesh-level which is defined by the number of divisions needed to obtain this
cell. L is set to zero for roots, and is increased by one after a division and decreased by one
after a merger. We also need a maximal mesh-level, denoted by L EV , to restrict fineness of
the adaptive mesh.

We describe the data structure associated with each leaf cell and non-leaf cell. For the
non-leaf cells, the associated data include cell coordinates, mesh-level and the pointers to its
father and children in the tree. For the leaf cells, additional data such as degrees of freedom
for solutions, pointers for neighboring cells in four directions, indicator for mesh refinement
and coarsening (value −1/1 for mesh coarsening/refinement respectively), and indicator for
boundary cells (1 for boundary cells and 0 otherwise) are stored.

Since we need to visit all leaf cells and perform some operations for quite a few times in
each time step, we propose to order all leaf cells and store them as a vector of pointers to
facilitate the revisit of leaf cells. In particular, all leaf cells are naturally ordered by traversing
the tree one by one. Each time the mesh is adaptively updated, the vector of pointers must
be updated. Such order is also used in the formation of a large linear system for the LDG
scheme.

3.2 Algorithm Flow Chart

Below, we first describe the flow chart of the algorithm. In our descriptions, the superscript n
stands for the current time level tn unless otherwise specified. For each of the computational

123

1322 J Sci Comput (2017) 73:1316–1337

cell K (a leaf on the tree), associated information include the DG solution with {ω(l)
K : l =

0, . . . , Qk} as its degrees of freedom and its mesh level L K . Here and below, argument t in
ω

(l)
K (t) is omitted for simplicity.

Algorithm 3.1 (h-adaptive RKDG–LDG scheme)

• The initial set up The algorithm starts from an uniform rectangular mesh M0
h as the

root grid. We perform the L2 projection of the initial data ω(x, y, t = 0) on M0
h . The

numerical solution is a piecewise polynomial of degree k living onM0
h . Associated with

each root cell K ∈ M0
h , we have the following

{
ω

(l),0
K : l = 0, . . . , Qk

}
, L0

K = 0.

• Solution evolution from tn to tn+1, for n = 0, 1, . . .

1. Mesh refinement and coarsening Each cell in the current mesh will be marked to
be refined, coarsened, or kept unchanged via the “adaptive indicator” discussed in
Sect. 3.3. We take a cell K ∈ Mn

h as an example to demonstrate the idea.
– The cell will be quartered if it is marked to be refined and its mesh-level L K <

L EV . There are four newly generated cells K1, . . . , K4 (children), each of
which will have its mesh-level increased by one from that of its parent cell. The
corresponding polynomial on new cells will be obtained from data prolongation
mechanism discussed in Sect. 3.4.

– EachGROUPof cells (four children)will be removed if all of them aremarked to
be merged. Mesh-level is decreased by one for the new cell. The corresponding
polynomial on the new leaf cell will be obtained from data projection discussed
in Sect. 3.4.

2. Poisson solver in physical space Solve Eq. (1.1b) by LDG scheme to get ψh and uh .
3. Evolve solutionEvolve the solutionon the currentmesh from tn to tn+1 by applying the

RKDG procedure to Eq. (1.1a) to update {ω(l),n+1
K : l = 0, . . . , Qk,∀K ∈ Mn+1

h }.

3.3 Adaptation Criteria

One key component in an h-adaptive method is the adaptation criteria for mesh refinement
and coarsening. For computational efficiency and efficacy, the mesh is to be refined around
the region where local errors are relatively large, and is to be coarsened otherwise. A cell is
marked to be refined, coarsened or kept unchanged according to some ‘adaptive indicator’.
In this work, we propose to use the solution variations measured by functions’ gradient as
described below, as an effective adaptive indicator. In particular, in the context of a DG
scheme, the solution variations on a cell K in x and y directions can be approximated by
|ω(1)

K | and |ω(2)
K | in Eq. (2.5) respectively. A cell will be marked to be refined (or coarsened)

if its variations are much larger (or smaller) than the average values. Notice that there are
many other types of adaptive indicator in literature. For example, in [19], a list of trouble-cell
indicators were compared for solving hyperbolic problems. A posteriori error estimates are
often used for an adaptive indicator. However, to our knowledge, an a posterior error analysis
is not yet available for the model problems we considered in this paper.

123

J Sci Comput (2017) 73:1316–1337 1323

Algorithm 3.2 (Adaptive indicator) For every cell K ∈ Mh , let θ K
x = |ω(1)

K |, θ K
y = |ω(2)

K |.
We compute their average values in the corresponding directions

θ̄x = �K θ K
x

N
, θ̄y = �K θ K

y

N
, (3.1)

with N being the total number of cells. Let θ̄max = max(θ̄x , θ̄y), then a cell K is marked to
be ⎧⎪⎨

⎪⎩

coarsened, if θ K
x < γ1θ̄max and θ K

y < γ1θ̄max ,

refined, if θ K
x > γ2θ̄max or θ K

y > γ2θ̄max ,

kept unchanged, otherwise.

