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Abstract Following the previous work of Qiu and Shu (SIAM J Sci Comput 31: 584–
607, 2008), we investigate the performance of Hermite weighted essentially non-oscillatory
(HWENO) scheme for nonconvex conservation laws. Similar to many other high order meth-
ods, we show that the finite volume HWENO scheme performs poorly for some nonconvex
conservation laws. We modify the scheme around the nonconvex regions, based on a first
order monotone scheme and a second entropic projection, to ensure entropic convergence.
Extensive numerical tests are performed.Comparewith the earlierwork ofQiu andShuwhich
focuses on 1D scalar problems, we apply the modified schemes (both WENO and HWENO)
to one-dimensional Euler system with nonconvex equation of state and two-dimensional
problems.

Keywords Nonconvex conservation laws · Finite volume HWENO scheme ·
Entropy solution · Entropic projection

Research was supported by NSFC Grants 11571290, 91530107, Air Force Office of Scientific Research
FA9550-16-1-0179 and NSF DMS-1522777.

B Jingmei Qiu
jingqiu@math.uh.edu

Xiaofeng Cai
xfcai@math.uh.edu

Jianxian Qiu
jxqiu@xmu.edu.cn

1 Department of Mathematics, University of Houston, Houston, TX 77204, USA

2 School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling
and High-Performance Scientific Computing, Xiamen University, Xiamen 361005, Fujian,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0525-5&domain=pdf


66 J Sci Comput (2018) 75:65–82

1 Introduction

In this paper, we consider the Cauchy problem for nonconvex hyperbolic conservation laws:

{
qt + ∇ · F(q) = 0,
q(x, 0) = q0(x),

(1.1)

whose entropy solutions may admit composite waves which involve a sequence of shocks
and rarefaction waves and are difficult to be resolved numerically. Such examples include
scalar conservation laws with nonconvex flux functions and hyperbolic systems such as the
Euler system and magnetohydrodynamics system with a nonconvex equation of state (EOS)
[6,7,12,17].

It is well known that first order monotone schemes converge to entropy solutions of both
convex and nonconvex conservation laws [3], but with a relatively slow convergence rate. It
has also been known [5,11] that there are some nonconvex conservation laws, for which high
order schemes such as the ones with weighted essentially non-oscillatory (WENO) recon-
structions [14] and discontinuous Galerkin methods [2] would fail to converge to the entropy
solution. There have been great research effort in ensuring entropic convergence for general
nonlinear conservation laws, for example by adding entropy viscosity [4] and by modify-
ing reconstruction operators. Examples for the latter approach include the computationally
inexpensive strategy proposed in [5] on an adaptive choice between a low order dissipative
reconstruction and a high order central WENO scheme, as well as low order modifications
around nonconvex regions to ensure entropic convergence proposed in [11]. Compare with
the work in [5], with more computational effort, the second order entropic convergence of
the schemes can be rigorously proved [1]. On the other hand, such second order entropic
projection is available only for one dimensional scalar case and is quite computationally
expensive to implement.

This paper is a natural extension of our earlierwork in [11].We investigate the performance
of the finite volumeHermiteWENO (HWENO) scheme for nonconvex conservation laws and
apply the correspondingmodifications as being done in [11]. In addition to the scalar examples
discussed in [11], we investigate the performance of modified WENO and HWENO scheme
for 2D problems, as suggested in [5]. The FV HWENO scheme was originally proposed in
[8,9]. The key idea of the scheme is to evolve more pieces of information, i.e. functions
and their spatial gradients, per computational cell. With such mechanism, the HWENO
scheme has relatively compact stencils, hence it is easier to handle boundary conditions
comparedwith the traditionalWENO scheme [14].Moreover, with the same formal accuracy,
compact stencils are known to exhibit better resolution of small scale structures by improving
dispersive and dissipative properties.

An outline of this paper is as follows. Section 2 describes the high order FV HWENO
scheme. In Sect. 3, FV HWENO schemes with a first order monotone modification and
a second order modification using an entropic projection around nonconvex regions are
proposed for nonconvex conservation laws. In Sect. 4, numerical examples are shown to
demonstrate the effectively of proposed schemes. Concluding remarks are given in Sect. 5.

2 Description of FV HWENO Schemes

We briefly review the FV HWENO scheme for solving conservation laws [8,9,20]. The idea
of HWENO method is to numerically evolve both the function and its spatial gradients,
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and use these information in the reconstruction process. Thus it leads to a more compact
reconstruction stencil compared with the traditional WENO scheme [13,14].
General scheme formulation of HWENO Taking the gradient with respect to spatial vari-
ables in (1.1), we obtain the evolution equation for function’s gradients,

(∇q)Tt + ∇ · (∇ ⊗ F(q)) = 0, (2.1)

where ⊗ is a tensor product. The FV HWENO scheme is defined for the equations:

Ut + ∇ · F(U) = 0, (2.2)

where U = (q,∇q)T and F(U) =
(

F(q)

∇ ⊗ F(q)

