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Abstract. In [SIAM J. Sci. Comput., 26 (2005), pp. 907-929], we initiated the study of using
WENO (weighted essentially nonoscillatory) methodology as limiters for the RKDG (Runge-Kutta
discontinuous Galerkin) methods. The idea is to first identify “troubled cells,” namely, those cells
where limiting might be needed, then to abandon all moments in those cells except the cell averages
and reconstruct those moments from the information of neighboring cells using a WENO methodol-
ogy. This technique works quite well in our one- and two-dimensional test problems [SIAM J. Sci.
Comput., 26 (2005), pp. 907-929] and in the follow-up work where more compact Hermite WENO
methodology is used in the troubled cells. In these works we used the classical minmod-type TVB
(total variation bounded) limiters to identify the troubled cells; that is, whenever the minmod limiter
attempts to change the slope, the cell is declared to be a troubled cell. This troubled-cell indicator
has a TVB parameter M to tune and may identify more cells than necessary as troubled cells when
M is not chosen adequately, making the method costlier than necessary. In this paper we system-
atically investigate and compare a few different limiter strategies as troubled-cell indicators with an
objective of obtaining the most efficient and reliable troubled-cell indicators to save computational
cost.
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1. Introduction. In [13], we initiated the study of using weighted essentially
nonoscillatory (WENQO) methodology as limiters for the Runge-Kutta discontinuous
Galerkin (RKDG) methods. The idea is to first identify “troubled cells,” namely,
those cells where limiting might be needed, then to abandon all moments in those
cells except the cell averages and reconstruct those moments from the information of
neighboring cells using a WENO methodology. This technique works quite well in our
one- and two-dimensional test problems [13] and in the follow-up work [14] and [15],
where more compact Hermite WENO methodology was used in the troubled cells.
In these earlier works we adopted the classical minmod-type total variation bounded
(TVB) limiters as in [5, 3, 7] to identify the troubled cells; that is, whenever the
minmod limiter attempts to change the slope, the cell is declared to be a troubled
cell. This troubled-cell indicator has a TVB parameter M to tune. When M is taken
too small, more cells than necessary may be identified as troubled cells. Even though
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the WENO reconstruction procedure used in these cells will not degrade the order of
accuracy of the original RKDG scheme, the extra work done for these WENO recon-
structions in such wrongly identified troubled cells increases the cost of the algorithm.
On the other hand, when M is taken too large, some of the real troubled cells may
not be identified, resulting in oscillations or even instability for the method. In this
paper we systematically investigate and compare a few different limiter strategies as
troubled-cell indicators with an objective of trying to obtain the most efficient and
reliable troubled-cell indicators to save the computational cost.

The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed
and Hill [16] in the framework of neutron transport (steady-state linear hyperbolic
equations). A major development of the DG method was carried out by Cockburn
et al. in a series of papers [6, 5, 4, 3, 7], in which they established a framework to
easily solve nonlinear time-dependent hyperbolic conservation laws,

(1.1) {uﬁv'f(u) <0

u(z,0) = uo(x),

using explicit, nonlinearly stable high-order Runge—Kutta time discretizations [20] and
DG discretization in space with exact or approximate Riemann solvers as interface
fluxes and TVB limiter [18] to achieve nonoscillatory properties for strong shocks.
These schemes are termed RKDG methods.

An important component of RKDG methods for solving conservation laws (1.1)
with strong shocks in the solutions is a nonlinear limiter, which is applied to detect
discontinuities and control spurious oscillations near such discontinuities. Many such
limiters have been used in the literature on RKDG methods. For example, we mention
the minmod-type TVB limiter [6, 5, 4, 3, 7], which is a slope limiter using a technique
borrowed from the finite volume methodology; the moment-based limiter [1] and an
improved moment limiter [2], which are specifically designed for DG methods and
work on the moments of the numerical solution. These limiters tend to degrade
accuracy when mistakenly used in smooth regions of the solution. More recently,
a strategy was designed in [12], based on a strong superconvergence at the outflow
boundary of each element in smooth regions for the discontinuous Galerkin method, to
detect discontinuities and to lower the order of accuracy in the approximation there to
avoid spurious oscillations near such discontinuities when solving hyperbolic systems
of conservation laws. There are also many limiters developed in the finite volume and
finite difference literature, such as the various flux limiters [23], the monotonicity-
preserving (MP) limiters [22], modifications of MP limiters [17], and a discontinuity
detecting method [9] used to sharpen contact discontinuities in ENO schemes.

In [13], we initiated a study of using WENO methodology as limiters for RKDG
methods. We have adopted the following framework.

Step 1. First we identify the “troubled cells,” namely, those cells which might
need the limiting procedure.

Step 2. Then we replace the solution polynomials in those troubled cells by
reconstructed polynomials using WENO methodology which maintain the original
cell averages (conservation), have the same orders of accuracy as before, but are less
oscillatory.