(3.2)

In our numerical tests, we set γ1 = 1/2 and γ2 = 2.

3.4 Data Prolongation and Data Projection

The L2 projection is performed for data prolongation and projection between different levels
of meshes. The formulas are shown below.

• Data projection When four cells K1, K2, K3, K4 are merged to a new cell K ′ (see the
left sketch in Fig. 1), the new degrees of freedom are as follows for the DG scheme with
P2 polynomial space,

ω
(0)
K ′ = 1

4

(
ω

(0)
K1

+ ω
(0)
K2

+ ω
(0)
K3

+ ω
(0)
K4

)
,

ω
(1)
K ′ = 3

4

(
−ω

(0)
K1

+ ω
(0)
K2

− ω
(0)
K3

+ ω
(0)
K4

)
+ 1

8

(
ω

(1)
K1

+ ω
(1)
K2

+ ω
(1)
K3

+ ω
(1)
K4

)
,

ω
(2)
K ′ = 3

4

(
−ω

(0)
K1

− ω
(0)
K2

+ ω
(0)
K3

+ ω
(0)
K4

)
+ 1

8

(
ω

(2)
K1

+ ω
(2)
K2

+ ω
(2)
K3

+ ω
(2)
K4

)
,

ω
(3)
K ′ = 15

16

(
−ω

(1)
K1

+ ω
(1)
K2

− ω
(1)
K3

+ ω
(1)
K4

)
+ 1

16

(
ω

(3)
K1

+ ω
(3)
K2

+ ω
(3)
K3

+ ω
(3)
K4

)
,

ω
(4)
K ′ = 9

4

(
ω

(0)
K1

− ω
(0)
K2

− ω
(0)
K3

+ ω
(0)
K4

)
+ 3

8

(
−ω

(1)
K1

− ω
(1)
K2

+ ω
(1)
K3

+ ω
(1)
K4

)

+3

8

(
−ω

(2)
K1

+ ω
(2)
K2

− ω
(2)
K3

+ ω
(2)
K4

)
+ 1

16

(
ω

(4)
K1

+ ω
(4)
K2

+ ω
(4)
K3

+ ω
(4)
K4

)
,

ω
(5)
K ′ = 15

16

(
−ω

(2)
K1

− ω
(2)
K2

+ ω
(2)
K3

+ ω
(2)
K4

)
+ 1

16

(
ω

(5)
K1

+ ω
(5)
K2

+ ω
(5)
K3

+ ω
(5)
K4

)
.

(3.3)

For the DG scheme with P1 polynomial space, only the first three formulas are needed.
• Data prolongation When a cell K is divided into four subcells K ′

1, K ′
2, K ′

3, K ′
4 (see the

right sketch in Fig. 1), the new degrees of freedom for k = 2 can be computed by the
following formulas with l = 1, 2, 3, 4,

ω
(0)
K ′

l
= ω

(0)
K + λ(l)

x ω
(1)
K + λ(l)

y ω
(2)
K + λ(l)

x λ(l)
y ω

(4)
K ,

ω
(1)
K ′

l
= 1

2
ω

(1)
K + λ(l)

x ω
(3)
K + 1

2
λ(l)

y ω
(4)
K , ω

(2)
K ′

l
= 1

2
ω

(2)
K + 1

2
λ(l)

x ω
(4)
K + λ(l)

y ω
(5)
K ,

ω
(3)
K ′

l
= 1

4
ω

(3)
K , ω

(4)
K ′

l
= 1

4
ω

(4)
K , ω

(5)
K ′

l
= 1

4
ω

(5)
K (3.4)

123

1324 J Sci Comput (2017) 73:1316–1337

where λ
(l)
x = (−1)l

4 for l = 1, . . . , 4, λ(1)
y = λ

(2)
y = − 1

4 and λ
(3)
y = λ

(4)
y = 1

4 . For k = 1,

one can use the same formulas, but dropping the higher moment terms ω
(3)
K , ω

(4)
K , and

ω
(5)
K .

3.5 Coding the LDG Scheme

Both the RKDG and LDG schemes are capable of handling irregular meshes, including the
ones with hanging nodes. To implement both schemes with the h-adaptive meshes in this
work, it is important that the interval e ⊂ ∂K in Eqs. (2.6) and (2.12) must be an elementary
edge that contains no sub-edge. In doing so, the mass conservation will be guaranteed.

With hanging nodes, coding of the RKDG scheme is still trivial, but not for the LDG
scheme. This is because that for RKDG scheme (2.6), cell K only interacts with its direct
neighboring cells and the scheme is explicit with no large linear system to solve, while for
LDG scheme (2.12), besides its direct neighboring cells, cell K may interact with neighbors
of its direct neighboring cells, forming a large system of linear equations for the elliptic
equation. Such complication brings in extra complexity in numerical implementation. In
what follows we will describe how we code the LDG scheme. We use the same notations as
in Sect. 2 unless otherwise specified.

