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Abstract. In this paper, the second-order and third-order Runge-Kutta discontinuous
Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory
(WENO) limiters are proposed on tetrahedral meshes. The multi-resolution WENO
limiter is an extension of a finite volume multi-resolution WENO scheme developed
in [81], which serves as a limiter for RKDG methods on tetrahedral meshes. This new
WENO limiter uses information of the DG solution essentially only within the trou-
bled cell itself which is identified by a new modified version of the original KXRCF
indicator [42], to build a sequence of hierarchical L2 projection polynomials from ze-
roth degree to the second or third degree of the DG solution. The second-order and
third-order RKDG methods with the associated multi-resolution WENO limiters are
developed as examples for general high-order RKDG methods, which could maintain
the original order of accuracy in smooth regions and keep essentially non-oscillatory
property near strong discontinuities by gradually degrading from the optimal order
to the first order. The linear weights inside the procedure of the new multi-resolution
WENO limiters can be set as any positive numbers on the condition that they sum
to one. A series of polynomials of different degrees within the troubled cell itself
are applied in a WENO fashion to modify the DG solutions in the troubled cell on
tetrahedral meshes. These new WENO limiters are very simple to construct, and can
be easily implemented to arbitrary high-order accuracy on tetrahedral meshes. Such
spatial reconstruction methodology improves the robustness in the simulation on the
same compact spatial stencil of the original DG methods on tetrahedral meshes. Ex-
tensive one-dimensional (run as three-dimensional problems on tetrahedral meshes)
and three-dimensional tests are performed to demonstrate the good performance of
the RKDG methods with new multi-resolution WENO limiters.
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1 Introduction

In this paper, three-dimensional hyperbolic conservation laws

{
ut+ f (u)x+g(u)y+r(u)z =0,

u(x,y,z,0)=u0(x,y,z),
(1.1)

are considered and the Runge-Kutta discontinuous Galerkin (RKDG) methods [13–15,
17] with new multi-resolution WENO limiters are applied to solve (1.1) on tetrahedral
meshes. The DG methods are applied to discretize the spatial variables and explicit, non-
linearly stable high-order Runge-Kutta methods [12, 18, 38, 48, 64, 66] are adopted to dis-
cretize the temporal variable. The main objective of this paper is to design new second-
order and third-order spatial limiting procedures to obtain uniform accuracy in smooth
regions and obtain sharp and non-oscillatory shock transitions in non-smooth regions for
high-order RKDG methods. This new methodology can be applied to design high-order
WENO limiting procedures for any high-order RKDG methods on tetrahedral meshes,
however we will use only second-order and third-order cases in this paper as examples.

Let us first review the history of the development of discontinuous Galerkin (DG)
methods. In 1973, Reed and Hill [62] designed the first DG method in the framework of
neutron transport. Due to its desirable properties, many developed DG methods were
also used in atmospheric science with an extensive list of references [2,29–31,55–57]. The
reconstruction operator [21,22] was applied at the beginning of each time step in the com-
putation to increase the formal order of accuracy of high-order DG methods. Lagrangian
DG methods were proposed for the first time in [49, 53, 68–70]. A Taylor basis was used
in [40] for the development of a discontinuous Galerkin spectral finite element method.
More recently, a new novel weighted Runge-Kutta discontinuous Galerkin method [37]
is proposed for solving three-dimensional acoustic and elastic wave and reconstructed
discontinuous Galerkin (rDG) method [51, 52] is presented for solving diffusion equa-
tions. Other new contributions to design high-order DG methods can also be found
in [10, 11, 45]. But if problems are not smooth enough, the associated numerical solu-
tion would have spurious oscillations near strong shocks or contact discontinuities and
could result in the appearances of nonlinear instability in non-smooth regions. One pos-
sible methodology to suppress such spurious oscillations is to apply nonlinear limiters
to the RKDG methods. A major development of the DG method with a classical minmod
type total variation bounded (TVB) limiter was carried out by Cockburn et al. in a se-
ries of papers [13–17] to solve nonlinear time dependent hyperbolic conservation laws
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together with the application of explicit, nonlinearly stable high-order Runge-Kutta time
discretization [66]. Such methods are termed as RKDG methods. One type of limiters is
based on slope modification, such as classical minmod type limiters [13–15, 17], the mo-
ment based limiter [3], and an improved moment limiter [7], and so on. Such limiters be-
long to the slope type limiters and they could suppress spurious oscillations at the price
of possibly degrading optimal numerical accuracy at smooth extrema. Another type of
limiters is based on the essentially non-oscillatory (ENO) and weighted ENO (WENO)
methodologies [27, 39, 41, 50, 63], which can achieve high-order accuracy in smooth re-
gions and keep essentially non-oscillatory property near strong discontinuities. These
WENO limiters are basically designed in a finite volume WENO fashion, but they need a
wider spatial stencil for obtaining high-order schemes. Other WENO limiters have also
been applied for DG methods [1,58,59,61,73]. The WENO limiters [54,59,60,77], adaptive-
order WENO limiters [5], central WENO (CWENO) limiters [6], and Hermite WENO lim-
iters [58,61,74] belong to the second type of limiters. Since CWENO schemes [19,20,23,46]
are computationally less expensive than the WENO reconstruction algorithms [24–26],
they can serve as a posteriori subcell limiters for DG schemes [56]. However, it is very
difficult to implement RKDG methods with the applications of unstructured WENO
limiters, CWENO limiters, or Hermite WENO limiters for solving compressible three-
dimensional problems on tetrahedral meshes.