This technique works quite well in our one- and two-dimensional test problems in
[13] and in the follow-up work [14] and [15], where a more compact Hermite WENO
methodology was used in the troubled cells. The emphasis of all these works is on
Step 2, where different WENO reconstruction strategies are considered. Step 1 is
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dealt with by the classical minmod-type TVB limiters as in [5, 3, 7] to identify the
troubled cells. It is realized that the TVB parameter M must be chosen carefully
in order to reach a nonoscillatory result with the minimal number of troubled cells.
However, Step 1 is not investigated in detail in [13, 14, 15].

We do want to point out a fact, which was also highlighted in [13, 14, 15], that since
the WENO reconstruction procedure in Step 2 maintains the high-order accuracy of
the original RKDG scheme, it is less crucial for Step 1 to identify exactly the troubled
cells. If more troubled cells are identified than necessary, the order of accuracy will
not degrade, although the computational cost will increase.

In this paper we concentrate on Step 1 in the procedure above, and investigate
systematically a few discontinuity detecting methods as troubled-cell indicators. We
also test a new discontinuity detecting method based on the subcell resolution idea
of Harten [9]. For Step 2 in the procedure above, we simply use the regular WENO
reconstruction procedure developed in [13]. We review and describe the details of a few
discontinuity detecting methods in section 2, and present extensive numerical results
in section 3 to compare their performance as troubled-cell indicators. Concluding
remarks are given in section 4.

2. Review and implementation of discontinuity detecting methods. In
this section we review a few discontinuity detecting methods to identify troubled cells.
We also develop a new discontinuity detecting method based on the subcell resolution
method of Harten [9].

We start with the description in the one-dimensional case and use the notation
in [5]; however, we emphasize that the procedure described below does not depend on
the specific basis chosen for the polynomials and works also in multidimensions. We
would like to solve the one-dimensional scalar conservation law:

Ut + f(u)z = Oa
(2.1) {u(:r,O) = ug(x).

The computational domain is divided into N cells with boundary points 0 = r1 <
z3 < -+ <wyy1 = L. The points z; are the centers of the cells I; = [z;_1, 2, 1],
and we denote the cell sizes by Az; = z; TR A and the maximum cell size
by h = max; Aml The solution as well as the test function space are given by
. € PY(I,)}, where P*(I;) is the space of polynomlals of degree <k
on the cell I " We adopt a local orthogonal basis over I; {vl )(m), 1=0,1,...,k},
namely, the scaled Legendre polynomials:

2
@ () — 1 By _ T Ti @y (T=xi) _1
UO (.’E) ) Ul (.’I:) sz/2? UQ (l‘) (A.’L‘Z/2> 37 e

Then the numerical solution u”(z,t) in the space V¥ can be written as

k

(2.2) ul(x,t) = Zugl)(t)vl(i) (x) for z € I,

=0

and the degrees of freedom uz(-l) (t) are the moments defined by

1
u§”<t>=*/ "o, oy (@) de,  1=0,1,... .k,
ap Jr

k3
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where q f I, (’) 2d:z: are the normalization constants since the basis is not
orthonormal. In order to determine the approximate solution, we evolve the degrees

of freedom ugl) :

d l ) rro— %
23)  Zul+— ( / Fuh(x,1) fvf><w>dx+f(ui+1/2,uf+1/2>v§)<xi+l/z>

_f< i—1/20 Wiz 1/2) ()(xl 1/2)> =0, [=0,1,....F,

where ui_l /2= =yt (J:z 1/20 t) are the left and right limits of the discontinuous solution
u” at the cell interface x; /2, and f (u™,u™) is a monotone flux (nondecreasing in the
first argument and nonincreasing in the second argument) for the scalar case and an
exact or approximate Riemann solver for the system case. The semidiscrete scheme
(2.3) is discretized in time by a nonlinearly stable Runge-Kutta time discretization,
e.g., the third-order version [20]. The integral term in (2.3) can be computed either
exactly or by a suitable numerical quadrature accurate to at least O(h¥+1+2).

We will now review a few discontinuity detecting methods to identify troubled
cells. Numerical examples to compare them will be given in the next section.

1. The minmod-based TVB limiter [5]. Denote

0

“;+1/2 =u, (0) =

~ + _ _ .
+ U, Uiy =Y Us -

From (2.2) we can see that

=l )= )

These are modified either by the standard minmod limiter [8]

~ (mod)

az(.m"d) = m(ﬂi,A+u§0),A,u§0)), (ul,AJru(O) A_ u(o)),

where the minmod function m is given by

(2.4)
m(ay,az, ..., an)
(s -minj<j<p |a;] if sign(ay) = sign(ag) = --- = sign(a,) = s,
B {0 otherwise,

or by the TVB-modified minmod function [18]