With the LDG scheme, we form the large linear system for all degrees of freedom of ψh ,
by firstly using Eq. (2.11a) to express the degrees of freedom of gh in terms of those of ψh

and then inserting the expression into (2.11b). The numerical fluxes are chosen according to
(2.15). In particular, let p, q denote the two components of g in Eq. (2.11) and take v0 = (1, 1)
in Eq. (2.16), then Eq. (2.15) gives us

on vertical edges: p̂ = pE + ψ E − ψW , ψ̂ = ψW , (3.5a)

on horizontal edges: q̂ = q N + ψ N − ψ S, ψ̂ = ψ S, (3.5b)

where the superscripts indicate the directions from which the traces on edges are taken. The
diagram in Fig. 2 shows the notations on cell K along with some examples of traces. For
instance,

pE
x3,K = p

(
x E
3,K , y

)
= lim

δ→0+ p(x3,K + δ, y),

ψ S
y3,K = ψ

(
x, yS

3,K

)
= lim

δ→0− ψ(x, y3,K + δ).

When being applied to the h-adaptive mesh introduced before, Eq. (2.12) becomes the
following: for all K ∈ Mh and any r1, r2, v ∈ V k

h ,

∫ y3,K

y1,K
ψ̂h(x3,K , y)r1(xW

3,K , y) dy −
∫ y3,K

y1,K
ψ̂h(x1,K , y)r1(x E

1,K , y) dy −
∫

K
ψh

∂r1
∂x

dxdy

=
∫

K
phr1 dxdy, (3.6a)

∫ x3,K

x1,K
ψ̂h(x, y3,K)r2(x, yS

3,K) dx −
∫ x3,K

x1,K
ψ̂h(x, y1,K)r2(x, yN

1,K) dx −
∫

K
ψh

∂r2
∂y

dxdy

=
∫

K
qhr2 dxdy, (3.6b)

∫ y3,K

y1,K
p̂h(x3,K , y)v(xW

3,K , y) dy −
∫ y3,K

y1,K
p̂h(x1,K , y)v(x E

1,K , y) dy −
∫

K
ph

∂v

∂x
dxdy

123

J Sci Comput (2017) 73:1316–1337 1325

x1,K x2,K x3,K

y1,K

y2,K

y3,K

S(outh)

N(orth)

W(est) E(ast)

ψN
y1,K

ψN
y3,K

ψS
y3,K

qNy3,K

ψE
x1,K

ψE
x3,K

ψW
x3,K

pEx3,K

Fig. 2 Notations on cell K

+
∫ x3,K

x1,K
q̂h(x, y3,K)v(x, yS

3,K) dx −
∫ x3,K

x1,K
q̂h(x, y1,K)v(x, yN

1,K) dx

−
∫

K
qh

∂v

∂y
dxdy =

∫

K
ωv dxdy. (3.6c)

To show the process, it is sufficient to deal with the ph-related terms [Equation (3.6a)
and the first three terms in Eq. (3.6c)] only and omit the qh-related terms due to similarity.
Introduce �φK = (φ

(K)
0 , φ

(K)
1 , . . . , φ

(K)
Qk

)T which is the vector of basis functions on cell K .

Let �ψK = (ψ
(0)
K , ψ

(1)
K , . . . , ψ

(Qk)
K)T be the vector of degrees of freedom of ψh on K . As a

result, ψh |K = �ψK · �φK . Similarly, let �pK and �qK be the vector of degrees of freedom of ph

and qh , respectively. To obtain the system of equations for �ψK , we substitute �φK for r1, r2 and
v in Eq. (3.6). In order to form the large linear system in a systematical way, we introduce a
group of matrices that can be precomputed (so they need to be computed only once during the
entire numerical simulation). These matrices depend only on the basis functions and L EV ,
and are independent of individual cell K .

Cφφ : Cφφ
i j =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

φ j (x, y)φi (x, y) dxdy, (3.7a)

Cφφx : Cφφx
i j =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

φ j (x, y)
∂φi (x, y)

∂x
dxdy, (3.7b)

DSW TW : DSW TW
i, j =

∫ 1
2

− 1
2

φ j

(
1

2
, y

)
φi

(
1

2
, y

)
dy, (3.7c)

DSE TE : DSE TE
i, j =

∫ 1
2

− 1
2

φ j

(
−1

2
, y

)
φi

(
−1

2
, y

)
dy, (3.7d)

123

1326 J Sci Comput (2017) 73:1316–1337

ASW TE (α, β): ASW TE
i, j =

∫ 1
2

− 1
2

φ j

(
1

2
, y

)
φi

(
−1

2
, αy + β

)
dy, (3.7e)