Recently, a new type of finite difference or finite volume multi-resolution WENO
schemes is designed in [79–81] for solving hyperbolic conservation laws. They only apply
the information defined on a hierarchy of nested central spatial stencils to perform spa-
tial discretization procedures and do not introduce any equivalent multi-resolution rep-
resentation [32–36]. These new multi-resolution WENO schemes adopt the same largest
stencil and apply a smaller number of stencils in designing high-order spatial approx-
imation procedures than that of the classical WENO schemes in [39, 72] on triangular
meshes or tetrahedral meshes, could obtain the optimal order of accuracy in smooth re-
gions, and could gradually degrade from the optimal order to first-order accuracy near
strong discontinuities. The linear weights of them in the spatial reconstruction proce-
dures can be any positive numbers on the condition that they sum to one. In this paper,
which is a continuation of [76,78], we extend high-order RKDG methods with new multi-
resolution WENO limiters from structured meshes and triangular meshes to tetrahedral
meshes. Two major advantages of these multi-resolution WENO limiters are the com-
pactness of their spatial stencil, which essentially only contain the tetrahedral troubled
cell itself with information from the four neighboring tetrahedral cells used only to de-
termine the smoothness indicator of the zeroth degree polynomial in the hierarchy, and
the simplicity in the implementation. In order to keep the advantages of the compact
stencil and simplicity of linear weights, we make a small modification of the procedure
in [79–81], by using orthogonal basis and L2 projection to define the sequence of hierar-
chical polynomials of different degrees in the tetrahedral troubled cell. This modification
facilitates the achievement of strict conservation and the maintenance of as much infor-
mation of the original polynomial in the tetrahedral troubled cell as possible through the
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mechanism of a gradual degradation to lower degree polynomials in an L2 projection
fashion with the spatial WENO procedure on tetrahedral meshes.

This paper is organized as follows. In Section 2, the RKDG methods for solving (1.1)
are briefly reviewed on tetrahedral meshes. In Section 3, the details of the new multi-
resolution WENO procedure for three-dimensional scalar and hyperbolic conservation
laws are presented on tetrahedral meshes. Numerical examples are provided in Section
4 to verify the compactness, accuracy, and stability of this new approach. Concluding
remarks are finally given in Section 5.