~ al if a1 S Mh2,

(2.5) m{a, az, -, an) = {m(al,ag, ) otLerlwise,

where M > 0 is a constant. The choice of M depends on the solution of
the problem. For scalar problems it is possible to estimate M by the initial
condition as in [5] (M is proportional to the second derivative of the initial
condition at smooth extrema); however, it is more difficult to estimate M
for the system case. If M is chosen too small, more cells than necessary
will be identified as troubled cells, thereby increasing the computational cost;
however, if M is chosen too large, spurious oscillations may appear.
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2. Moment limiter of Biswas, Devine, and Flaherty [1]. We will denote this
limiter as the BDF limiter in this paper. The moment-based limiter in [1] is
given by

(2.6) UEZ)’mOd = %%1 m ((21 — l)ugl), ugrll) - uz(-l_l),ul(l_l) El 11)> ,
where m is again the minmod function (2.4). This limiter is applied adap-
tively. First, the highest-order moment u(¥) is limited. Then the limiter is
applied to successively lower-order moments when the next higher-order mo-
ment on the interval has been changed by the limiting. For our purpose, when
the BDF limiter (2.6) is enacted (returns other than the first argument) for
the highest-order moment, the cell is declared as a troubled cell and marked
for further reconstruction.

3. A modification of the moment limiter by Burbeau, Sagaut, and Bruneau [2].
We will denote this modified moment limiter as the BSB limiter in this paper.
For our purpose as a troubled-cell indicator, if both (2.6) and

()ymod 1 -1 1-1)—
(2.7) ug) 21_1m((2l 1)u£),u(_|r1/);r uE ), 5 ) ug_l/g )

are enacted for the highest-order moment u(¥), where

wiy = ulat - @ 1>u5521, iy = uE:f) + (2= Du,,
that is, if both ugk)’mOd #* u ) and u ):meod # u , then the cell is identified
as a troubled cell, marked for further reconstructlon.

4. The monotonicity-preserving (MP) limiter [22]. In [22], Suresh and Huynh
designed a limiter to preserve accuracy near smooth extrema, which works
well with Runge—Kutta time stepping for a class of high-order MP schemes.
The interface values in these schemes are obtained by limiting a higher-order
polynomial reconstruction. The key idea in that work is to distinguish be-
tween a smooth local extremum and a genuine O(1) discontinuity.

For our purpose as a troubled-cell indicator, the MP limiter can be de-
scribed as follows. First a median function is defined as

(2.8) median(z,y, z) =z +m(y — z,2 — x),
where m is again the minmod function (2.4). If
(2.9) Uiy 7 median(u;+1/2, ulr-‘fll/z, wTs),
where

wh = max [min(ul”, uly, w2 Do), min(u® w5 ubG )|,

w79 = min [maX(u(o)a Uz('i)u U%?/z)a maX(UEO) ?fuw fﬁ/z)}
and

di = uly — 20l +ul®, A = m(dd; — digr,Adi
—d;, d;, di+17 di-1,dit2),
Uity = % (“z('o) + “51)1 - d%ﬁ)/;) L ui = ul® + a( - 58)1)7

1
Le 04z (ul(»o) - u1(0_)1> ﬂdi‘/[‘ﬁg,
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or if uj‘_l /2 satisfies a similar (symmetric) condition, then the cell is identified
as a troubled cell, marked for further reconstruction. We take the parameters
a = 2 and § = 4 in the numerical tests in the next section, as suggested in
[22].

. A modification of the MP limiter [17]. We will denote this modified MP lim-

iter as the MMP limiter in this paper. In [17], Rider and Margolin presented
a simple modification of the standard MP limiter in [22]. These modified MP
limiters relax the relatively stringent condition of preserving monotonicity,
while enforcing less-restrictive conditions. For our purpose as a troubled-cell
indicator, the MMP limiter can be described as follows:

(2.10) ¢ = min(1, AT /Apint),
where
At = ugo) — min (uz(-(i)l, ugo)’ ul(-0+)1>, Apinu = ugo) - min(uj‘_lm, ui_+1/2).

When ¢ # 1, the limiter enacts and the cell is identified as a troubled cell,
marked for further reconstruction.

. A shock-detection technique by Krivodonova et al. in [12]. We will denote the

troubled-cell indicator based on this technique as the KXRCF indicator in
this paper.

The strategy in [12] is based on a strong superconvergence at the outflow
boundary of each element in smooth regions for the DG method to detect dis-
continuities and to lower the order of accuracy in the approximation there to
avoid spurious oscillations near such discontinuities when solving hyperbolic
systems of conservation laws.

For our purpose as a troubled-cell indicator, the KXRCF indicator can
be described as follows. Partition the boundary of a cell I; into two portions
OI; and OI;", where the flow is into (77 < 0) and out of (¢-7 > 0) I,

respectively. The discontinuity detector in [12] is defined as

o

READ/2 D1 | [Juh|g, |

n—u"lr,)ds

(2.11) I, =

Here we choose h as the radius of the circumscribed circle in the element I,
I, is the neighbor of I; on the side of I, , and the norm is based on the
maximum norm taken at the integration quadrature points in two dimensions
and based on an element average in one dimension. If Z; > 1, the cell I; is
identified as a troubled cell, marked for further reconstruction.