ASE TW (α, β): ASE TW
i, j =

∫ 1
2

− 1
2

φ j

(
−1

2
, αy + β

)
φi

(
1

2
, y

)
dy, (3.7f)

BSW TE (α, β): BSW TE
i, j =

∫ 1
2

− 1
2

φ j

(
1

2
, αy + β

)
φi

(
−1

2
, y

)
dy, (3.7g)

BSE TW (α, β): BSE TW
i, j =

∫ 1
2

− 1
2

φ j

(
−1

2
, y

)
φi

(
1

2
, αy + β

)
dy, (3.7h)

where i, j = 0, 1, . . . , Qk . Parametersα andβ have limited possible values for the h-adaptive
mesh in this paper, i.e.,

α = 2−�L , �L = 0, 1, . . . , L EV,

and

β =
(

m − 1

2

)
2−�L − 1

2
, m = 1, 2, . . . , 2�L

where �L is the difference of mesh levels between the two neighboring cells. The rationale
behind this is given in Remark 3.1. The superscripts of matrices A, B, D indicate the direc-
tions where the traces are taken. For example, “SW TE” denotes the case that the basis φ j

is from the Solution function space with its trace taken from the West, while the basis φi

corresponds to the Test function space with its trace taken from the East. Note that ASE TW

and BSE TW are the transpose of ASW TE and BSW TE respectively.

Remark 3.1 The matrices in Eq. (3.7) are defined so that the integrals in Eq. (3.6) can be
rewritten in a matrix form.We provide an example to show the mechanism here. Consider the
case in Fig. 3 where we have cell Ks smaller than its east neighbor denoted by Kb. Integrals
on an edge should be performed on the edge of the smaller cell. For the following integral,
we have∫ y3,Ks

y1,Ks

ψh(xW
3,Ks

, y)φ
(Kb)
i (x3,Ks , y) dy

=
∫ y3,Ks

y1,Ks

⎡
⎣

Qk∑
j=0

ψ
(j)
Ks

φ
(Ks)
j (x3,Ks , y)

⎤
⎦ φ

(Kb)
i (x1,Kb , y) dy

=
Qk∑
j=0

ψ
(j)
Ks

[∫ y3,Ks

y1,Ks

φ j

(
1

2
,

y − y2,Ks

�yKs

)
φi

(
−1

2
,

y − y2,Kb

�yKb

)
dy

]

= �yKs

Qk∑
j=0

ψ
(j)
Ks

[∫ 1
2

− 1
2

φ j

(
1

2
, z

)
φi

(
−1

2
,
�yKs

�yKb

z + y2,Ks − y2,Kb

�yKb

)
dz

]
. (3.8)

The integral in the square brackets depends only on the size ratio α = �yKs
�yKb

and the relative

position β = y2,Ks −y2,Kb
�yKb

of the two adjacent cells. If matrix ASW TE is defined as in Eq. (3.7),

we have ∫ y3,Ks

y1,Ks

ψh(xW
3,Ks

, y) �φKb (x3,Ks , y) dy = �yKs ASW TE (α, β) �ψKs .

123

J Sci Comput (2017) 73:1316–1337 1327

Fig. 3 Line integral on the
common edge of two cells

x1,Ks x2,Ks x3,Ks

y1,Ks

y2,Ks

y3,Ks

Ks

Kb

With the preparation of precomputed matrices, we are ready to form the linear system.
After some simple manipulations, the right hand side term in Eq. (3.6a) becomes

∫

K
ph �φK dxdy = �xK �yK Cφφ �pK , (3.9)

and the last term of the left hand side of Eq. (3.6a) becomes
∫

K
ψh

∂ �φK

∂x
dxdy = �yK Cφφx �ψK . (3.10)

For the first term in Eq. (3.6a), inserting Eq. (3.5a) we have
∫ y3,K

y1,K
ψ̂h(x3,K , y) �φK (xW

3,K , y) dy = �yK DSW TW �ψK . (3.11)

As to the second term in Eq. (3.6a), there are two different cases. In the first case there is
only one neighbor in the west of cell K . Let us denote it by KW . With the matrix definitions
and a simple manipulation, we can obtain

∫ y3,K

y1,K
ψ̂h(x1,K , y) �φK

(
x E
1,K , y

)
dy = �yK BSW TE (αKW , βKW) �ψKW . (3.12)

Inserting Eqs. (3.11), (3.12), (3.10) and (3.9) into Eq. (3.6a), we have

�yK DSW TW �ψK − �yK BSW TE (αKW , βKW) �ψKW − �yK Cφφx �ψK = �xK �yK Cφφ �pK .