)
. We integrate the system (2.2) on a

control volume �k , which is an interval I j = [x j− 1
2
, x j+ 1

2
] for 1D cases or a rectangle

[xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] for 2D cases. The integral form of (2.2) reads,

d

dt
U�k = − 1

|�k |
∫

∂�k

F(U) · nds (2.3)

where |�k | is the volume of �k and n represents the outward unit normal vector to ∂�k . The
line integral in (2.3) can be approximated by a L-point Gaussian quadrature on each side of
∂�k = ⋃S

s=1 ∂�ks :

∫
∂�k

F(U) · nds ≈
S∑

s=1

|∂�ks |
L∑

l=1

ωlF(U(Gsl , t)) · n, (2.4)

where Gsl and ωl are Gaussian quadrature points on ∂�ks and weights respectively.
F(U(Gsl , t)) · n is evaluated by a numerical flux (approximate or exact Riemann solvers).
We adopt the Lax–Friedrichs flux in this paper, which is given by

F(U(Gsl , t)) · n ≈ 1

2
[F(U−(Gsl , t)) +F(U+(Gsl , t))] · n− α(U+(Gsl , t) −U−(Gsl , t)),

where α is taken as an upper bound for eigenvalues of the Jacobian along the direction n,
and U− and U+ are the reconstructed values of U at Gaussian point Gsl inside and outside
�k . Finally, the semi-discretization HWENO scheme (2.3) can be written in the following
ODE form:

d

dt
U = L(U). (2.5)

TheODE system (2.5) is then discretized in time by a strong stability preservingRunge–Kutta
(RK) method in [15]. The following third-order version is used in this paper,

U
(1) = U

n + �tL(U
n
),

U
(2) = 3

4U
n + 1

4

(
U

(1) + �tL(U
(1)

)
)

,

U
n+1 = 1

3U
n + 2

3

(
U

(2) + �tL(U
(2)

)
)

.

(2.6)

A scalar 1D example As an example, we consider a scalar 1D equation,

qt + f (q)x = 0. (2.7)

Taking the derivative of (2.7), we obtain the equation for the derivative,

ξt + H(q, ξ)x = 0, (2.8)
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where ξ = qx and H(q, ξ) = f ′(q)ξ. Let q j and ξ j denote approximation to cell averages
of q and ξ over cell I j respectively, the semi-discrete FV HWENO scheme is designed by
approximating spatial derivatives in Eqs. (2.7) and (2.8) with the following flux difference
form, ⎧⎪⎪⎨

⎪⎪⎩
dq j
dt = −

f̂

(
q−
j+ 1

2
,q+

j+ 1
2

)
− f̂

(
q−
j− 1

2
,q+

j− 1
2

)

�x ,

dξ j
dt = −

Ĥ
(
q−
j+ 1

2
,q+

j+ 1
2
;ξ−

j+ 1
2
,ξ+

j+ 1
2

)
−Ĥ

(
q−
j− 1

2
,q+

j− 1
2
;ξ−

j− 1
2
,ξ+

j− 1
2

)

�x ,

(2.9)

where q±
j+ 1

2
and ξ±

j+ 1
2
are reconstructed with high order from neighboring cell averages q

and ξ . The details of such reconstruction procedures can be found in [8]. f̂ (a, b) is a mono-
tone numerical flux (non-decreasing in the first argument and non-increasing in the second
argument), and Ĥ(a, b; c, d) is non-decreasing in the third argument and non-increasing in
the fourth argument. In this paper, we use the Lax–Friedrichs flux in [8],

f̂ (a, b) = 1

2
[ f (a) + f (b) − α(b − a)],

Ĥ(a, b; c, d) = 1

2
[H(a, c) + H(b, d) − α(d − c)], (2.10)

where α = maxq | f ′(q)|. For the first order “building block” of the HWENO scheme with
the Lax–Friedrichs flux, the total variation stability is proved in [8].
A scalar 2D exampleWe consider a 2D problem on a rectangular domain [a, b] × [c, d]:

qt + f (q)x + g(q)y = 0. (2.11)

We consider a set of uniform mesh with Ii j = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
],

a = x 1
2

< x 3
2

< · · · < xNx− 1
2

< xNx+ 1
2

= b, �x = b − a

Nx
,

c = y 1
2

< y 3
2

< · · · < yNy− 1
2

< yNy+ 1
2

= d, �y = d − c

Ny
.

Let ξ = ∂q
∂x , η = ∂q

∂y and qi j = 1
�x�y

∫
Ii j

qdxdy, ξ i j = 1
�y

∫
Ii j

∂q
∂x dxdy, ηi j =

1
�x

∫
Ii j

∂q
∂y dxdy be cell averages. Taking spatial derivatives of (2.11), we obtain

ξt + H(q, ξ)x + R(q, ξ)y = 0, (2.12)

ηt + K(q, η)x + S(q, η)y = 0, (2.13)

whereH(q, ξ) = f ′(q)ξ,R(q, ξ) = g′(q)ξ,K(q, η) = f ′(q)η,S(q, η) = g′(q)η. A semi-
discrete FV HWENO discretization is given by

⎧⎪⎪⎨
⎪⎪⎩

d
dt qi j = − 1

�x ( f̂i+ 1
2 , j − f̂i− 1

2 , j ) − 1
�y (ĝi, j+ 1

2
− ĝi, j− 1

2
),

d
dt ξ i j = − 1

�x (Ĥi+ 1
2 , j − Ĥi− 1

2 , j ) − 1
�y (R̂i, j+ 1

2
− R̂i, j− 1

2
),

d
dt ηi j = − 1

�x (K̂i+ 1
2 , j − K̂i− 1

2 , j ) − 1
�y (Ŝi, j+ 1

2
− Ŝi, j− 1

2
).