. A troubled-cell indicator based on Harten’s subcell resolution idea [9]. We will

denote this indicator as the Harten indicator in this paper.

In [9], Harten introduced the notion of subcell resolution, which is based
on the observation that, unlike point values, cell averages of a discontinuous
piecewise-smooth function contain information about the exact location of a
discontinuity within the cell. For our purpose as a troubled-cell indicator, the
Harten indicator can be described as follows.

Let

1 z Tit1/2
Fl<z) = E {/ uh($7t)|1i71d$ +/ uh<x7t)|fi+1d$} - uz('O)7
z z

i—1/2
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where u"(x,t)|;,_, denotes the approximate solution u" defined in the cell
I;_1, extended into cell I;, and likewise u"(z,1)|r, 41 is the approximate solu-
tion u” defined in the cell I;11, extended into cell I;. When

Fi(zi—1/2) - Fi(zi41/2) <0,

I; is suspected of having a discontinuity of u"(x,t) in its interior. However,
this could also be a smooth extremum of the solution. To exclude the latter
case, Harten [9] has a criterion comparing a minmod function of the first
divided differences. We modify this criterion in the context of the RKDG
method as follows. We compare the kth moment uz(-k), which has the same
magnitude of the kth derivative of u”(x,t) modulo constant with that of the

neighbors. Thus, if

(2.12)
Fi(zio1y2) - Fi(wign2) <0 and  [ul®] > alul® ], [u?] > alul],

then the cell I; is identified as a troubled cell, marked for further reconstruc-
tion. We take the constant o = 1.5 in the numerical tests in the next section.
Once the troubled cells are identified with one of the previous seven methods, we
would reconstruct the polynomial solution in this cell, while retaining its cell average
using the WENO methodology [13]. We refer to [13] for the details of this reconstruc-
tion and will not repeat them here. For the case of hyperbolic systems, to identify the
troubled cells, we could use either a componentwise indicator or a characteristic one.
The former works on each component of the solution and identifies a troubled cell
when any component of the solution is flagging this cell as a troubled cell. The latter
works in the local characteristic direction to do this identification. The componentwise
indicator is less expensive to implement but may identify more cells as troubled cells,
thereby increasing the cost on the reconstruction in these cells. In this paper we will
only show results using the componentwise indicator. We have also implemented the
characteristic indicator and have obtained qualitatively similar comparison results.
For both the one-dimensional and two-dimensional Euler equations, we use only the
components of density and energy as indicator variables. We emphasize that the
componentwise strategy is used only to identity troubled cells. Once these cells are
identified, the WENO reconstructions in them are performed in local characteristic
directions. We again refer to [13] and [19] for more details of the reconstruction.

3. Numerical results. In this section we perform extensive numerical experi-
ments to compare the seven different troubled-cell indicators outlined in the previous
section when used on the RKDG methods with the WENO reconstruction limiters.
The comparison is concentrated on whether the results are oscillatory and on the
percentage of cells flagged as troubled cells. We only plot cell averages of the solution
in the graphs. The notation TVB-1, TVB-2, and TVB-3 refer to the minmod TVB
limiter with the TVB constants M = 0.01, M = 10, and M = 100, respectively.

Ezxample 3.1. We solve the following one-dimensional nonlinear system of Euler
equations:

(3.1) u+ f(u)e =0
with

u=(p,pv, E)',  f(u) = (pv,pv* +p,0(E +p))".
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TABLE 3.1
Average and mazimum percentages of cells flagged as troubled cells subject to different troubled-
cell indicators for the Sod problem, and the quality of the solutions.

Schemes p? P2 p3

N indicator Ave Max | Osc Ave Max | Osc Ave Max | Osc
TVB-1 10.12 23.00 11.41 23.00 13.70 | 23.50
TVB-2 0.94 2.50 1.25 3.00 1.53 3.00
BDF 6.24 12.00 15.89 | 24.50 13.15 | 21.50
200 BSB 5.91 11.00 13.56 | 19.00 14.08 | 21.00
MP 29.34 | 41.00 25.54 | 40.00 30.46 | 46.00
MMP 12.28 | 20.00 L 9.31 18.50 9.72 20.50
KXRCF 1.15 2.50 2.05 3.00 2.34 5.50
Harten 4.16 10.50 1.00 3.50 2.10 8.50
TVB-1 8.52 17.00 10.16 | 20.50 11.24 | 20.75
TVB-2 0.79 1.75 0.95 2.25 1.55 2.75
BDF 5.46 10.00 13.40 | 21.25 10.64 19.50
400 BSB 5.27 8.75 10.43 | 14.75 10.87 | 16.00
MP 18.62 | 28.75 17.70 | 28.75 21.65 | 36.25
MMP 9.17 15.75 L 7.48 14.50 8.38 16.50
KXRCF 0.89 1.50 1.31 2.25 1.51 3.00
Harten 3.31 7.50 0.51 2.00 1.54 5.25

Here p is the density, v is the velocity, E is the total energy, p is the pressure, related
to the total energy by F = % + %pvQ with v = 1.4.
We use the following Riemann initial condition for the Sod problem:

(p,v,p) = (1,0,1) for x <0, (p,v,p) = (0.125,0,0.1) for = > 0.