(3.13)

Then we can derive the formula for �pK in terms of the degrees of freedom of ψh :

�pK = 1

�xK
(Cφφ)−1

[(
DSW TW − Cφφx

) �ψK − BSW TE (αKW , βKW) �ψKW

]
. (3.14)

The second case is for more than one west neighbor, see an example in the left panel
of Fig. 4. Assume there are n1 west neighbors which are denoted by KWm , m = 1, . . . , n1.
Then

∫ y3,K

y1,K
ψ̂h(x1,K , y) �φK

(
x E
1,K , y

)
dy =

n1∑
m=1

∫ y3,KWm

y1,KWm

ψh

(
xW
1,K , y

) �φK

(
x E
1,K , y

)
dy

=
n1∑

m=1

�yKWm
ASW TE (αKWm

, βKWm
) �ψKWm

. (3.15)

123

1328 J Sci Comput (2017) 73:1316–1337

K

KW1

KW2

KW3

KE

K1

K2

K(K3)

Fig. 4 Examples of K with different cases of neighbors. Left more than one west neighbor. Right only one
east neighbor

Inserting Eqs. (3.11), (3.15), (3.10) and (3.9) into Eq. (3.6a), we can again obtain the formula
for �pK :

�pK = 1

�xK
(Cφφ)−1

((
DSW TW − Cφφx

) �ψK − 1

�yK

n1∑
m=1

�yKWm
ASW TE

(
αKWm

, βKWm

) �ψKWm

)
.

(3.16)

Now let us deal with Eq. (3.6c). We will take the first term of Eq. (3.6c) with the case of
K having only one neighbor in the east as an example to show how to derive the formulas
for coding. Other terms and cases can be handled similarly. To simplify the notations for this
case, we denote the only east neighbor by K E , and assume there are n2 ≥ 1 west neighbors
(including K) for K E , which are denoted by K1, . . . , Kn2 . The right panel in Fig. 4 gives an
example of this particular case. It is worth mentioning for this example that K1 is not a direct
neighbor of cell K but is involved in the scheme for K . We have

∫ y3,K

y1,K
p̂h(x3,K , y) �ψK

(
xW
3,K , y

)
dy

=
∫ y3,K

y1,K

[
ph

(
x E
3,K , y

)
+ ψh

(
x E
3,K , y

)
− ψh

(
xW
3,K , y

)] �ψK

(
xW
3,K , y

)
dy

= �yK ASE TW (αKE , βKE)
[
�pKE + �ψKE

]
− �yK DSW TW �ψK . (3.17)

From Eq. (3.16), we have

�pKE = 1

�xKE

(Cφφ)−1

((
DSW TW − Cφφx

) �ψKE − 1

�yKE

n2∑
m=1

�yKm ASW TE (αKm , βKm) �ψKm

)
.

Substituting it into Eq. (3.17), the first term of Eq. (3.6c) is finally expressed in terms of the
degrees of freedom of ψh only. Now this term is ready for coding.

All the terms in Eq. (3.6c) can be expressed in terms of the degrees of freedom of ψh

through a similar approach. When the LDG scheme is coded, for each cell K ′ involved in the
scheme of the target cell K , the coefficient matrix of �ψK ′ is firstly derived by the formulas
like Eq. (3.17). Then it is immediately assembled into the final linear system.

4 Numerical Tests

This section provides numerical examples for the proposed h-adaptive RKDG–LDG scheme.
Comparisons with the fixed-mesh RKDG–LDG scheme are made to demonstrate advantages

123

J Sci Comput (2017) 73:1316–1337 1329

of the mesh adaptation. For convenience, we refer the fixed-mesh/h-adaptive RKDG–LDG
scheme as nonadaptive/adaptive scheme respectively. Global time steps, which depend on
the smallest cell size at each time-level, are used in the RK time discretization. Local
time stepping treatments [9,13,16,17] may improve the time discretization efficiency,
which are left to future investigation. Periodic boundary conditions are applied to all
the test examples in this section. In order to make the scheme more robust during the
numerical simulations, the maximum-principle-satisfying technique proposed in [25] is
applied.

For clarity, the varianceof theRKDGschemeswill be denoted asInitialResolution-
LEVj-Order where InitialResolution is expressed by the product of Nx (number
of cells along the x-axis) and Ny (number of cells along the y-axis) at the initial time, LEVj
indicates that L EV = j is being used, and Order is either P1 (P1 case, i.e. k = 1)
or P2 (P2 case, i.e. k = 2). Note that the special case LEV0 stands for the nonadaptive
RKDG schemes using fixed uniform meshes in this work. For example, 32*32-LEV4-P1
denotes the h-adaptive RKDG scheme with initial resolution 32 ∗ 32 and k = 1, and
64*64-LEV0-P2 denotes the nonadaptive RKDG scheme with (initial) resolution 64 ∗ 64
and k = 2.