2 Review of the RKDG method on tetrahedral meshes

Given the tetrahedral cell ∆j, P
k(∆j) denotes the set of polynomials of degree at most

k defined on ∆j. Here k could actually change from cell to cell (p-adaptivity), but for
simplicity we assume it is a constant in this paper. In the DG method, the solution as well
as the test function space is given by Wk

h ={v(x,y,z) : v(x,y,z)|∆j
∈P

k(∆j)}. We emphasize
that the procedure described below does not depend on the specific basis chosen for the
polynomials. We adopt a local orthogonal basis over the target tetrahedral cell, such as

∆0:
{

v
(0)
l (x,y,z), l=0,··· ,Kk; Kk=

(k+1)(k+2)(k+3)
6 −1

}
:

v
(0)
0 (x,y,z)=1,

v
(0)
1 (x,y,z)=

(x−x0)

|∆0|1/3
,

v
(0)
2 (x,y,z)=a21

(x−x0)

|∆0|1/3
+
(y−y0)

|∆0|1/3
+a22,

v
(0)
3 (x,y,z)=a31

(x−x0)

|∆0|1/3
+a32

(y−y0)

|∆0|1/3
+
(z−z0)

|∆0|1/3
+a33,

v
(0)
4 (x,y,z)=a41

(x−x0)

|∆0|1/3
+a42

(y−y0)

|∆0|1/3
+a43

(z−z0)

|∆0|1/3
+
(x−x0)2

|∆0|2/3
+a44,

v
(0)
5 (x,y,z)=a51

(x−x0)

|∆0|1/3
+a52

(y−y0)

|∆0|1/3
+a53

(z−z0)

|∆0|1/3
+a54

(x−x0)2

|∆0|2/3

+
(x−x0)(y−y0)

|∆0|2/3
+a55,

v
(0)
6 (x,y,z)=a61

(x−x0)

|∆0|1/3
+a62

(y−y0)

|∆0|1/3
+a63

(z−z0)

|∆0|1/3
+a64

(x−x0)2

|∆0|2/3

+a65
(x−x0)(y−y0)

|∆0|2/3
+
(x−x0)(z−z0)

|∆0|2/3
+a66,
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v
(0)
7 (x,y,z)=a71

(x−x0)

|∆0|1/3
+a72

(y−y0)

|∆0|1/3
+a73

(z−z0)

|∆0|1/3
+a74

(x−x0)2

|∆0|2/3

+a75
(x−x0)(y−y0)

|∆0|2/3
+a76

(x−x0)(z−z0)

|∆0|2/3
+
(y−y0)2

|∆0|2/3
+a77,

v
(0)
8 (x,y,z)=a81

(x−x0)

|∆0|1/3
+a82

(y−y0)

|∆0|1/3
+a83

(z−z0)

|∆0|1/3
+a84

(x−x0)2

|∆0|2/3

+a85
(x−x0)(y−y0)

|∆0|2/3
+a86

(x−x0)(z−z0)

|∆0|2/3
+a87

(y−y0)2

|∆0|2/3

+
(y−y0)(z−z0)

|∆0|2/3
+a88,

v
(0)
9 (x,y,z)=a91

(x−x0)

|∆0|1/3
+a92

(y−y0)

|∆0|1/3
+a93

(z−z0)

|∆0|1/3
+a94

(x−x0)2

|∆0|2/3

+a95
(x−x0)(y−y0)

|∆0|2/3
+a96

(x−x0)(z−z0)

|∆0|2/3
+a97

(y−y0)2

|∆0|2/3

+a98
(y−y0)(z−z0)

|∆0|2/3
+
(z−z0)2

|∆0|2/3
+a99,

···

where (x0,y0,z0) and |∆0| are the volume barycenter and the volume of the target tetra-
hedral cell ∆0, respectively. Then we would need to solve a linear system to obtain the
values of a∗ by the orthogonality property:

∫

∆0

v
(0)
i (x,y,z)v

(0)
j (x,y,z)dxdydz=wi δij, (2.1)

with wi=
∫

∆0

(
v
(0)
i (x,y,z)

)2
dxdydz.