(2.14)

123



J Sci Comput (2018) 75:65–82 69

We define

f̂i+ 1
2 , j = 1

�y

∫ y
j+ 1

2

y
j− 1

2

f
(
q

(
xi+ 1

2
, y

))
dy ≈

L∑
ig

ωig f̂

(
q−
i+ 1

2 ,ig
, q+

i+ 1
2 ,ig

)
, (2.15)

Ĥi+ 1
2 , j = 1

�y

∫ y
j+ 1

2

y
j− 1

2

f ′ (q (
xi+ 1

2
, y

))
ξdy

≈
L∑
ig

ωig Ĥ

(
q−
i+ 1

2 ,ig
, q+

i+ 1
2 ,ig

, ξ−
i+ 1

2 ,ig
, ξ+

i+ 1
2 ,ig

)
, (2.16)

K̂i+ 1
2 , j = 1

�y

∫ y
j+ 1

2

y
j− 1

2

f ′ (q (
xi+ 1

2
, y

))
ηdy

≈
L∑
ig

ωig K̂

(
q−
i+ 1

2 ,ig
, q+

i+ 1
2 ,ig

, η−
i+ 1

2 ,ig
, η+

i+ 1
2 ,ig

)
, (2.17)

as the average of fluxes over the right boundary of cell Ii j , where the integrations are evaluated
by applying the L-point Gauss quadrature. The flux functions f̂ , Ĥ and K̂ are taken as the
Lax–Friedrich flux as in the 1D, see Eq. (2.10), and q±

i+ 1
2 ,ig

are reconstructed with high order

by neighboring cell averages of q , ξ and η. In the next paragraph, we briefly describe such
reconstruction procedure. ĝi, j+ 1

2
, R̂i, j+ 1

2
and Ŝi, j+ 1

2
in Eq. (2.14) are evaluated in a similar

fashion as the average of fluxes over the top boundary of a cell.
We only review the fourth order reconstruction in 2D and refer to [20] for more details.

We relabel the cell Ii j and its neighboring cells as I1, · · · , I9 as shown in Fig. 1, where
Ii j is relabeled as I5. We construct the quadratic polynomials pn(x, y) (n = 1, · · · , 8) in
the following stencils, S1 = {I1, I2, I4, I5}, S2 = {I2, I3, I5, I6}, S3 = {I4, I5, I7, I8},
S4 = {I5, I6, I8, I9}, S5 = {I1, I2, I3, I4, I5, I7}, S6 = {I1, I2, I3, I5, I6, I9}, S7 =
{I1, I4, I5, I7, I8, I9}, S8 = {I3, I5, I6, I7, I8, I9} to approximate q(x, y). For instance, a
quadratic polynomial can be reconstructed based on the information {q1, q2, q4, q5, ξ4, η2}
in the stencil S1. Such reconstruction will reconstruct a quadratic polynomial on Ii j . Similar
reconstructions can be done for stencil S2, S3 and S4. For stencil S5 to S8, only cell averages
are used in the reconstruction process. We remark that other combination of information are
possible for reconstructing 2D quadratic polynomial. The one we just mentioned seems to
be very robust and is implemented in our numerical experiments. If we choose the linear
weights denoted by γ

(l)
1 , · · · , γ

(l)
8 such that

q(Gl) =
8∑

n=1

γ (l)
n pn(Gl) (2.18)

is valid for any polynomial q of degree at most 3, leading to a fourth-order approximation
of q at the point Gl for all sufficiently smooth functions q . Notice that (2.18) holds for any
polynomial q of degree at most 2 if

∑8
n=1 γ

(l)
n = 1. There are four additional constraints on

the linear weights γ
(l)
1 , · · · , γ

(l)
8 so that (2.18) holds for q = x3, x2y, xy2 and y3. The rest

of free parameters are determined by a least square procedure to minimize
∑8

n=1(γ
(l)
n )2.

As for the derivatives (e.g. ξ−(Gl , t)), a third-order approximation in each stencil is
enough to obtain the fourth-order approximation to q(x, y). For instance, a cubic polynomial
on I5 can be reconstructed based on the information {q1, q2, q4, q5, ξ1, ξ4, ξ5, η1, η2, η5} in
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Fig. 1 The big stencil

the stencil S1. Similar reconstructions can be done for stencil S2, S3 and S4. The information
{ξ1, ξ2, ξ3, ξ4, ξ5, ξ7} in the stencil S5 is adopted to approximate ξ−(Gl , t). Finally, γl =
1
8 (l = 1, · · · , 8) can be chosen. The nonlinear weights of 2D HWENO reconstruction can
be designed by following the way of the WENO method.