Example 4.1 (Accuracy and convergence test) We solve the model problem (1.1) up to time
T = 1.0 in the domain [0, 2π] × [0, 2π] with the initial condition

ω(x, y, 0) = −2 sin(x) sin(y). (4.1)

The exact solution is identical to the initial condition. In Fig. 5, we present a log–log plot of
L1 error versus CPU time (s) for both nonadaptive and adaptive schemes. The symbols along
the curves for nonadaptive DG schemes (annotated as LEV0-P1 and LEV0-P2) are obtained
from simulations with meshes 5× 5, 10× 10, . . . , 320× 320; and the symbols along curves
for adaptive schemes (annotated as LEV4-P1 and LEV4-P2) are obtained from simulations
with 5×5, 10×10, 20×20 initial meshes. The convergence of both nonadaptive and adaptive
schemes is clearly shown. For this example, it is observed that adaptive schemes are not as
efficient as nonadaptive ones, due to the fact that the solution is a smooth sin function and
mesh refinement does not bring in advantages in solution resolution. The adaptive scheme
is expected to be more effective and efficient for examples with multi-scale and fine-scale
solution structures, e.g. in resolving shocks for hyperbolic systems [27,28] and in resolving
filamentation structures for Vlasov equation [30] as well as examples presented later in this
section.

For the rest of the test examples, since there are no analytical solutions, the results com-
puted by scheme 256*256-LEV0-P2 are served as references. In addition, we only report
the P2 results with L EV = 4 to save space because they are sufficient to illustrate the
capability of the adaptive scheme.

Example 4.2 (The shear flow problem taken from [1]) This is an example from the model
problem (1.1). The initial condition is given by

ω(x, y, 0) =
⎧⎨
⎩

δ cos(x) − 1
ρ
sech2

(
y−π/2

ρ

)
, if y ≤ π,

δ cos(x) + 1
ρ
sech2

(
3π/2−y

ρ

)
, if y > π,

(4.2)

where δ = 0.05 and ρ = π/15. We solve this problem in the domain [0, 2π] × [0, 2π]
until T = 8. The solution quickly develops into roll-ups with smaller and smaller scales,

123

1330 J Sci Comput (2017) 73:1316–1337

Fig. 5 Example 4.1 L1 error versus CPU time (s)

Fig. 6 Shear flow problem, time evolution of the vorticity and the adaptive meshes for scheme
16*16-LEV4-P2. From left to right t = 4, 6, 8

so on any fixed mesh the full resolution is lost eventually. We plot the time evolution of the
vorticity ω for scheme 16*16-LEV4-P2 in Fig. 6, along with the corresponding meshes.
From these figures we can see that the adaptive meshes resolve the roll-ups very well. Fine
meshes are generated at the regions with fine structures while coarse meshes are used else-
where. The adaptive scheme works well in a dynamical way. In Fig. 7, 1D cuts of numerical
solutions at x = π are plotted. It is observed that the adaptive scheme 16*16-LEV4-P2
produces a comparable solution to that from the scheme 256*256-LEV0-P2 for this prob-
lem.

123

J Sci Comput (2017) 73:1316–1337 1331

Fig. 7 1D cuts of the vorticity at x = π for the shear flow problem at T = 8

Example 4.3 (The vortex patch problem) We solve the model problem (1.1) in the domain
[0, 2π] × [0, 2π] with the initial condition

ω(x, y, 0) =

⎧
⎪⎪⎨
⎪⎪⎩

−1, if (x, y) ∈ [
π
2 , 3π

2

] × [
π
4 , 3π

4

]
,

1, if (x, y) ∈ [
π
2 , 3π

2

] ×
[
5π
4 , 7π

4

]
,

0, otherwise.

(4.3)

The final time is T = 10. Time evolution of the vorticity and adaptive meshes for scheme
16*16-LEV4-P2 are given in Fig. 8. It is clearly shown that the adaptive meshes are
generated in accordance with the development of the solution. Fine meshes are generated in
regions with large solution gradients, and dynamically follow these regions as they move.
As a result, the adaptive scheme is able to capture the fine solution structures with a coarse
initial mesh. In Fig. 9, 1D cuts of numerical solutions at x = π are plotted. The solutions
from scheme 16*16-LEV4-P2 and 256*256-LEV0-P2 are observed to be close to each
other.

Example 4.4 (A Kelvin–Helmholtz (K–H) instability problem taken from [7]) This is an
example from the 2D guiding-center model (1.2). The initial condition is

ω(x, y, 0) = sin(y) + 0.015 cos(ηx) (4.4)

where we let η = 0.5 so that a K–H instability is created. This problem is solved until the
final time T = 40 is reached. In Fig. 10 we show the time evolution of the density and the
corresponding meshes for scheme 32*32-LEV4-P2. We can see again that fine meshes are
generated in regions where solutions have large gradients. The coarse mesh are used where
solution has mild gradients. The dynamic mesh refinement and coarsening work well and
the adaptive strategy is effective as expected. In Fig. 11, we show 1D cuts of solutions at
y = π . The result from scheme128*128-LEV0-P2 is used instead of the one from scheme
256*256-LEV0-P2 because based on our estimation, scheme 256*256-LEV0-P2 will
cost more than 1400 CPU hours which is beyond the capability of our available computers.