Average (over time steps) and maximum percentages of cells being flagged as
troubled cells and the quality of the approximation with respect to spurious oscil-
lations, for the different troubled-cell indicators, are summarized in Table 3.1 for
t = 2.0 using N = 200 and N = 400 uniform cells. The quality of the approximation
is marked in the column “Osc” with “Y” indicating the result is oscillatory (there
exist overshoots or undershoots with a size more than 2% of the range of the exact or
reference solution), “L” indicating the result is slightly oscillatory (there exist over-
shoots or undershoots with a size between 0.5% and 2% of the range of the exact
or reference solution), or blank indicating the result is nonoscillatory (there are no
overshoots or undershoots with a size more than 0.5% of the range of the exact or
reference solution). We observe from Table 3.1 that the winners for this example, in
terms of having smaller percentages of troubled cells, are the TVB-2, KXRCF, and
Harten indicators. We can also observe that the percentage of troubled cells decreases
with a mesh refinement in almost all the cases, which is a very desirable property for
troubled-cell indicators.

In Figures 3.1-3.3, we plot the computed densities p at ¢ = 2.0 against the exact
solution by the RKDG method with WENO limiters using the TVB-2, KXRCF,
and Harten troubled-cell indicators with N = 200 uniform cells for £ = 1, 2, and 3
(second-, third-, and fourth-order RKDG). We can observe that the results for all the
cases keep sharp discontinuities and are mostly oscillation-free.

Ezample 3.2. We repeat the numerical experiments of the previous example using
the following Riemann initial condition for the Lax problem:

(p,v,p) = (0.445,0.698, 3.528) for z <0, (p,v,p) = (0.5,0,0.571) for = > 0.
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Fic. 3.1. Sod problem, t = 2.0. RKDG with WENO limiters using different troubled-cell
indicators: TVB-2 (left), KXRCF (middle), and Harten (right); k=1, 200 cells. Density: solid
line, the exact solution; squares, numerical solution.

Fic. 3.2. Sod problem, t = 2.0. RKDG with WENO limiters using different troubled-cell
indicators: TVB-2 (left), KXRCF (middle), and Harten (right); k=2, 200 cells. Density: solid
line, the exact solution; squares, numerical solution.

Fic. 3.3. Sod problem, t = 2.0. RKDG with WENO limiters using different troubled-cell
indicators: TVB-2 (left), KXRCF (middle), and Harten (right); k=3, 200 cells. Density: solid
line, the exact solution; squares, numerical solution.

This is a more demanding test case in terms of controlling spurious oscillations. Re-
sults similar to those in the previous example, at t = 1.3, are given in Table 3.2 and
in Figures 3.4-3.6. We can observe a similar pattern as in the previous example, ex-
cept that more cases involving the TVB-2, MMP, KXRCF, and Harten troubled-cell
indicators are marked as “slightly oscillatory” or even “oscillatory.”
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TABLE 3.2
Average and mazimum percentages of cells flagged as troubled cells subject to different troubled-
cell indicators for the Lax problem, and the quality of the solutions.

Schemes P P2 p3
N indicator Ave Max | Osc Ave Max | Osc Ave Max Osc
TVB-1 10.68 | 22.00 12.70 | 24.00 16.31 | 29.00
TVB-2 1.87 4.50 2.56 5.50 3.87 5.50 L
BDF 8.75 17.00 21.52 | 39.00 19.53 | 33.00
200 BSB 8.22 17.00 20.73 | 36.00 21.62 | 33.00
MP 28.61 36.50 27.95 | 41.00 32.54 | 41.50
MMP 13.24 | 22.00 Y 11.05 | 22.50 L 11.97 | 21.50 L
KXRCF 1.33 3.00 L 2.10 3.50 2.46 4.50
Harten 3.85 9.00 L 1.00 5.00 L 2.07 6.50 L
TVB-1 8.55 17.50 11.02 | 21.75 13.66 | 26.00
TVB-2 1.37 2.75 1.82 3.50 3.29 4.50
BDF 7.86 15.75 19.29 | 36.75 17.09 | 34.00
400 BSB 6.57 12.50 18.96 | 35.50 16.23 | 24.75
MP 16.94 | 25.50 17.71 28.25 18.94 | 26.00
MMP 9.87 19.00 Y 9.06 18.25 L 9.23 17.00 L
KXRCF 0.98 1.75 L 1.36 2.75 1.70 3.25
Harten 2.51 6.00 0.59 2.75 1.47 6.00

Fic. 3.4. Lax problem, t = 1.3. RKDG with WENO limiters using different troubled-cell
indicators: TVB-2 (left), KXRCF (middle), and Harten (right); k=1, 200 cells. Density: solid
line, the exact solution; squares, numerical solution.

