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In this paper, a new type of multi-resolution weighted essentially non-oscillatory (WENO) 
limiters for high-order Runge-Kutta discontinuous Galerkin (RKDG) methods is designed. 
This type of multi-resolution WENO limiters is an extension of the multi-resolution 
WENO finite volume and finite difference schemes developed in [43]. Such new limiters 
use information of the DG solution essentially only within the troubled cell itself, to 
build a sequence of hierarchical L2 projection polynomials from zeroth degree to the 
highest degree of the RKDG method. The second-order, third-order, fourth-order, and fifth-
order RKDG methods with these multi-resolution WENO limiters have been developed 
as examples, which could maintain the original order of accuracy in smooth regions and 
could simultaneously suppress spurious oscillations near strong discontinuities. The linear 
weights of such new multi-resolution WENO limiters can be any positive numbers on the 
condition that their sum equals one. This is the first time that a series of polynomials 
of different degrees within the troubled cell itself are applied in a WENO fashion to 
modify the DG solutions in the troubled cell. These new WENO limiters are very simple 
to construct, and can be easily implemented to arbitrary high-order accuracy and in 
higher dimensions. Such spatial reconstruction methodology improves the robustness in 
the numerical simulation on the same compact spatial stencil of the original DG methods. 
Benchmark examples are given to demonstrate the good performance of these RKDG 
methods with the associated multi-resolution WENO limiters.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we adapt the new type of multi-resolution weighted essentially non-oscillatory (WENO) finite volume 
methodology [43] as limiters for high-order Runge-Kutta discontinuous Galerkin (RKDG) finite element methods [6–10], for 
solving one-dimensional nonlinear hyperbolic conservation laws
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{
ut + f (u)x = 0,

u(x,0) = u0(x),
(1.1)

and two-dimensional nonlinear hyperbolic conservation laws{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y).
(1.2)

The main objective of the paper is to obtain a simple and robust high-order spatial limiting procedure to simultaneously 
keep uniform high-order accuracy in smooth regions and sustain sharp, non-oscillatory shock transitions in non-smooth 
regions for arbitrary high-order RKDG methods on structured meshes.

Let us first review briefly the history of DG methods. In 1973, Reed and Hill [31] proposed the first discontinuous 
Galerkin (DG) method in the framework of neutron transport. Then a major development of the DG method was carried out 
by Cockburn et al. in a series of papers [6–10], in which they established a framework to solve nonlinear time dependent 
hyperbolic conservation laws by using explicit, nonlinearly stable high-order Runge-Kutta time discretizations [35] and DG 
discretization in space with exact or approximate Riemann solvers as interface fluxes and total variation bounded (TVB) lim-
iter [33] to achieve essentially non-oscillatory property for strong discontinuities. From then on, such schemes are termed 
as RKDG methods. But it is not easy to solve (1.1) and (1.2) well, because solutions might contain strong discontinuities even 
if the initial conditions are smooth enough. Discontinuous Galerkin (DG) methods can capture weak discontinuities with-
out further modification. However, for problems with strong discontinuities, the numerical solution might have significant 
spurious oscillations near strong shocks or contact discontinuities, especially for high-order numerical methods. A common 
strategy to control these spurious oscillations is to apply a nonlinear limiter. One type of limiters is based on slope modifi-
cation, such as the minmod type limiters [6–8,10], the moment based limiter [1], and an improved moment limiter [3], etc. 
These limiters can control the spurious oscillations well, however they may degrade numerical accuracy when mistakenly 
applied in smooth regions. Another type of limiters is based on the weighted essentially non-oscillatory (WENO) methodol-
ogy [11,18,19,25,32], which can achieve high-order accuracy in smooth regions and keep essentially non-oscillatory property 
near strong discontinuities. The WENO limiters [26,28,29,42] and Hermite WENO limiters [27,30] belong to the second type 
of limiters. These limiters are designed in a finite volume WENO fashion, but they need a wider spatial stencil for obtaining 
high-order schemes. Therefore, it is difficult to implement them for multi-dimensional problems, especially on unstructured 
meshes, such as triangular meshes or tetrahedral meshes.

Recently, a new type of simple and compact multi-resolution finite difference/volume WENO schemes is designed in [43]
for solving hyperbolic conservation laws on structured meshes, in which only the information defined on a hierarchy of 
nested central spatial stencils is used and no equivalent multi-resolution representation [13–17] is introduced. These new 
WENO schemes use the same large stencils as that of the classical WENO schemes in [19,34], could obtain the optimal order 
of accuracy in smooth regions, and could gradually degrade to first order so as to suppress spurious oscillations near strong 
discontinuities. The linear weights of these multi-resolution WENO schemes can be any positive numbers on the condition 
that their sum is one. These new multi-resolution WENO schemes are simple to construct and can be easily implemented 
to arbitrary high-order accuracy and in higher dimensions. In this paper, we will adapt and apply such new multi-resolution 
WENO schemes as limiters for high-order RKDG methods. Two major advantages of these multi-resolution WENO limiters 
are the compactness of their spatial stencil, which essentially only contain the troubled cell itself with information from 
neighboring cells used only to determine the smoothness indicator of the zeroth degree polynomial in the hierarchy, and the 
simplicity in implementation, especially for unstructured meshes [44] (which will however not be discussed in this paper, 
we use structured meshes in this paper to demonstrate the main idea of our new limiter). In order to keep the advantages 
of the compact stencil and simplicity of linear weights, we make a small modification of the procedure in [43], using 
orthogonal basis and L2 projection to define the sequence of hierarchical polynomials of different degrees in the troubled 
cell. This modification facilitates the achievement of strict conservation and the maintanance of as much information of 
the original polynomial in the troubled cell as possible through the mechanism of a gradual degradation to lower degree 
polynomials in a L2 projection fashion with the spatial WENO procedure. Numerical experiments indicate the good behavior 
of the resulting scheme in its robustness and sharp shock transition.