123

1332 J Sci Comput (2017) 73:1316–1337

Fig. 8 Vortex patch problem, time evolution of the vorticity and the adaptive meshes for scheme
16*16-LEV4-P2. From left to right t = 6, 8, 10

Fig. 9 1D cuts of the vorticity at x = π for the vortex patch problem at T = 10

Again, comparable results between solutions from the adaptive mesh and the fine mesh are
observed.

Next we make a detailed numerical comparison between the adaptive and nonadaptive
schemes, in order to show the advantage of themesh adaptation. Firstly, we provide numerical
evidence of mass conservation in Fig. 12 for the adaptive schemes. Secondly, let us recall
some analytically conserved quantities of the system which can be used as diagnostics in a
numerical scheme.

1. Energy:

‖u‖2L2 =
∫

�

u · u dxdy. (4.5)

123

J Sci Comput (2017) 73:1316–1337 1333

Fig. 10 K–H instability, time evolution of the vorticity and the adaptive meshes for scheme
32*32-LEV4-P2. From left to right t = 20, 30, 40

Fig. 11 1D cuts of the vorticity at y = π for K–H instability problem at T = 25

2. Enstrophy:

‖ω‖2L2 =
∫

�

ω2 dxdy. (4.6)

Similarly, for the guiding center model, the energy and enstrophy are ‖E‖2
L2 and ‖ρ‖2

L2

respectively. They are analytically conserved quantities. Tracking relative deviations of these
invariants numerically provides a good measure on the quality of numerical schemes. The
relative deviation is defined to be the deviation away from the corresponding initial value
divided by the magnitude of the initial value. We show the time history of the relative
deviations of energy and enstrophy in Fig. 13 for all the test examples. In general, the
adaptive and nonadaptive schemes are comparable in conserving the energy and enstrophy.

123

1334 J Sci Comput (2017) 73:1316–1337

Fig. 12 Time history of
∫
� ωh dxdy or

∫
� ρh dxdy to demonstrate the mass conservation. From left to right

shear flow, vortex patch, K–H instability

Fig. 13 Time history of the relative deviations of energy (left column) and enstrophy (right column). From
top to bottom row shear flow, vortex patch, K–H instability

123

J Sci Comput (2017) 73:1316–1337 1335

Table 1 Data on adaptive meshes

Example Scheme TND NT N̄ PR

Shear flow 16*16-LEV4-P2 1.4E+4 12,826 6096.2 9.30

Vortex patch 16*16-LEV4-P2 1.1E+4 3307 3064.3 4.68

K–H instability 32*32-LEV4-P2 2.2E+5 39,094 18,203.8 6.94

Table 2 Comparison of CPU
time (h)

Example Scheme CPU time

Shear flow 16*16-LEV4-P2 7.12

64*64-LEV0-P2 1.33

128*128-LEV0-P2 21.58

256*256-LEV0-P2 619.49

Vortex patch 16*16-LEV4-P2 0.92

64*64-LEV0-P2 0.43

128*128-LEV0-P2 11.00

256*256-LEV0-P2 289.90

K–H instability 32*32-LEV4-P2 385.60

64*64-LEV0-P2 1.47

128*128-LEV0-P2 47.71

256*256-LEV0-P2 >1400

To provide a quantitative understanding of adaptive meshes, for all the examples above
we collect some important data on mesh and organize them as Table 1. The table includes
(a) TND: total number of divisions; (b) NT : number of cells at the final time; (c) N̄ : average
number of cells, defined by (

∑TOT
n=0 Nn)/TOT where Nn is the number of cells at the n-th

time-level and TOT is the total number of time-levels; and (d) PR: the percentage ratio of N̄
to the number of cells of a fully refined mesh, i.e. PR = 100N̄/(2LEV N0). It is shown in the
table that all the values of P R are far less than 100, which indicates that the adaptive scheme
uses much less cells than a nonadaptive one with a comparable resolution.

Finally, we compare the CPU time (h) in Table 2. The approximate number with a ‘>’
symbol is derived by estimation. The data shows that all the adaptive schemes cost CPU time
much less than the corresponding nonadaptive schemes with fully refined uniform meshes.
For example, with LEV = 4, the 256*256 mesh is the fully refined mesh of a 16*16 mesh.
The adaptive scheme could cost even less than the nonadaptive schemes using one-level
coarser mesh than the fully refined one. Significant computational savings are observed
when compared with the non-adaptive scheme with the finest level of mesh.

5 Conclusion

In this paper, we propose an h-adaptive RKDG–LDG scheme for solving the 2D time-
dependent incompressible Euler equations in the vorticity-stream function formulation and
for solving the guiding center Vlasov model. The scheme is a generalization of the adaptive
scheme proposed in [30]. The main difficulty of this generalization lies in the 2D Poisson

123

1336 J Sci Comput (2017) 73:1316–1337

solver due to the irregular adaptive mesh with hanging nodes. We provide an in-depth dis-
cussion on the adaptive LDG Poisson solver and provide a detailed description regarding the
coding issue. Extensive numerical tests have been performed to illustrate the effectiveness
of the adaptive scheme. Advantages of the h-adaptive scheme have been shown, especially
in terms of computational savings, with comparable solution resolutions to those from a fine
mesh simulation. Subsequent research directions include (1) developing anisotropic adaptive
schemes to gain more benefits from mesh adaptation; (2) using triangular meshes to handle
complicated geometries.