02 L ! L | s 02 L ! L | s 02 L ! L | s

Fic. 3.5. Lax problem, t = 1.3. RKDG with WENO limiters using different troubled-cell
indicators: TVB-2 (left), KXRCF (middle), and Harten (right); k=2, 200 cells. Density: solid
line, the exact solution; squares, numerical solution.



TROUBLED-CELL INDICATORS FOR RKDG METHODS 1005

Fic. 3.6. Lax problem, t = 1.3. RKDG with WENO limiters using different troubled-cell
indicators: TVB-2 (left), KXRCF (middle), and Harten (right); k=3, 200 cells. Density: solid
line, the exact solution; squares, numerical solution.

TABLE 3.3
Average and mazimum percentages of cells flagged as troubled cells subject to different troubled-
cell indicators for the shock density wave interaction problem, and the quality of the solutions.

Schemes pt P2 p3
N indicator Ave Max | Osc Ave Max | Osc Ave Max | Osc
TVB-1 14.25 | 22.50 17.39 | 25.50 18.52 | 28.00
TVB-3 2.15 5.50 4.20 10.00 5.00 11.50
BDF 12.91 | 22.50 34.13 | 53.50 36.62 | 55.00
200 BSB 10.36 | 15.50 29.43 | 47.00 37.04 | 61.50
MP 25.09 | 35.00 22.29 | 35.00 27.79 | 39.50
MMP 16.82 | 22.00 L 14.33 | 21.00 14.17 | 19.00 L
KXRCF 2.20 3.50 2.50 4.50 3.26 6.50
Harten 3.47 8.50 1.50 6.00 3.39 11.00
TVB-1 9.41 16.50 10.34 | 15.00 10.61 15.25
TVB-3 2.44 6.25 3.61 9.00 3.81 8.50
BDF 8.81 15.75 22.31 | 37.75 19.15 | 42.00
400 BSB 7.71 11.50 18.62 | 36.00 21.66 | 45.75
MP 14.68 | 20.00 13.70 | 17.50 17.36 | 21.50
MMP 9.98 15.00 L 7.53 11.50 7.28 10.25 L
KXRCF 1.31 2.25 1.51 3.25 2.31 5.00
Harten 1.44 3.75 0.72 3.25 2.37 8.75

Example 3.3. A higher-order scheme would show its advantage when the solu-
tion contains both shocks and complex smooth regions. A typical example for this is
the problem of shock interaction with entropy waves [21]. We solve the Euler equa-
tions (3.1) with a moving Mach = 3 shock interacting with sine waves in density, i.e.,
initially

(p,v,p) = (3.857143, 2.629369, 10.333333) for z < —4,
(p,v,p)=(1+esin(5bz),0,1) for x > —4.

Here we take ¢ = 0.2. The computed density p is plotted at ¢ = 1.8 against the
reference “exact” solution, computed using a fifth-order WENO scheme [11] using
2000 grid points.

Results similar to the previous two examples, at t = 1.8, are given in Table 3.3
and in Figures 3.7-3.9. We can observe a similar pattern as in the previous examples;
namely, the winners for this example, in terms of having smaller percentages of trou-
bled cells, are the TVB-3, KXRCF, and Harten indicators. Notice that some cases
with the MMP troubled-cell indicator are marked as “slightly oscillatory.” Because
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FiG. 3.7. The shock density wave interaction problem, t = 1.8. RKDG with WENO limiters us-
ing different troubled-cell indicators: TVB-3 (left), KXRCF (middle), and Harten (right); k=1, 200
cells. Density: solid line, the reference “exact” solution; squares, numerical solution.
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Fic. 3.8. The shock density wave interaction problem, t = 1.8. RKDG with WENO limiters us-
ing different troubled-cell indicators: TVB-3 (left), KXRCF (middle), and Harten (right); k=2, 200
cells. Density: solid line, the reference “exact” solution; squares, numerical solution.

Density
Density
Density

F1a. 3.9. The shock density wave interaction problem, t = 1.8. RKDG with WENO limiters us-
ing different troubled-cell indicators: TVB-3 (left), KXRCF (middle), and Harten (right); k=3, 200
cells. Density: solid line, the reference “exact” solution; squares, numerical solution.

the TVB-3 and KXRCF troubled-cell indicators identify a smaller percentage of trou-
bled cells than the Harten indicator for this problem, the resolution of the detailed
structures in the solution behind the shock is better for the results using the TVB-3
and KXRCF indicators than that using the Harten indicator. This also indicates
that the original RKDG method does a better job than the WENO reconstruction in
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TABLE 3.4
Average and mazximum percentages of cells flagged as troubled cells subject to different troubled-
cell indicators for the blast wave problem, and the quality of the solutions.