3 The Modified FV HWENO Schemes for Nonconvex Conservation Laws

Although FV HWENO schemes can be successfully applied in many applications [8–10,19,
20], they perform poorly for some nonconvex conservation laws as shown below. To remedy
this, we propose a first order monotone modification and a second order modification with
an entropic projection around nonconvex regions.

3.1 An Example of Nonconvex Conservation Laws with Poor Performance for the
FV HWENO Scheme

We first show a nonconvex conservation law, for which the FV HWENO scheme performs
poorly in converging to the entropy solution. We consider the scalar Eq. (2.7) with the
nonconvex flux f (q) = sin(q) and the initial condition

q0(x) =
{

π/64, if x < 0,

255π/64, if x ≥ 0.
(3.1)

It is shown in Fig. 2, that the numerical solution of the high order FV HWENO scheme
does not converge to the entropy solution (solid black lines given by the first order Godunov
scheme with a very refined mesh). One of the rarefaction waves in the compound wave is
missing.

3.2 First Order Monotone Modification

In this subsection, we propose a first order modification to the FV HWENO scheme for 1D
nonconvex conservation laws following a similar idea in [11]. The scheme can be summarized

as follows, after a suitable initialization to obtain q0 and ξ
0
.
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x
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8
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12

14

Fig. 2 Solid lines the reference solution of (2.7) at the time t = 4; squares FV HWENO scheme with
Lax–Friedrichs flux and a uniform mesh �x = 0.05. CFL=0.5

1. Perform the HWENO reconstruction [8].
At each cell interface, say x j+ 1

2
, reconstruct the point values q±

j+ 1
2
and derivative values

ξ±
j+ 1

2
using neighboring cell average q and ξ respectively by the fifth order HWENO

reconstruction procedure in Sect. 2.
2. Identify the troubled cell boundary x j+ 1

2
.

Criterion I: A cell boundary x j+ 1
2
is good, if q±

j+ 1
2
, q j and q j+1 all fall into the same

linear, convex or concave region of the flux function f (q). Otherwise, it is defined to be
a troubled cell boundary.

3. At troubled cell boundaries, modify the numerical flux f̂ j+ 1
2
and Ĥ j+ 1

2
with a disconti-

nuity indicator in [18]. Specifically, the discontinuity indicator φ j is defined as

φ j = β j

β j + γ j
(3.2)

where

α j=|q j−1−q j |2+ε, τ j=|q j+1−q j−1|2+ε, β j= τ j

α j−1
+ τ j

α j+2
, γ j = (qmax − qmin)

2

α j
.

Here ε is a small positive number taken as 10−6 in the code, and qmax and qmin are the
maximum and minimum values of q j over all cells. The discontinuity indicator φ j has
the property that

• 0 ≤ φ j ≤ 1.
• φ j is on the order of O(�x2) in smooth regions.
• φ j is close to O(1) near a strong discontinuity.
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Let f̂ j+ 1
2

= f̂
(
qm,−
j+ 1

2
, qm,+

j+ 1
2

)
, and Ĥ j+ 1

2
= Ĥ(

qm,−
j+ 1

2
, qm,+

j+ 1
2
; ξ

m,−
j+ 1

2
, ξ

m,+
j+ 1

2

)
where

qm,−
j+ 1

2
= (1 − φ2

j )q
−
j+ 1

2
+ φ2

j q j , qm,+
j+ 1

2
= (1 − φ2

j )q
+
j+ 1

2
+ φ2

j q j+1, (3.3)

ξ
m,−
j+ 1

2
= (1 − φ2

j )ξ
−
j+ 1

2
+ φ2

j ξ j , ξ
m,+
j+ 1

2
= (1 − φ2

j )ξ
+
j+ 1

2
+ φ2

j ξ j+1, (3.4)

with φ j defined by (3.2), if x j+ 1
2
is a troubled cell boundary. Otherwise, at good cell

boundaries, qm,±
j+ 1

2
= q±

j+ 1
2
and ξ

m,±
j+ 1

2
= ξ±

j+ 1
2
.

4. Evolve the cell averages q j and ξ j by (2.9).

Remark 1 When a troubled cell boundary is at a strong discontinuity, φ j ∼ 1, hence qm,−
j+ 1

2
∼

q j , q
m,+
j+ 1

2
∼ q j+1, ξ

m,−
j+ 1

2
∼ ξ j and ξ

m,+
j+ 1

2
∼ ξ j+1, indicating a first order monotone scheme

is taking effect around a nonconvex discontinuous region. When a troubled cell boundary is
in a smooth region, the modification is obtained with the magnitude at most of the size

φ2
j max

(∣∣q j − q−
j+ 1

2

∣∣, ∣∣q j+1 − q+
j+ 1

2

∣∣) ∼ O(�x5),

φ2
j max

(∣∣ξ j − ξ−
j+ 1

2

∣∣, ∣∣ξ j+1 − ξ+
j+ 1

2

∣∣) ∼ O(�x5),

hence it does not affect the fifth order accuracy of the scheme.