This paper is organized as follows. In section 2, we give a brief review of the RKDG methods for one-dimensional and 
two-dimensional cases. In section 3, we give the details of the new two-dimensional multi-resolution WENO limiters for 
scalar and system cases, and omit the similar narration of one-dimensional multi-resolution WENO limiters for simplic-
ity. Then we demonstrate the good performance of these high-order RKDG methods with multi-resolution WENO limiters 
for one-dimensional and two-dimensional time dependent examples in section 4. Finally, concluding remarks are given in 
section 5.

2. A brief review of the RKDG method

In this section, we give a brief review of the RKDG methods for solving hyperbolic conservation laws. For the one-
dimensional case, given a partition of the computational domain consisting of cells I j = [x j− 1

2
, x j+ 1

2
], j = 1, · · · , N , we 

denote the cell center by x j = 1 (x 1 + x 1 ), and the cell size by �x j = x 1 − x 1 . The DG method gets its solution 
2 j− 2 j+ 2 j+ 2 j− 2
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as well as its test function from the space V k
h = {v(x) : v(x)|I j ∈ Pk(I j)}, where Pk(I j) denotes the set of polynomials of 

degree at most k defined on I j . We adopt a local orthonormal basis over I j , {v( j)
l (x), l = 0, 1, ..., k}:

v( j)
0 (x) = 1,

v( j)
1 (x) = √

12(
x−x j
�x j

),

v( j)
2 (x) = √

180
(
(

x−x j
�x j

)2 − 1
12

)
,

v( j)
3 (x) = √

2800
(
(

x−x j
�x j

)3 − 15
100 (

x−x j
�x j

)
)

,

v( j)
4 (x) = √

44100
(
(

x−x j
�x j

)4 − 3
14 (

x−x j
�x j

)2 + 3
560

)
,

......

(2.3)

The one-dimensional solution uh(x, t) ∈ V k
h can be written as:

uh(x, t) =
k∑

l=0

u(l)
j (t)v( j)

l (x), x ∈ I j, (2.4)

and the degrees of freedom u(l)
j (t) are the moments defined by

u(l)
j (t) = 1

�x j

∫
I j

uh(x, t)v( j)
l (x)dx, l = 0, ...,k. (2.5)

In order to obtain the approximation solution, we evolve the degrees of freedom u(l)
j (t):

d
dt u(l)

j (t) = 1
�x j

(∫
I j

f (uh(x, t)) d
dx v( j)

l (x)dx − f̂ (u−
j+ 1

2
, u+

j+ 1
2
)v( j)

l (x j+ 1
2
) + f̂ (u−

j− 1
2
, u+

j− 1
2
)v( j)

l (x j− 1
2
)

)
,

l = 0, ...,k,

(2.6)

where u±
j+ 1

2
= uh(x±

j+ 1
2
, t) are the left and right limits of the discontinuous solution uh(x, t) at the interface x j+ 1

2
, and 

f̂ (u−
j+ 1

2
, u+

j+ 1
2
) is a monotone flux for the scalar case and an approximate Riemann solver for the system case. For 

the two-dimensional case, given a partition of the computational domain with rectangular meshes consisting of the 
cells Ii j = Ii × J j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
], i = 1, · · · , Nx and j = 1, · · · , N y with the cell sizes xi+ 1

2
− xi− 1

2
= �xi , 

y j+ 1
2

− y j− 1
2

= �y j , and cell centers (xi, y j) = ( 1
2 (xi+ 1

2
+ xi− 1

2
), 12 (y j+ 1

2
+ y j− 1

2
)), the function space is defined by 

W k
h = {v(x, y) : v(x, y)|Ii, j ∈ Pk(Ii, j)} as the piecewise polynomial space of degree at most k defined on Ii, j . We also adopt 

a local orthonormal basis over Ii, j , {v(i, j)
l (x, y), l = 0, 1, ..., K ; K = (k+1)(k+2)

2 − 1}:

v(i, j)
0 (x, y) = 1,

v(i, j)
1 (x, y) = v(i)

1 (x),

v(i, j)
2 (x, y) = v( j)

1 (y),

v(i, j)
3 (x, y) = v(i)

2 (x),

v(i, j)
4 (x, y) = v(i)

1 (x)v( j)
1 (y),

v(i, j)
5 (x, y) = v( j)

2 (y),

v(i, j)
6 (x, y) = v(i)

3 (x),

v(i, j)
7 (x, y) = v(i)

2 (x)v( j)
1 (y), (2.7)

v(i, j)
8 (x, y) = v(i)

1 (x)v( j)
2 (y),

v(i, j)
9 (x, y) = v( j)

3 (y),

v(i, j)
10 (x, y) = v(i)

4 (x),

v(i, j)
11 (x, y) = v(i)

3 (x)v( j)
1 (y),

v(i, j)
(x, y) = v(i)

(x)v( j)
(y),
12 2 2
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v(i, j)
13 (x, y) = v(i)

1 (x)v( j)
3 (y),

v(i, j)
14 (x, y) = v( j)

4 (y),

......

The two-dimensional solution uh(x, y, t) ∈ W k
h can be written as:

uh(x, y, t) =
K∑

l=0

u(l)
i, j(t)v(i, j)

l (x, y), (x, y) ∈ Ii, j, (2.8)

and the degrees of freedom u(l)
i, j(t) are the moments defined by

u(l)
i, j(t) = 1

�xi�y j

∫
Ii, j

uh(x, y, t)v(i, j)
l (x, y)dxdy, l = 0, ..., K . (2.9)

In order to determine the approximation solution, we evolve the degrees of freedom u(l)
i, j(t):

d
dt u(l)

i, j(t) = 1
�xi�y j

(∫
Ii, j

(
f (uh(x, y, t)) ∂

∂x v(i, j)
l (x, y) + g(uh(x, y, t)) ∂

∂ y v(i, j)
l (x, y)

)
dxdy

− ∫
I j

(
f (uh(xi+ 1

2
, y, t))v(i, j)

l (xi+ 1
2
, y) − f (uh(xi− 1

2
, y, t))v(i, j)

l (xi− 1
2
, y)

)
dy

− ∫
Ii

(
g(uh(x, y j+ 1

2
, t))v(i, j)

l (x, y j+ 1
2
) − g(uh(x, y j− 1

2
, t))v(i, j)

l (x, y j− 1
2
)
)

dx
)

,

l = 0, ..., K .