Schemes P P2 p3
N indicator Ave Max | Osc Ave Max | Osc Ave Max | Osc
TVB-1 16.56 | 27.00 15.83 | 28.50 19.10 | 34.00
TVB-3 9.50 19.50 10.90 | 19.00 13.87 | 24.00
BDF 15.21 26.50 40.83 | 63.00 48.70 | 71.00
200 BSB 13.95 | 23.00 34.43 | 48.50 50.33 | 72.00
MP 22.90 | 38.50 21.89 | 41.50 24.35 | 41.50
MMP 12.98 | 22.50 11.46 | 22.00 12.76 | 23.50
KXRCF | 13.66 | 23.50 15.29 | 22.50 20.17 | 29.00
Harten 3.59 9.50 1.67 7.00 3.66 11.00
TVB-1 11.07 19.50 11.47 | 24.25 13.53 | 26.00
TVB-3 6.90 11.75 8.30 15.25 10.04 | 17.25
BDF 10.24 | 20.25 35.10 | 51.75 43.08 | 69.25
400 BSB 9.88 15.50 28.30 | 41.25 41.74 | 61.50
MP 14.22 25.25 15.41 26.75 17.87 | 31.75
MMP 8.69 14.00 9.08 16.50 L 8.68 18.25 L
KXRCF 8.45 14.00 10.16 13.75 14.24 | 20.50
Harten 2.11 5.50 0.97 3.50 3.03 8.75

keeping the resolution for such structures, so we should keep the number of troubled
cells, hence the reconstruction, to a minimum under the nonoscillatory constraint.
This will be beneficial both in saving computational costs for the reconstruction and
in obtaining better resolutions from the original RKDG method.

Ezxample 3.4. We consider the interaction of blast waves of the Euler equation
(3.1) with the initial condition:

(p,v,p)=(1,0,1000) for 0 < x < 0.1,
(p,v,p)=(1,0,0.01) for 0.1 <2 < 0.9,
(p,v,p)=(1,0,100) for 0.9 < x.

A reflecting boundary condition is applied to both ends; see [24, 10]. The computed
density p is plotted at ¢ = 0.038 against the reference “exact” solution, which is a
converged solution computed by the fifth-order finite difference WENO scheme [11]
with 2000 grid points.

Results similar to the previous examples, at ¢ = 0.038, are given in Table 3.4
and in Figures 3.10-3.12. We can observe a similar pattern as in the previous exam-
ples; namely, the winners for this example, in terms of having smaller percentages of
troubled cells, are still the TVB-3, KXRCF, and Harten indicators. For this problem,
only a few cases with the MMP troubled-cell indicators are marked as “slightly oscilla-
tory.” Unlike in the previous example, in this example the Harten indicator identifies
a smaller percentage of troubled cells than the TVB-3 and KXRCF indicators. As
a result, the resolution is better for the results using the Harten indicator than that
using the TVB-3 and KXRCF indicators, especially for the k& = 1 (second-order)
case.

Ezample 3.5. Double Mach reflection. This problem is originally from [24]. The
computational domain for this problem is [0,4] x [0,1]. The reflecting wall lies at the
bottom, starting from x = %. Initially a right-moving Mach 10 shock is positioned at
T = %,y = 0 and makes a 60° angle with the z-axis. For the bottom boundary, the
exact postshock condition is imposed for the part from z =0 to x = é and a reflective
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Fic. 3.10. The blast wave problem, t = 0.038. RKDG with WENO limiters using differ-
ent troubled-cell indicators: TVB-3 (left), KXRCF (middle), and Harten (right); k=1, 400 cells.
Density: solid line, the reference “exact” solution; squares, numerical solution.
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Fic. 3.11. The blast wave problem, t = 0.038. RKDG with WENO limiters using differ-
ent troubled-cell indicators: TVB-3 (left), KXRCF (middle), and Harten (right); k=2, 400 cells.
Density: solid line, the reference “exact” solution; squares, numerical solution.
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Fic. 3.12. The blast wave problem, t = 0.038. RKDG with WENO limiters using differ-
ent troubled-cell indicators: TVB-3 (left), KXRCF (middle), and Harten (right); k=3, 400 cells.
Density: solid line, the reference “exact” solution; squares, numerical solution.

boundary condition is used for the rest. At the top boundary, the flow values are set
to describe the exact motion of a Mach 10 shock. We compute the solution up to
t = 0.2. In Table 3.5 we document the percentage of cells declared to be troubled
cells for different orders of accuracy with the TVB-3, KXRCF, and Harten indicators
to identify troubled cells. We can see that in most cases only a small percentage
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TABLE 3.5
Average and mazximum percentages of cells flagged as troubled cells subject to different troubled-
cell indicators for the double Mach reflection problem.