It is natural to extend the above first order modification to 2D problems. With the system,
the HWENO reconstructions are performed in local characteristics directions [8], then a first
order monotone modification in the form of (3.3) and (3.4) is applied. For 2D problems, we
identify trouble cell boundaries, that is to check if the convexity fails, via Gaussian points
along cell boundaries, e.g. q±

i+ 1
2 ,ig

in Eq. (2.15). Similarly the first order modification is

performed with respect to these Gaussian points along cell boundaries.

3.3 Second Order Modification with an Entropic Projection

AMUSCL typemethodwith an entropic projection is proposed in [1]. It is proved in the same
paper that schemeswith such entropic projection enjoy cell entropy inequalities for all convex
entropy functions. In the following, we apply such entropic projection as a modification to
the HWENO scheme around nonconvex regions to ensure entropic convergence.

3.3.1 Review of the MUSCL Method Satisfying all the Numerical Entropy Inequalities.

The procedure of the MUSCL scheme satisfying all entropy inequalities can be summarized
below. Let the numerical solution at time level n be written as qnj (x) = qnj + snj σ j with σ j =
x−x j
�x j

over the cell I j . Initially, q0j (x) = q0j +s0j σ j , with s0j = minmod(q0j −q0j−1, q
0
j+1−q0j )

where the minmod function is defined as follows,

minmod(a, b) =

⎧⎪⎨
⎪⎩
0, if ab < 0,

min(a, b), if a, b ≥ 0,

max(a, b), if a, b ≤ 0.

It consists of two steps to evolve from qn to qn+1.
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1. Exact evolution (T�x ) Evolve (2.7) exactly for a time step �t , to obtain a solution q̃n+1,
which in general is not a piecewise linear function anymore.

2. An entropic projection (P1) Find a second order approximation to q̃n+1 by a piecewise
linear function qn+1, satisfying∫

I j
U

(
qn+1(x)

)
dx ≤

∫
I j
U

(
q̃n+1(x)

)
dx, ∀ j (3.5)

for all convex entropy function U (u). Second order reconstruction satisfying (3.5) can
be obtain by setting the cell average as

qn+1
j = 1

�x j

∫
I j
q̃n+1(x)dx (3.6)

and the slope as
sn+1
j = Dq̃n+1|I j = minmodI j ζ(y) (3.7)

where

ζ(y) = 2

�x j

(
1

x j+ 1
2

− y

∫ x
j+ 1

2

y
q̃n+1(x)dx − 1

y − x j− 1
2

∫ y

x j− 1
2

q̃n+1(x)dx

)
(3.8)

The minmod function of g(x) on the interval (a, b) is defined as

minmod
(a,b)

g(x) =
⎧⎨
⎩
0, if ∃y1, y2 ∈ (a, b), s.t. g(y1)g(y2) ≤ 0,
min(a,b) g(y), if g(y) > 0, ∀y ∈ (a, b),
max(a,b) g(y), if g(y) < 0, ∀y ∈ (a, b).

(3.9)

In summary, the scheme can be written out in the following abstract form

qn+1 = P1 ◦ T�t (q
n)

.= Q1(�t)(qn). (3.10)

It enjoys the following convergence theorem as proved in [1].

Theorem 1 [1]. Let T = n�t , u(·, T ) be the exact entropy solution to (2.7) with the initial
data q0 ∈ L1 ∩ BV (R), f∞ = maxq∈[min q0,max q0] f ′(q), then there exists a constant C,
such that

‖Q1(�t)nq0 − q(·, T )‖L1 ≤ C( f∞
√
T�t + �x

√
T/�t). (3.11)

The second order MUSCL scheme with the entropic projection (3.10) converges to the unique
entropy solution, when �t = O(�x).

3.3.2 Second Order Modification to the Fifth Order FV HWENO Schemes

At each time step evolution, {q�
j , ξ

�

j , q
�,l
j , q�,r

j }, � = n, (1), (2), over the cell I j is updated in

each RK stage. For instance, at the initial stage, qn,±
j∓ 1

2
is obtain by theHWENO reconstruction

from qn and ξ
n
. qn,l

j and qn,r
j refer to approximations with entropic projection to the left and

right boundaries of I j when the cell is detected as a trouble cell. Initially, q
n,l
j and qn,r

j come
from a MUSCL scheme with a minmod reconstruction. To show the idea of second order
modification to the fifth order FV HWENO schemes, we present the procedure to update

{q(1)
j , ξ

(1)
j , q(1),l

j , q(1),r
j } from {qnj , ξnj , qn,l

j , qn,r
j }.

Step 1. Compute qn,±
j± 1

2
by performing the HWENO reconstruction from {qnj , ξnj }.
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Step 2. Update q(1)
j and ξ

(1)
j :

1. Identify the troubled cell boundaries, for which we refer to Criterion I in Sect. 3.2
for the details.

2. Only at trouble cell boundaries, modify numerical fluxes f̂ j+ 1
2
and Ĥ j+ 1

2
as follows.