(2.10)

In (2.10), the integrals are computed by suitable numerical quadratures. Notice that the flux functions f and g along the 
cell interfaces are replaced by monotone numerical fluxes (or approximate Riemann solvers in the system case) to ensure 
stability.

Then the semi-discrete schemes (2.6) and (2.10) can be discretized in time by a third-order TVD Runge-Kutta time 
discretization method [35]:⎧⎪⎨⎪⎩

u(1) = un + �tL(un),

u(2) = 3
4 un + 1

4 u(1) + 1
4 �tL(u(1)),

un+1 = 1
3 un + 2

3 u(2) + 2
3 �tL(u(2)),

(2.11)

to obtain a fully discrete scheme both in space and in time.
To explain how to apply a nonlinear limiter for the RKDG methods as shown in [39], we adopt a forward Euler time 

discretization of (2.6) and (2.10) as examples. For the one-dimensional case, starting from a solution un
h ∈ V k

h at time level n
(u0

h is taken as the L2 projection of the given initial condition into V k
h ), we limit it to obtain a new function un,new before 

advancing it to the next time level. We need to find un+1
h ∈ V k

h which satisfies∫
I j

un+1
h − un,new

h

�t
v dx −

∫
I j

f (un,new
h )vx dx + f̂ n,new

j+ 1
2

v(x−
j+ 1

2
) − f̂ n,new

j− 1
2

v(x+
j− 1

2
) = 0, (2.12)

for all test functions v(x) ∈ V k
h . For the two-dimensional case, starting from a solution un

h ∈ W k
h at time level n, we limit it 

to obtain a new function un,new before advancing it to the next time level. We need to find un+1
h ∈ W k

h which satisfies

∫
Ii, j

un+1
h −un,new

h
�t v dxdy − ∫

Ii, j

(
f (un,new

h )vx + g(un,new
h )v y

)
dxdy

+ ∫
I j

(
f̂ (un,new

h |x=x
i+ 1

2
)v(x−

i+ 1
2
, y) − f̂ (un,new

h |x=x
i− 1

2
)v(x+

i− 1
2
, y)

)
dy

+ ∫
Ii

(
ĝ(un,new

h |y=y
j+ 1

2
)v(x, y−

j+ 1
2
) − ĝ(un,new

h |y=y
j− 1

2
)v(x, y+

j− 1
2
)

)
dx = 0,

(2.13)

for all test functions v(x, y) ∈ W k
h . Since the one-dimensional limiting procedure of obtaining un,new

h |I j is similar to and 
simpler than the two-dimensional case, we will omit it for simplicity and focus on how to obtain the two-dimensional 
un,new |Ii, j in details. For simplicity, we omit the sup-index n in un,new |Ii, j , if it does not cause confusion in the following.
h h
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3. Multi-resolution WENO limiter in two dimensions

In this section, we describe the details of the new multi-resolution WENO procedure as a limiter for second-order, third-
order, fourth-order, and fifth-order RKDG methods in two-dimensional scalar and system cases and omit its one-dimensional 
case for simplicity.

3.1. Two-dimensional troubled cell indicator

An important component of the limiter is to detect the troubled cells, which are cells that may contain strong discon-
tinuities and in which the multi-resolution WENO limiter is applied. In this paper, we apply a new modified version of 
the classical KXRCF shock detection technique [20] to detect troubled cells. Other trouble cell detectors can of course also 
be used, but our emphasis in this paper is not to study the pros and cons of various trouble cell indicators. As shown in 
[20], we divide the boundary of the target cell Ii, j into two parts: ∂ I−i, j and ∂ I+i, j , where the flow is into and out of Ii, j , 

respectively. As shown in [12], Fu and Shu noted that the scaling of �x
k+1

2
j tends to mark a lot more troubled cells than 

necessary for high-order DG methods. They decreased the power of �x j to be min(k,2)+1
2 , which seems to be strong enough 

to single out discontinuities [12]. In the two-dimensional case, we define the cell Ii, j as a troubled cell when

| ∫
∂ I−i, j

(uh(x, y, t)|Ii, j − uh(x, y, t)|Il )ds|
hR

i, j|∂ I−i, j| · |||ûh(x, y, t)|∂ Ii, j |||
≥ Ck, (3.1)

where R = 1 for k = 1 and R = 1.5 for k > 1, hi, j is the radius of the circumscribed circle in cell Ii, j , and Ck is a constant, 
usually, we take Ck = 1 [20]. Here Il denotes the neighboring cell of Ii, j on the side of ∂ I−i, j . uh(x, y, t) is the numerical 
solution corresponding to the indicator variable(s) and |||ûh(x, y, t)|∂ Ii, j ||| is defined as the minimum value of |uh(x, y, t)|
along ∂ Ii, j . By using (3.1), we do not need to adopt different types of Ck to compute multi-dimensional test problems in 
[12] and can simply set Ck = 1 in all numerical computations, unless specified otherwise. This new modified KXRCF shock 
detection technique is simple and robust enough to catch strong discontinuities without identifying excessive troubled cells 
inside the computational field.