References

1. Bell, J., Colella, P., Glaz, H.: A second order projection method for the incompressible Navier–Stokes
equations. J. Comput. Phys. 85, 257–283 (1989)

2. Biswas, R., Devine, K., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl.
Numer. Math. 14, 255–283 (1994)

3. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous
Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

4. Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral
deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)

5. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous
Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

6. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkinmethods for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

7. Crouseilles,N.,Mehrenberger,M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes forVlasov
equations. J. Comput. Phys. 229(6), 1927–1953 (2010)

8. Crouseilles, N., Respaud, T., Sonnendrücker, E.: A forward semi-lagrangian method for the numerical
solution of the Vlasov equation. Comput. Phys. Commun. 180, 1730–1745 (2009)

9. Dawson, C., Kirby, R.: High resolution schemes for conservation laws with locally varying time steps.
SIAM J. Sci. Comput. 22, 2256–2281 (2001)

10. Devine, K., Flaherty, J.: Parallel adaptive hp-refinement techniques for conservation laws. Appl. Numer.
Math. 20, 367–386 (1996)

11. Flaherty, J., Loy, R., Shephard, M., Szymanski, B., Teresco, J., Ziantz, L.: Adaptive local refinement with
octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib.
Comput. 47, 139–152 (1997)

12. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyper-
bolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

13. Krivodonova, L.: An efficient local time-stepping scheme for solution of nonlinear conservation laws. J.
Comput. Phys. 229, 8537–8551 (2010)

14. Levy, D., Tadmor, E.: Non-oscillatory central schemes for the incompressible 2-D Euler equations. Math.
Res. Lett. 4, 321–340 (1997)

15. Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J.
Comput. Phys. 160, 577–596 (2000)

16. Liu, L., Li, X., Hu, F.Q.: Nonuniform time-step Runge–Kutta discontinuous Galerkin method for com-
putational aeroacoustics. J. Comput. Phys. 229, 6874–6897 (2010)

17. Maleki, F., Khan, A.: A novel local time stepping algorithm for shallow water flow simulation in the
discontinuous Galerkin framework. Appl. Math. Model. 40, 70–84 (2016)

18. Mehrenberger, M., Mendoza, L., Prouveur, C., Sonnendrücker, E.: Solving the guiding-center model on
a regular hexagonal mesh. ESAIM Proc. Surv. 53, 149–176 (2016)

19. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin
mehtods using weighted essentially nonosillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)

20. Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for
advection in incompressible flow. J. Comput. Phys. 230, 863–889 (2011)

21. Remacle, J.-F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique with an orthog-
onal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)

22. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes.
J. Comput. Phys. 77, 439–471 (1988)

123

J Sci Comput (2017) 73:1316–1337 1337

23. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical
resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

24. Weinan, E., Shu, C.-W.: A numerical resolution study of high order essentially non-oscillatory schemes
applied to incompressible flow. J. Comput. Phys. 110, 39–46 (1994)

25. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation
laws. J. Comput. Phys. 229, 3091–3120 (2010)

26. Zhu, H., Gao, Z.: An h-adaptive RKDG method with troubled-cell indicator for one-dimensional deto-
nation wave simulations. Adv. Comput. Math. 42, 1081–1102 (2016)

27. Zhu, H., Qiu, J.: Adaptive Runge–Kutta discontinuous Galerkin methods using different indicators: one-
dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

28. Zhu,H.,Qiu, J.:An h-adaptiveRKDGmethodwith troubled-cell indicator for two-dimensional hyperbolic
conservation laws. Adv. Comput. Math. 39, 445–463 (2013)

29. Zhu, H., Qiu, J.: An h-adaptive Runge–Kutta discontinuous Galerkin method for Hamilton–Jacobi equa-
tions. Numer. Math. Theory Methods Appl. 6, 617–636 (2013)

30. Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive RKDGmethod for the Vlasov–Poisson system. J. Sci. Comput.
69, 1346–1365 (2016)

123

	An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model
	Abstract
	1 Introduction
	2 Review of RKDG–LDG Scheme
	2.1 RKDG Scheme
	2.2 LDG Scheme

	3 Algorithm and Implementation Details
	3.1 Grid and Data Structure
	3.2 Algorithm Flow Chart
	3.3 Adaptation Criteria
	3.4 Data Prolongation and Data Projection
	3.5 Coding the LDG Scheme

	4 Numerical Tests
	5 Conclusion
	References