We let f̂ j+ 1
2

= f̂
(
um,−
j+ 1

2
, um,+

j+ 1
2

)
and Ĥ j+ 1

2
= Ĥ(

um,−
j+ 1

2
, um,+

j+ 1
2
; ξ

m,−
j+ 1

2
, ξ

m,+
j+ 1

2

)
, where

qm,−
j+ 1

2
= (1 − φ2

j )q
n,−
j+ 1

2
+ φ2

j q
n,r
j , qm,+

j+ 1
2

= (1 − φ2
j )q

n,+
j+ 1

2
+ φ2

j q
n,l
j+1, (3.12)

ξ
m,−
j+ 1

2
= (1 − φ2

j )ξ
n,−
j+ 1

2
+ φ2

j ξ
n
j , ξ

m,+
j+ 1

2
= (1 − φ2

j )ξ
n,+
j+ 1

2
+ φ2

j ξ
n
j+1, (3.13)

with φ j defined by (3.2) at the troubled cell boundary.
3. Update the solution at the first RK stage as follows,

q(1)
j = qnj − �t

�x

(
f̂ j+ 1

2
− f̂ j− 1

2

)
,

ξ
(1)
j = ξ

n
j − �t

�x

(
Ĥ j+ 1

2
− Ĥ j− 1

2

)
.

Step 3. Update q(1),l
j and q(1),r

j for a nonconvex troubled cell I j : we first identify non-
convex troubled cells by the following criterion.
Criterion II: A cell I j is called a good cell, if qm = {qnm, qn,±

m∓ 1
2
, qn,l

m , qn,r
m } with m =

j − 1, j, j + 1, fall into the same linear, convex or concave region of the flux function
f (q). Otherwise, it is defined to be a nonconvex troubled cell.

Trouble cells At a nonconvex troubled cell I j ,
we apply a first order scheme on a refined mesh by evolving a time step �t .
Specifically, we evolve Eq. (2.7) with the initial condition

qnl + snl σl , for x ∈ Il , l = j − 1, j, j + 1 (3.14)

where snl = 2minmod(qn,r
l − qnl , q

n
l − qn,l

l ) and σl = x−xl
�xl

. A periodic boundary
condition on I j−1 ∪ I j ∪ I j+1 is used. We consider a refined numerical mesh of cell
I j

I j = ∪N
m=1

[
ym− 1

2
, ym+ 1

2

]
, δx = ym+ 1

2
− ym− 1

2
= �x/N , (3.15)

and apply a first order schemewith entropic convergence to evolve the solution for�t .
Let q̃(1)|I j be the evolved solution, approximated by a piecewise constant function
sitting on the refined numerical mesh with the truncation error ∼ O(δx) = O(�x2).
We compute the average and slope of the linear function approximating q̃(1)|I j on I j
via the entropic projection as follows: the average is taken as the average of q̃(1)|I j
and the slope is computed as follows

s(1)
j = minmod

(
ζ(yN+ 1

2
), · · · , ζ(y2N+ 1

2
)
)

, (3.16)

where

ζ(y) = 2

�x j

⎛
⎝ 1

x j+ 1
2

− y

∫ x
j+ 1

2

y
q̃(1)dx − 1

y − x j− 1
2

∫ y

x
j− 1

2

q̃(1)dx

⎞
⎠ (3.17)
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Finally,

q(1),l
j = q̃(1)

j − 1

2
s(1)
j , q(1),r

j = q̃(1)
j + 1

2
s(1)
j . (3.18)

Good cells For a good cell I j , update q(1),l
j and q(1),r

j by setting qlj = q(1),+
j− 1

2
and

qrj = q(1),−
j+ 1

2
, where q(1),+

j− 1
2

and q(1),−
j+ 1

2
are reconstructed by performing a HWENO

reconstruction.

Remark 2 Note that themodification of ξ±
j+ 1

2
is a first ordermodification on derivative values.

Because the first order on derivative values is enough to get a second order scheme.

Remark 3 The implementation of the procedure to find sn+1
j in (3.16) is computationally

expensive. Due to the costly implementation of the high order scheme with the second order
entropic projection, we only adopt the first order modification to modify the FV HWENO
for 2D scalar problems.

4 Numerical Experiments

In Sect. 4.1, we compare the performance of the fifth order FVHWENO scheme (HWENO5)
and the fifth order FV WENO scheme (WENO5) with the first order modification (mod1)
and the second order entropic projection (mod2) respectively for solving 1D nonconvex
conservational laws. In Sect. 4.2, we present the performance of the modified WENO5 and
HWENO scheme (HWENO4) for 2D problems. The numerical fluxes used in this paper are
the global Lax–Friedrich flux.

4.1 1D Scalar Problems

Example 1 We consider the nonconvex conservation law

qt +
(
q3

3

)
x

= 0, q0(x) = sin(πx). (4.1)

We compute the solution up to t = 0.2. Table 1 gives the L1 and L∞ errors and the corre-
sponding orders of accuracy of the regular and modified HWENO5 and WENO5 schemes.
We can see that errors of HWENO5 are smaller than those of WENO5 with the same mesh.
Very little difference is observed among the regular and twomodifiedHWENO5 andWENO5
schemes.