3.2. Two-dimensional multi-resolution WENO limiting procedure

In this subsection, we first give details of the multi-resolution WENO limiter for two-dimensional scalar case. The idea, 
similar to the one-dimensional case which is omitted, is to reconstruct a new polynomial on the troubled cell Ii, j which 
is a convex combination of polynomials of different degrees: the DG solution polynomial on this cell and a sequence of 
hierarchical “modified” solution polynomials based on the L2 projection methodology. The nonlinear weights in the convex 
combination coefficients follow the standard WENO procedure [43]. For simplicity, we also rewrite uh(x, y, t) to be uh(x, y) ∈
W k

h = {v(x, y) : v(x, y)|Ii, j ∈Pk(Ii, j)} in the following, if it does not cause confusion.
Step 1.1. Define a series of polynomials of different degrees on the troubled cell Ii, j . We construct polynomials 

q�(x, y), � = 0, ..., k, which satisfy∫
Ii, j

q�(x, y)v(i, j)
l (x, y)dxdy =

∫
Ii, j

uh(x, y)v(i, j)
l (x, y)dxdy, l = 0, ...,

(� + 1)(� + 2)

2
− 1. (3.2)

Remark 1. The construction of different polynomials q�(x, y), � = 0, ..., k is very simple, because of the application of the 
local orthonormal basis over Ii, j . Since the two-dimensional solution uh(x, y, t) ∈ W k

h is written in (2.8), we can directly 

obtain q�(x, y) = ∑ (�+1)(�+2)
2 −1

l=0 u(l)
i, j(t)v(i, j)

l (x, y), � = 0, ..., k, respectively.

Step 1.2. Obtain equivalent expressions for these constructed polynomials of different degrees. To keep consistent no-
tation, we will denote p0,1(x, y) = q0(x, y). For different high-order approximations, following similar ideas for classical 
CWENO schemes [4,22,23] and in [40,41], we obtain polynomials p�,�(x, y), � = 1, ..., k through

p�,�(x, y) = 1

γ�,�

q�(x, y) − γ�−1,�

γ�,�

p�−1,�(x, y), � = 1, ...,k, (3.3)

with γ�−1,� + γ�,� = 1 and γ�,� �= 0, together with polynomials p�,�+1(x, y), � = 1, ..., k − 1 through

p�,�+1(x, y) = ω�,� p�,�(x, y) + ω�−1,� p�−1,�(x, y), � = 1, ...,k − 1, (3.4)

with ω�−1,� + ω�,� = 1.
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Step 1.3. Compute the smoothness indicators β�,�2 , which measure how smooth the functions p�,�2 (x, y) for � = �2 − 1,

�2; �2 = 1, 2, 3, 4 are in the interval Ii, j . We use the same recipe for the smoothness indicators as in [19,34]:

β�,�2 =
κ∑

|α|=1

∫
Ii, j

(
�xi�y j

)|α|−1
(

∂ |α|

∂xα1∂ yα2
p�,�2(x, y)

)2

dx dy, � = �2 − 1, �2; �2 = 1,2,3,4, (3.5)

where κ = �, α = (α1, α2), and |α| = α1 + α2, respectively. The only exception is β0,1, which we magnify from zero to a 
value defined below. We first denote the linear polynomial qi, j−1(x, y) with the L2 projection methodology of uh(x, y) ∈
W k

h = {v(x, y) : v(x, y)|Ii, j−1 ∈Pk(Ii, j−1)} satisfying∫
Ii, j−1

qi, j−1(x, y)v(i, j−1)

l (x, y)dxdy =
∫

Ii, j−1

uh(x, y)v(i, j−1)

l (x, y)dxdy, l = 0,1,2, (3.6)

the linear polynomial qi, j+1(x, y) with the L2 projection methodology of uh(x, y) ∈ W k
h = {v(x, y) : v(x, y)|Ii, j+1 ∈Pk(Ii, j+1)}

satisfying∫
Ii, j+1

qi, j+1(x, y)v(i, j+1)

l (x, y)dxdy =
∫

Ii, j+1

uh(x, y)v(i, j+1)

l (x, y)dxdy, l = 0,1,2, (3.7)

the linear polynomial qi−1, j(x, y) with the L2 projection methodology of uh(x, y) ∈ W k
h = {v(x, y) : v(x, y)|Ii−1, j ∈Pk(Ii−1, j)}

satisfying∫
Ii−1, j

qi−1, j(x, y)v(i−1, j)
l (x, y)dxdy =

∫
Ii−1, j

uh(x, y)v(i−1, j)
l (x, y)dxdy, l = 0,1,2, (3.8)

and the linear polynomial qi+1, j(x, y) with the L2 projection methodology of uh(x, y) ∈ W k
h = {v(x, y) : v(x, y)|Ii+1, j ∈

Pk(Ii+1, j)} satisfying∫
Ii+1, j

qi+1, j(x, y)v(i+1, j)
l (x, y)dxdy =

∫
Ii+1, j

uh(x, y)v(i+1, j)
l (x, y)dxdy, l = 0,1,2. (3.9)

Remark 2. Since the two-dimensional solution uh(x, y, t) ∈ W k
h is written in (2.8), we can obtain qi, j−1(x, y) =∑2

l=0 u(l)
i, j−1(t)v(i, j−1)

l (x, y), qi, j+1(x, y) = ∑2
l=0 u(l)

i, j+1(t)v(i, j+1)

l (x, y), qi−1, j(x, y) = ∑2
l=0 u(l)

i−1, j(t)v(i−1, j)
l (x, y), and

qi, j+1(x, y) = ∑2
l=0 u(l)

i, j+1(t)v(i, j+1)

l (x, y), respectively.

Then the associated smoothness indicators are

ςi, j−1 =
∫

Ii, j

(
∂

∂x
qi, j−1(x, y)

)2

+
(

∂

∂ y
qi, j−1(x, y)

)2

dxdy, (3.10)

ςi, j+1 =
∫

Ii, j

(
∂

∂x
qi, j+1(x, y)

)2

+
(

∂

∂ y
qi, j+1(x, y)

)2

dxdy, (3.11)

ςi−1, j =
∫

Ii, j

(
∂

∂x
qi−1, j(x, y)

)2

+
(

∂

∂ y
qi−1, j(x, y)

)2

dxdy, (3.12)

and

ςi+1, j =
∫

Ii, j

(
∂

∂x
qi+1, j(x, y)

)2

+
(

∂

∂ y
qi+1, j(x, y)

)2

dxdy. (3.13)