1009

Schemes P! P2 P3
Nz x Ny | indicator | Average | Maximal | Average | Maximal | Average | Maximal
TVB-3 2.53 5.19 2.84 7.00 2.88 5.94
120 x 30 KXRCF 6.92 9.47 11.28 17.64 12.32 19.58
Harten 8.65 15.08 6.98 13.94 16.91 33.64
TVB-3 2.04 3.95 2.72 5.95 3.58 6.78
240 x 60 KXRCF 4.65 6.51 7.49 11.99 8.45 14.65
Harten 4.69 8.25 4.08 8.53 13.33 27.51
TVB-3 1.49 3.05 2.40 4.93 3.96 6.95
480 x 120 | KXRCF 2.99 4.31 4.93 7.86 7.65 12.69
Harten 2.60 4.87 2.42 5.25 11.19 23.45
TVB-3 1.06 2.11 2.74 4.76 5.44 8.82
960 x 240 | KXRCF 1.85 2.73 3.44 5.40 7.80 13.10
Harten 1.52 2.82 1.47 3.43 10.27 21.62

FiG. 3.13. Double Mach reflection problem, t = 0.2. RKDG with WENO limiters using different
troubled-cell indicators: TVB-3 (top), KXRCF (middle), and Harten (bottom); k=1, 960X 240 cells.
Thirty equally spaced density contours from 1.5 to 22.7.

of cells are declared as troubled cells. For this problem, the TVB-3 indicator seems
to be better (in terms of producing a smaller percentage of troubled cells) than the
KXRCF indicator, which in turn is better than the Harten indicator. Four uniform
meshes, with 120 x 30, 240 x 60, 480 x 120, and 960 x 240 uniform cells, and three
different orders of accuracy for the RKDG with WENO limiters, from k =1to k =3
(second- to fourth-order), are used in the numerical experiments. To save space, we
plot only the simulation results on the most refined mesh with 960 x 240 cells with
the TVB-3, KXRCF, and Harten indicators to identify troubled cells in Figures 3.13,
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Fic. 3.14. Double Mach reflection problem. Cells which are identified as troubled cells at
t =0.2. RKDG with WENO limiters using different troubled-cell indicators: TVB-3 (top), KXRCF
(middle), and Harten (bottom); k=1, 960 x 240 cells.

1

Fic. 3.15. Double Mach reflection problem, t = 0.2. RKDG with WENO limiters using different
troubled-cell indicators: TVB-3 (top), KXRCF (middle), and Harten (bottom); k=2, 960 x 240 cells.
Thirty equally spaced density contours from 1.5 to 22.7.
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Fia. 3.16. Double Mach reflection problem. Cells which are identified as troubled cells at
t =0.2. RKDG with WENO limiters using different troubled-cell indicators: TVB-3 (top), KXRCF
(middle), and Harten (bottom); k=2, 960 x 240 cells.
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F1G. 3.17. Double Mach reflection problem, t = 0.2. RKDG with WENO limiters using different
troubled-cell indicators: TVB-3 (top), KXRCF (middle), and Harten (bottom); k=3, 960 x 240 cells.
Thirty equally spaced density contours from 1.5 to 22.7.
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Fic. 3.18. Double Mach reflection problem. Cells which are identified as troubled cells at
t =0.2. RKDG with WENO limiters using different troubled-cell indicators: TVB-3 (top), KXRCF
(middle), and Harten (bottom); k=3, 960 x 240 cells.

3.15, and 3.17. All the figures are showing 30 equally spaced density contours from 1.5
to 22.7. The troubled cells identified by the TVB-3, KXRCF, and Harten indicators
at the last time step are shown in Figures 3.14, 3.16, and 3.18, respectively. It is
intriguing to see, in Figures 3.13-3.18, that raising the order of approximation from
second- to fourth-order (from k& = 1 to k = 3) leads to an increase in the number
of troubled cells. Also, the extent to which the three troubled-cell indicators give
the correct identification of the troubled cells affects not only the number but also
the distribution of the troubled cells within the computational domain, as k increases
from 1 to 3.

4. Concluding remarks. In this paper we have systematically studied and
compared a few different troubled-cell indicators for the RKDG methods using WENO
methodology as limiters. Extensive one- and two-dimensional simulations on the
hyperbolic systems of Euler equations indicate that the minmod-based TVB indicator
(when the TVB constant M is suitably chosen), the KXRCF indicator by Krivodonova
et al. [12], and an indicator based on Harten’s subcell resolution idea [9] are better
than other choices in all the test cases. Among these three there is no clear winner:
any one of them would work better in some examples but not in all examples. All
three of them should be suitable candidates for applications of the RKDG methods
using WENO reconstructions.
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