Example 2 Consider the Riemann problem of the nonconvex conservation law presented
in Sect. 3.1. We plot numerical solutions of two modified schemes in Fig. 3. They both
successfully converge to the correct entropy solution, with the development of a compound
wave including a shock, a rarefactionwave, followed by another shock and another rarefaction
wave.

Example 3 Consider (2.7) with the nonconvex flux f (q) defined by

f (q) =

⎧⎪⎪⎨
⎪⎪⎩

1, if q < 1.6
cos(5π(q − 1.8)) + 2.0, if 1.6 ≤ q < 2.0
− cos(5π(q − 2.2)), if 2.0 ≤ q < 2.4
1, if q ≥ 2.4

(4.2)
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Table 1 qt +
(
q3

3

)
x

= 0 with initial condition q0(x) = sin(πx) and periodic boundary conditions

N HWENO5 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

Regular

100 1.68E−05 2.14E−04 4.42E−05 4.61E−04

200 7.68E−07 4.45 1.69E−05 3.66 2.24E−06 4.30 4.59E−05 3.33

300 1.17E−07 4.64 2.62E−06 4.59 3.48E−07 4.59 7.68E−06 4.41

400 2.96E−08 4.78 6.44E−07 4.88 9.00E−08 4.71 1.96E−06 4.76

500 1.01E−08 4.81 2.12E−07 4.97 3.12E−08 4.75 6.58E−07 4.88

Mod1

100 1.68E−05 2.14E−04 4.42E−05 4.61E−04

200 7.68E−07 4.45 1.69E−05 3.66 2.24E−06 4.30 4.59E−05 3.33

300 1.17E−07 4.64 2.62E−06 4.59 3.48E−07 4.59 7.68E−06 4.41

400 2.96E−08 4.78 6.44E−07 4.88 9.00E−08 4.71 1.96E−06 4.76

500 1.01E−08 4.81 2.12E−07 4.97 3.12E−08 4.75 6.58E−07 4.88

Mod2

100 1.70E−05 2.14E−04 4.42E−05 4.61E−04

200 7.78E−07 4.45 1.69E−05 3.66 2.24E−06 4.30 4.59E−05 3.33

300 1.17E−07 4.67 2.62E−06 4.59 3.48E−07 4.59 7.68E−06 4.41

400 2.96E−08 4.78 6.44E−07 4.88 9.00E−08 4.70 1.96E−06 4.76

500 1.01E−08 4.81 2.12E−07 4.97 3.12E−08 4.75 6.58E−07 4.88

The L1 and L∞ errors and the corresponding orders of accuracy for the regular HWENO5 and WENO5, the
corresponding two versions of modified schemes at the time t = 0.2

Fig. 3 Solid lines the exact solution of (2.7) with f (u) = sin(u) and the initial condition (3.1) at the time
t = 4; HWENO5 (pluses) and WENO5 (deltas) with the first order monotone schemes (left); HWENO5
(pluses) and WENO5 scheme (deltas) with the second order entropy projection (right). using N = 200
uniform cells
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Fig. 4 Solid line the exact solutions of the nonconvex scalar conservation law (2.7)–(4.2) with the initial
condition (4.3) at the time t = 2. Left HWENO5 (squares), HWENO5-mod1 (pluses) and WENO5-mod1
(deltas); right HWENO5-mod2 (pluses) and WENO5-mod2 (deltas). N = 50 uniform cells are used.
CFL = 0.5

with the initial condition

q0(x) =
{
1, for x < 0
3, for x ≥ 0.

(4.3)

In the left panel of Fig. 4, the HWENO5 seems to converge to the entropy solution slowly,
which might be related to the fact that the reconstruction of the solution at the rarefaction
waves comes from neighboring cells and is not a good approximation when the rarefaction
wave is surrounded by two shocks at its early stage of development. As shown in Fig. 4, the
numerical solutions of two modified schemes successfully converge to the correct entropy
solution.

Example 4 The nonconvex conservation law (2.7) with the nonconvex flux f (q) given by
(4.2) with the initial condition

q0(x) =
{
3, for − 1 � x < 0

1, for 0 � x � 1
(4.4)

and a periodic boundary condition. This is a very challenging test case: with periodic bound-
ary conditions, the compound waves strongly interact with each other. There is no analytic
formula of the exact solution for this problem. The reference solution is computed by the
Godunov scheme with 400,000 uniform cells. It is observed from Fig. 5 that, numerical
solutions of the HWENO5 scheme without modification deviate away from the reference
solution with mesh refinement. For this example, due to strong interaction of compound
waves, the monotonicity preserving limiter (MPHWENO5) [16] is applied to control oscil-
lations. As shown in Fig. 6, numerical solutions of the modified HWENO5 scheme converge
to the correct entropy solution. The comparison of WENO5/MPHWENO5 with different
modifications is shown in Fig. 7. The numerical solution of HWENO5 with the first order
modification is observed to converge to the correct entropy solution slightly faster, compared
to that of WENO5 with the first order modification. Comparable performance of HWENO5
and WENO5 with the second order modification are observed. We observe better perfor-
mance of HWENO5 or WENO5 with the second order modification when compared with
schemes with a first order modification.