After that, we define β0,1 as

β0,1 = min(ςi, j−1, ςi, j+1, ςi−1, j, ςi+1, j). (3.14)
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Step 1.4. Compute the nonlinear weights based on the linear weights and the smoothness indicators. We adopt the 
WENO-Z recipe as shown in [2,5], with τ�2 for �2 = 1, 2, 3, 4 defined as related to the absolute difference between the 
smoothness indicators:

τ�2 = (
β�2,�2 − β�2−1,�2

)2
, �2 = 1,2,3,4. (3.15)

The nonlinear weights are then given as

ω�1,�2 = ω̄�1,�2∑�2
�=1 ω̄�,�2

, ω̄�1,�2 = γ�1,�2

(
1 + τ�2

ε + β�1,�2

)
, �1 = �2 − 1, �2; �2 = 1,2,3,4. (3.16)

Here ε is taken as 10−10 in all simulations.
Step 1.5. The new final reconstruction polynomial unew

h |Ii, j = pnew(x, y) on the troubled cell Ii, j is given by

pnew(x, y) =
�2∑

�=�2−1

ω�,�2 p�,�2(x, y), �2 = 1,2,3,4, (3.17)

for the second-order, third-order, fourth-order, or fifth-order approximations, respectively.
Then we present the details of the multi-resolution WENO limiting procedure for two-dimensional systems. Consider 

(1.2) where u, f (u), and g(u) are vectors with m components. In order to achieve better non-oscillatory qualities, the 
multi-resolution WENO reconstruction limiter is used with a local characteristic field decomposition. In this paper, we only 
consider the following Euler system with m = 4:

∂

∂t

⎛⎜⎜⎜⎝
ρ

ρμ

ρν

E

⎞⎟⎟⎟⎠ + ∂

∂x

⎛⎜⎜⎜⎝
ρμ

ρμ2 + p

ρμν

μ(E + p)

⎞⎟⎟⎟⎠ + ∂

∂ y

⎛⎜⎜⎜⎝
ρν

ρμν

ρν2 + p

ν(E + p)

⎞⎟⎟⎟⎠ = 0, (3.18)

where ρ is the density, μ is the x-direction velocity, ν is the y-direction velocity, E is the total energy, p is the pressure, 
and γ = 1.4 in our test cases. We then give the left and right eigenvector matrices of Jacobian matrices f ′(u) and g′(u) as 
Lx

i j(u), Rx
i j(u), L y

i j(u), and R y
ij(u) in [45], respectively. The troubled cell Ii, j is detected by the new modified version of the 

classical KXRCF shock detection technique [20]. Denote p�, � = 0, ..., 4 to be the associated polynomial vectors of different 
degrees. Then we perform the characteristic-wise multi-resolution WENO limiting procedure as follows:

Step 2.1. Compute the new polynomial vectors px,new and p y,new by using the characteristic-wise multi-resolution WENO 
limiting procedure:

Step 2.1.1. Compute Lx
i, j = Lx

i, j(ūi, j), L y
i, j = L y

i, j(ūi, j), Rx
i, j = Rx

i, j(ūi, j), and R y
i, j = Rx

i, j(ūi, j) as specified in [45], where again 
ūi, j is the cell average of u on the troubled cell Ii, j .

Step 2.1.2. Project the polynomial vectors p�, � = 0, ..., 4, into the characteristic fields ˜̃px
� = Lx

i, j p� and ˜̃p y
� = L y

i, j p� , 
� = 0, ..., 4, each of them being a four-component vector, and each component of the vector is a k-th degree polynomial.

Step 2.1.3. Perform Step 1.1 to Step 1.5 of the multi-resolution WENO limiting procedure that has been specified for the 
scalar case, to obtain the new four-component vectors on the troubled cell Ii, j denoted by ˜̃px,new and ˜̃p y,new .

Step 2.1.4. Project ˜̃px,new and ˜̃p y,new into the physical space px,new = Rx
i, j

˜̃px,new and p y,new = R y
i, j

˜̃p y,new , respectively.

Step 2.2. The final new four-component vector on the troubled cell Ii, j is defined as unew
h |Ii, j = px,new + p y,new

2
.

4. Numerical results

In this section, we provide numerical results to demonstrate the performance of the new type of multi-resolution WENO 
limiters for second-order, third-order, fourth-order, and fifth-order RKDG methods described in previous sections. The sim-
ple Lax-Friedrichs flux is used in all numerical examples. The CFL number is 0.3 for the second-order (P 1), 0.18 for the 
third-order (P 2), 0.1 for the fourth-order (P 3), and 0.08 for the fifth-order (P 4) RKDG methods both in one and two dimen-
sions, except for the accuracy examples where the time step is smaller so as to guarantee that the spatial error dominates. 
We define all cells as troubled cells in Example 4.1 and Example 4.2, so as to test numerical accuracy when the new type 
of multi-resolution WENO reconstruction procedure is artificially enacted on all cells. Then we set the constant Ck in (3.1)
to be 1 in other examples, unless specified otherwise.

Example 4.1. We solve the following scalar Burgers’ equation in two dimensions:

μt +
(

μ2

2

)
+

(
μ2

2

)
= 0, (x, y) ∈ [0,4] × [0,4], (4.1)
x y
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Table 4.1
μt +

(
μ2

2

)
x
+

(
μ2

2

)
y

= 0. μ(x, y, 0) = 0.5 + sin(π(x + y)/2). Periodic boundary condition. T = 0.5/π . L1 and L∞ errors. RKDG with multi-resolution WENO 
limiter compared to RKDG without limiter.

Cells DG with multi-resolution WENO limiter DG without limiter

L1 error order L∞ error order L1 error order L∞ error order

10 × 10 3.77E−2 3.72E−1 3.19E−2 3.40E−1
20 × 20 8.86E−3 2.09 1.12E−1 1.72 7.88E−3 2.02 1.05E−1 1.68

P 1 40 × 40 1.97E−3 2.16 3.26E−2 1.79 1.98E−3 1.99 3.26E−2 1.69
80 × 80 4.92E−4 2.01 9.16E−3 1.83 4.92E−4 2.01 9.16E−3 1.83
160 × 160 1.23E−4 2.00 2.40E−3 1.93 1.23E−4 2.00 2.40E−3 1.93

10 × 10 7.37E−3 1.90E−1 5.20E−3 1.81E−1
20 × 20 1.19E−3 2.63 4.20E−2 2.18 8.29E−4 2.64 4.15E−2 2.12

P 2 40 × 40 1.50E−4 2.99 6.03E−3 2.80 1.12E−4 2.88 6.03E−3 2.78
80 × 80 1.64E−5 3.19 1.00E−3 2.59 1.44E−5 2.96 1.00E−3 2.59
160 × 160 1.83E−6 3.17 1.37E−4 2.87 1.82E−6 2.98 1.37E−4 2.86

10 × 10 2.92E−3 6.91E−2 1.91E−3 8.29E−2
20 × 20 8.41E−4 1.80 1.00E−2 2.78 1.29E−4 3.89 9.21E−3 3.17

P 3 40 × 40 7.58E−5 3.47 1.11E−3 3.17 9.11E−6 3.82 7.51E−4 3.61
80 × 80 5.76E−7 7.04 6.03E−5 4.21 5.76E−7 3.98 6.03E−5 3.64
160 × 160 3.65E−8 3.98 3.97E−6 3.92 3.65E−8 3.98 3.97E−6 3.92

10 × 10 3.68E−3 4.11E−2 3.77E−4 1.95E−2
20 × 20 8.35E−4 2.14 7.80E−3 2.40 2.50E−5 3.91 2.96E−3 2.72

P 4 40 × 40 1.00E−6 9.70 1.16E−4 6.07 9.71E−7 4.69 1.16E−4 4.67
80 × 80 3.46E−8 4.86 5.60E−6 4.37 3.46E−8 4.81 5.60E−6 4.37
160 × 160 1.20E−9 4.85 2.09E−7 4.74 1.20E−9 4.85 2.09E−7 4.74

with the initial condition μ(x, y, 0) = 0.5 + sin(π(x + y)/2) and periodic boundary conditions in both directions. The final 
time is t = 0.5/π , when the solution is still smooth. The errors and numerical orders of accuracy for the RKDG methods with 
the multi-resolution WENO limiters comparing with the original RKDG methods without limiters are shown in Table 4.1. We 
observe good results as in the one-dimensional case (not shown to save space), even when all cells in the computational 
field are artificially denoted as troubled cells.

Example 4.2. We solve two-dimensional Euler equations (3.18). The initial conditions are: ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), 
μ(x, y, 0) = 0.7, ν(x, y, 0) = 0.3, and p(x, y, 0) = 1. The computational domain is (x, y) ∈ [0, 2] × [0, 2]. Periodic boundary 
conditions are applied in both directions. The exact density solution is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t)). The final 
time is t = 2. The errors and numerical orders of accuracy of the density for the RKDG methods with the associated 
multi-resolution WENO limiters comparing with the original RKDG methods without limiters are shown in Table 4.2. The 
proposed multi-resolution WENO limiters for the RKDG methods again could keep the designed order of accuracy.

We now test the performance of the RKDG methods with the associated multi-resolution WENO limiters for problems 
containing shock waves or contact discontinuities. We define Ck = 1 from now on for the following examples.

Example 4.3. We consider Sod problem [37]:

(ρ,μ, p)T =
{

(1,0,2.5)T , x ∈ [−5,0),

(0.125,0,0.25)T , x ∈ [0,5]. (4.2)

The computed density ρ is plotted at t=2 against the exact solution in Fig. 4.1, a point-wise error between the exact 
solution and numerical solution of density is shown in Fig. 4.2, and the time history of the troubled cells is shown in 
Fig. 4.3, respectively. We observe that the new multi-resolution WENO limiters for the RKDG methods of different orders 
work well in comparison with the exact solution.

Example 4.4. We consider Lax problem [21]: (ρ, μ, p)T = (0.445, 0.698, 3.528)T for x ∈ [−5, 0); (ρ, μ, p)T = (0.5, 0, 0.571)T

for x ∈ [0, 5]. The computed density ρ is plotted at t=1.3 against the exact solution in Fig. 4.4, a point-wise error between 
the exact solution and numerical solution of density is shown in Fig. 4.5, and the time history of the troubled cells is 
shown in Fig. 4.6, respectively. We observe that the RKDG methods of different orders with multi-resolution WENO limiters 
perform well in comparison with the exact solution.

Example 4.5. A higher order scheme would show its advantage when the solution contains both shocks and complex 
smooth region structures. A typical example for this is the problem of shock interaction with entropy waves [36]. We 
solve the shock density wave interaction problem with a moving Mach = 3 shock interacting with sine waves in density: 
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Fig. 4.1. The Sod problem. RKDG methods with multi-resolution WENO limiters. Solid line: the exact solution; squares: numerical solution. From left to 
right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 200.

Table 4.2
2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), μ(x, y, 0) = 0.7, ν(x, y, 0) = 0.3, and p(x, y, 0) = 1. Periodic boundary condition. T = 2.0. 
L1 and L∞ errors. RKDG with multi-resolution WENO limiter compared to RKDG without limiter.