123



78 J Sci Comput (2018) 75:65–82

Fig. 5 Solid lines the reference solution of (4.4) at the time t = 2; HWENO5 without modification with
N = 200 uniform cells (squares), with N = 400 uniform cells (deltas) and with N = 800 uniform cells
(gradients). CFL = 0.01

Fig. 6 Solid lines the reference solution of (4.4) at the time t = 2; MPHWENO5 with the first order
modification with N = 400 uniform cells (squares) and with N = 800 uniform cells (filled squares); WENO5
with the first order modification with N = 400 uniform cells (deltas) and with N = 800 uniform cells (filled
deltas). CFL = 0.01

4.2 2D Scalar Problems

Example 5 We solve the following nonconvex conservation law in 2D :

qt +
(
q3

3

)
x

+
(
q3

3

)
y

= 0,
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Fig. 7 Solid lines the reference solution of (4.4) at the time t = 2; pluses MPHWENO5 with the first order
modification; deltas WENO5 with the first order modification; circles MPHWENO5 with the second order
modification; squaresWENO5 with the second order modification; The zoom are given in the right; N = 400
uniform cells are used; CFL = 0.01

Table 2 qt +
(
q3

3

)
x

+
(
q3

3

)
y

= 0 with initial condition q(x, y, 0) = sin(π(x + y)/2) and periodic

boundary conditions

N HWENO4 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

Regular

40 3.56E−03 2.36 6.83E−03 0.72 5.26E−04 2.63 4.23E−03 1.08

80 4.25E−04 3.07 1.20E−03 2.51 7.73E−05 2.77 7.86E−04 2.43

160 2.72E−05 3.96 1.15E−04 3.39 5.35E−06 3.85 8.29E−05 3.25

320 1.16E−06 4.56 6.65E−06 4.11 2.31E−07 4.54 4.58E−06 4.18

640 5.68E−08 4.35 3.16E−07 4.39 9.68E−09 4.57 1.39E−07 5.05

Mod1

40 4.26E−03 2.51 6.84E−03 1.56 5.95E−04 3.04 4.28E−03 1.97

80 4.82E−04 3.15 1.20E−03 2.51 7.97E−05 2.90 7.86E−04 2.44

160 3.11E−05 3.95 1.15E−04 3.39 5.42E−06 3.88 8.29E−05 3.25

320 1.38E−06 4.50 6.65E−06 4.11 2.32E−07 4.54 4.58E−06 4.18

640 6.99E−08 4.30 3.16E−07 4.39 9.73E−09 4.58 1.39E−07 5.05

The L1 and L∞ errors and the corresponding orders of accuracy for the regular HWENO4 and WENO5, the
corresponding modified schemes at the time t = 1

with the initial condition q(x, y, 0) = sin(π(x + y)/2) and the periodic boundary condition
in both directions. The computational domain for this problem is [−2, 2] × [−2, 2]. When
t = 0.2 the solution is still smooth.

Table 2 gives the L1 errors and the L∞ errors and the corresponding orders of the accuracy
of the regular and modified FV HWENO scheme and FV WENO scheme. �t = CFL

α
�x + β

�y

where CFL = 0.4, α = max{ f ′(q)}, β = max{g′(q)}. Expected orders of convergence are
observed.

123



80 J Sci Comput (2018) 75:65–82

Fig. 8 KPP problem at time t = 1. 30 equally spaced solution contours from 0.785 to 11.0.Fist row first-order
approximation with 400 × 400 cells; first-order approximation with 1000 × 1000 cells. Second row regular
HWENO4 with 400 × 400 cells; modified HWENO4 with 400 × 400 cells. Third row regular WENO with
400 × 400 cells; modified WENO with 400 × 400 cells
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Example 6 We solve the KPP rotating wave problem,

ut + (sin(u))x + (cos(u))y = 0

with the initial condition

u(x, y, 0) =
{

14
4 π, if

√
x2 + y2 ≤ 1,

π
4 , otherwise.

This test was originally proposed in Kurganov et al. [5]. It is challenging to many high-order
numerical schemes because the solution has a two-dimensional composite wave structure.

In Fig. 8, we show the contours of the solution at t = 1. In the left panel, it is observed
that neither HWENO4 or WENO5 schemes can capture composite wave structures. The
composite wave structures are well captured by the HWENO4 or WENO5 with the first
order modification as shown on the right panel.

5 Concluding Remarks

We proposed modifications to FV HWENO schemes for nonconvex conservation laws based
on the idea of [11], emphasizing convergence to the entropy solution. The robustness of
modified FV HWENO schemes is showed by several representative examples including 2D
problems. We also compare the performance between the modified FVHWENO andWENO
schemes.
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