Cells DG with multi-resolution WENO limiter DG without limiter

L1 error order L∞ error order L1 error order L∞ error order

50 × 50 2.93E−4 1.06E−3 2.93E−4 1.06E−3
60 × 60 1.84E−4 2.55 7.84E−4 1.67 1.84E−4 2.55 7.85E−4 1.67

P 1 70 × 70 1.26E−4 2.47 5.99E−4 1.74 1.26E−4 2.47 6.00E−4 1.75
80 × 80 9.14E−5 2.41 4.73E−4 1.78 9.14E−5 2.41 4.73E−4 1.78
90 × 90 6.92E−5 2.36 3.82E−4 1.82 6.92E−5 2.36 3.82E−4 1.82
100 × 100 5.42E−5 2.32 3.15E−4 1.83 5.42E−5 2.32 3.15E−4 1.83

50 × 50 6.91E−6 6.75E−5 6.33E−6 6.75E−5
60 × 60 3.78E−6 3.30 3.97E−5 2.91 3.61E−6 3.07 3.97E−5 2.91

P 2 70 × 70 2.27E−6 3.32 2.52E−5 2.93 2.25E−6 3.07 2.52E−5 2.93
80 × 80 1.50E−6 3.09 1.70E−5 2.95 1.49E−6 3.06 1.70E−5 2.95
90 × 90 1.04E−6 3.09 1.20E−5 2.96 1.04E−6 3.06 1.20E−5 2.96
100 × 100 7.57E−7 3.06 8.81E−6 2.97 7.57E−7 3.05 8.81E−6 2.97

50 × 50 7.15E−8 1.02E−6 7.15E−8 1.02E−6
60 × 60 3.44E−8 4.02 4.92E−7 4.00 3.44E−8 4.02 4.92E−7 4.00

P 3 70 × 70 1.85E−8 4.01 2.65E−7 4.00 1.85E−8 4.01 2.65E−7 4.00
80 × 80 1.08E−8 4.01 1.55E−7 4.00 1.08E−8 4.01 1.55E−7 4.00
90 × 90 6.77E−9 4.00 9.71E−8 4.00 6.77E−9 4.00 9.71E−8 4.00
100 × 100 4.44E−9 4.00 6.37E−8 4.00 4.44E−9 4.00 6.37E−8 4.00

50 × 50 1.62E−9 2.80E−8 1.62E−9 2.80E−8
60 × 60 6.54E−10 4.99 1.13E−8 4.96 6.54E−10 4.99 1.13E−8 4.96

P 4 70 × 70 3.02E−10 5.00 5.29E−9 4.97 3.02E−10 5.00 5.29E−9 4.97
80 × 80 1.55E−10 5.00 2.72E−9 4.97 1.55E−10 5.00 2.72E−9 4.97
90 × 90 8.61E−11 5.00 1.51E−9 4.98 8.61E−11 5.00 1.51E−9 4.98
100 × 100 5.08E−11 5.00 8.96E−10 4.98 5.08E−11 5.00 8.96E−10 4.98

Fig. 4.2. The Sod problem. RKDG methods with multi-resolution WENO limiters. Error shows the absolute difference of a point-wise error between the exact 
solution and numerical solution. Different lines correspond to the density results of second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order 
(P 4). Cells: 200.



10 J. Zhu et al. / Journal of Computational Physics 404 (2020) 109105
Fig. 4.3. The Sod problem. RKDG methods with multi-resolution WENO limiters. Troubled cells. Squares denote cells which are identified as troubled cells 
subject to the multi-resolution WENO limiting. From left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 200.

Fig. 4.4. The Lax problem. RKDG methods with multi-resolution WENO limiters. Solid line: the exact solution; squares: numerical solution. From left to 
right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 200.

Fig. 4.5. The Lax problem. RKDG methods with multi-resolution WENO limiters. Error shows the absolute difference of a point-wise error between the exact 
solution and numerical solution. Different lines correspond to the density results of second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order 
(P 4). Cells: 200.

Fig. 4.6. The Lax problem. RKDG methods with multi-resolution WENO limiters. Troubled cells. Squares denote cells which are identified as troubled cells 
subject to the multi-resolution WENO limiting. From left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 200.
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Fig. 4.7. The shock density wave interaction problem. RKDG methods with multi-resolution WENO limiters. Solid line: the “exact” solution; squares: numer-
ical solution. From left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 200.

Fig. 4.8. The shock density wave interaction problem. RKDG methods with multi-resolution WENO limiters. Troubled cells. Squares denote cells which are 
identified as troubled cells subject to the multi-resolution WENO limiting. From left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and 
fifth-order (P 4). Cells: 200.

Fig. 4.9. The blast wave problem. RKDG methods with multi-resolution WENO limiters. Solid line: the “exact” solution; squares: numerical solution. From 
left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 400.

Fig. 4.10. The blast wave problem. RKDG methods with multi-resolution WENO limiters. Troubled cells. Squares denote cells which are identified as troubled 
cells subject to the multi-resolution WENO limiting. From left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 
400.
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Fig. 4.11. The double rarefaction wave problem. RKDG methods with multi-resolution WENO limiters. From top to bottom: density, velocity, and pressure. 
Solid line: the exact solution; squares: numerical solution. From left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). 
Cells: 400.

Fig. 4.12. The double rarefaction wave problem. RKDG methods with multi-resolution WENO limiters. Error shows the absolute difference of a point-wise 
error between the exact solution and numerical solution. From left to right: different lines correspond to the density, velocity, and pressure results of 
second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 400.

(ρ, μ, p)T = (3.857143, 2.629369, 10.333333)T for x ∈ [−5, −4); (ρ, μ, p)T = (1 + 0.2 sin(5x), 0, 1)T for x ∈ [−4, 5]. The 
computed density ρ is plotted at t = 1.8 against the reference “exact” solution which is a converged solution computed by 
the fifth-order finite difference WENO scheme [19] with 2000 grid points in Fig. 4.7 and the time history of the troubled 
cells is shown in Fig. 4.8, respectively. We observe that high-order RKDG methods with high-order multi-resolution WENO 
limiters work better than low-order RKDG methods with same order multi-resolution WENO limiters in comparison with 
the exact solution.
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Fig. 4.13. The double rarefaction wave problem. RKDG methods with multi-resolution WENO limiters. Troubled cells. Squares denote cells which are iden-
tified as troubled cells subject to the multi-resolution WENO limiting. From left to right: second-order (P 1), third-order (P 2), fourth-order (P 3), and 
fifth-order (P 4). Cells: 400.

Fig. 4.14. Double Mach refection problem. RKDG methods with multi-resolution WENO limiters. 30 equally spaced density contours from 1.5 to 21.5. From 
top to bottom: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 800 × 200.
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Fig. 4.15. Double Mach refection problem. RKDG methods with multi-resolution WENO limiters. Zoom-in pictures around the Mach stem. 30 equally spaced 
density contours from 1.5 to 21.5. From left to right and top to bottom: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 
800 × 200.

Example 4.6. We consider the blast wave problem with the initial conditions [38]: (ρ, μ, p)T = (1, 0, 1000)T for x ∈ [0, 0.1); 
(ρ, μ, p)T = (1, 0, 0.01)T for x ∈ [0.1, 0.9); (ρ, μ, p)T = (1, 0, 100)T for x ∈ [0.9, 1.0]. The computed density ρ is plotted at 
t = 0.038 against the reference “exact” solution which is a converged solution computed by the fifth-order finite difference 
WENO scheme [19] with 2000 grid points in Fig. 4.9 and the time history of the troubled cells is shown in Fig. 4.10, 
respectively. We observe that the RKDG methods of different orders with associated multi-resolution WENO limiters work 
well with increasingly high-order accuracy.

Example 4.7. The double rarefaction wave problem [24]. This test case has low pressure and low density regions and is diffi-
cult to simulate well. The initial conditions are defined as: (ρ, μ, p)T = (7, −1, 0.2)T for x ∈ [−1, 0); (ρ, μ, p)T = (7, 1, 0.2)T

for x ∈ [0, 1]. The final computational time is t = 0.6. The computational results including the density, velocity, and pressure 
pictures are shown in Fig. 4.11. The point-wise errors between the exact solutions and numerical solutions of density, ve-
locity, and pressure are shown in Fig. 4.12, respectively. The time history of the troubled cells is shown in Fig. 4.13. Once 
again, the second-order, third-order, fourth-order, and fifth-order RKDG methods with new multi-resolution WENO limiters 
produce good results.

Example 4.8. Double Mach reflection problem. This model problem is originally from [38]. We solve the two-dimensional 
Euler equations (3.18) in a computational domain of [0, 4] × [0, 1]. The reflection boundary condition is used at the wall, 
which for the rest of the bottom boundary (the part from x = 0 to x = 1

6 ), the exact post-shock condition is imposed. At the 
top boundary is the exact motion of the Mach 10 shock. The final time is t = 0.2. RKDG methods of different orders with 
multi-resolution WENO limiters, k = 1, k = 2, k = 3, and k = 4 (second-order, third-order, fourth-order, and fifth-order), 
are used in the numerical experiments. The simulation results are shown in Fig. 4.14. The “zoomed-in” pictures around the 
double Mach stem to show more details are given in Fig. 4.15. The troubled cells identified at the last time step are shown 
in Fig. 4.16. Clearly, the resolution improves with an increasing k on the same mesh level.

Example 4.9. A Mach 3 wind tunnel with a forward-facing step [38]. The setup of the problem is as follows. The wind tunnel 
is one length unit wide and three length units long. The step is 0.2 length units high and is located 0.6 length units from 
the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow. Reflective boundary conditions 
are applied along the wall of the tunnel and inflow/outflow boundary conditions are applied at the entrance/exit. The final 
time is t = 4. In Fig. 4.17, we show 30 equally spaced density contours from 0.32 to 6.15 computed by the second-order, 
third-order, fourth-order, and fifth-order RKDG methods with multi-resolution WENO limiters, respectively. The troubled 
cells identified at the last time step are shown in Fig. 4.18. We can clearly observe that the fifth-order RKDG method with 
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Fig. 4.16. Double Mach refection problem. RKDG methods with multi-resolution WENO limiters. Troubled cells. Squares denote cells which are identified as 
troubled cells subject to the multi-resolution WENO limiting. From top to bottom: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order 
(P 4). Cells: 800 × 200.

multi-resolution WENO limiter gives better resolution than the lower order schemes, especially for the resolution of the 
physical instability and roll-up of the contact line.

5. Concluding remarks

We have designed a new type of multi-resolution WENO limiters, based on the spatial reconstruction procedure designed 
in [43], for general Runge-Kutta discontinuous Galerkin (RKDG) methods (second- through fifth-order schemes have been 
worked out as examples) to solve one-dimensional and two-dimensional hyperbolic conservation laws on structured meshes. 
The general framework of such multi-resolution WENO limiters for high-order RKDG methods is to first use a new modified 
version of the KXRCF shock detection technique [20] to detect troubled cells subject to the multi-resolution WENO limiting 
procedure, then to construct a sequence of hierarchical L2 projection polynomial solutions of the DG methods completely 
restricted to the troubled cell itself in a WENO fashion. The main novelty of this paper is the new multi-resolution WENO re-



16 J. Zhu et al. / Journal of Computational Physics 404 (2020) 109105
Fig. 4.17. Forward step problem. RKDG methods with multi-resolution WENO limiters. 30 equally spaced density contours from 0.32 to 6.15. From top to 
bottom: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 300 × 100.

construction procedure, which essentially only uses the information defined within the troubled cell itself, with information 
from neighboring cells used only marginally (when introducing the smoothness indicator of the zeroth order polynomial in 
the hierarchy), and with simple positive linear weights in the spatial reconstruction procedure. This new spatial reconstruc-
tion methodology is simpler, more robust, and could lead to better resolutions for benchmark time-dependent problems 
containing rarefaction waves, shock waves, and contact discontinuities, than other WENO type limiters for the RKDG meth-
ods. The framework of this new type of multi-resolution WENO limiters for arbitrary high-order RKDG methods would be 
particularly efficient and simple on unstructured meshes including triangular meshes in 2D [44] and tetrahedral meshes in 
3D, the study of which is our ongoing work.
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Fig. 4.18. Forward step problem. RKDG methods with multi-resolution WENO limiters. Troubled cells. Squares denote cells which are identified as troubled 
cells subject to the multi-resolution WENO limiting. From top to bottom: second-order (P 1), third-order (P 2), fourth-order (P 3), and fifth-order (P 4). Cells: 
300 × 100.
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