The numerical solution uh(x,y,z,t) in the space Wk
h can be written as:

uh(x,y,z,t)=
Kk

∑
l=0

u
(l)
0 (t)v

(0)
l (x,y,z), for (x,y,z)∈∆0,

and the degrees of freedom u
(l)
0 (t) are the moments defined by:

u
(l)
0 (t)=

1

wl

∫

∆0

uh(x,y,z,t)v
(0)
l (x,y,z)dxdydz, l=0,··· ,Kk.
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In order to determine the approximate solution, we evolve the degrees of freedom u
(l)
0 (t):

d

dt
u
(l)
0 (t)=

1

wl

(∫

∆0

(
f (uh(x,y,z,t))

∂

∂x
v
(0)
l (x,y,z)+g(uh(x,y,z,t))

∂

∂y
v
(0)
l (x,y,z)

+ r(uh(x,y,z,t))
∂

∂z
v
(0)
l (x,y,z)

)
dxdydz

+
∫

∂∆0

( f (uh(x,y,z,t)),g(uh(x,y,z,t)),r(uh(x,y,z,t))) ·n v
(0)
l (x,y,z)ds

)
,

l=0,··· ,Kk, (2.2)

where n is the outward unit normal of the boundary ∂∆0.
In (2.2) the integral terms can be computed either exactly or by suitable numerical

quadratures. In this paper, we use AG points (AG =5 for k=1 and AG =16 for k=2) for
the volume quadrature and EG points (EG =6 for k=1,2) for the face quadrature:

∫

∆0

(
f (uh(x,y,z,t))

∂

∂x
v
(0)
l (x,y,z)+g(uh(x,y,z,t))

∂

∂y
v
(0)
l (x,y,z)

+ r(uh(x,y,z,t))
∂

∂z
v
(0)
l (x,y,z)

)
dxdydz

≈|∆0|
AG

∑
ℓ=1

σℓ

(
f (uh(x̄ℓ,ȳℓ, z̄ℓ,t))

∂

∂x
v
(0)
l (x̄ℓ,ȳℓ, z̄ℓ)

+ g(uh(x̄ℓ,ȳℓ, z̄ℓ,t))
∂

∂y
v
(0)
l (x̄ℓ,ȳℓ, z̄ℓ)+r(uh(x̄ℓ,ȳℓ, z̄ℓ,t))

∂

∂z
v
(0)
l (x̄ℓ,ȳℓ, z̄ℓ)

)
, (2.3)

∫

∂∆0

( f (uh(x,y,z,t)),g(uh(x,y,z,t)),r(uh(x,y,z,t)))·n v
(0)
l (x,y,z)ds

≈
4

∑
ll=1

|∂∆0ll
|

EG

∑
ℓ=1

σ̄ℓ ( f (uh(x̄llℓ ,ȳllℓ , z̄llℓ ,t)),g(uh(x̄llℓ ,ȳllℓ , z̄llℓ ,t)),

r(uh(x̄llℓ ,ȳllℓ , z̄llℓ ,t)))·nll v
(0)
l (x̄llℓ ,ȳllℓ , z̄llℓ), (2.4)

where (x̄ℓ,ȳℓ, z̄ℓ)∈ ∆0 and (x̄llℓ ,ȳllℓ , z̄llℓ) ∈ ∂∆0ll
are the quadrature points, and σℓ and σ̄ℓ

are the quadrature weights. The volume integrals in (2.3) are discretized by a quadrature
integration formula on every tetrahedral element (for example, AG=5 for k=1 and ∆0 has
four vertexes (x1,y1,z1), (x2,y2,z2), (x3,y3,z3), and (x4,y4,z4), the five-point quadrature
points are

(x̄1,ȳ1, z̄1)=(λ1x1+λ2x2+λ2x3+λ2x4, λ1y1+λ2y2+λ2y3+λ2y4, λ1z1+λ2z2+λ2z3+λ2z4),

(x̄2,ȳ2, z̄2)=(λ2x1+λ1x2+λ2x3+λ2x4, λ2y1+λ1y2+λ2y3+λ2y4, λ2z1+λ1z2+λ2z3+λ2z4),

(x̄3,ȳ3, z̄3)=(λ2x1+λ2x2+λ1x3+λ2x4, λ2y1+λ2y2+λ1y3+λ2y4, λ2z1+λ2z2+λ1z3+λ2z4),

(x̄4,ȳ4, z̄4)=(λ2x1+λ2x2+λ2x3+λ1x4, λ2y1+λ2y2+λ2y3+λ1y4, λ2z1+λ2z2+λ2z3+λ1z4),

(x̄5,ȳ5, z̄5)=(β1x1+β1x2+β1x3+β1x4, β1y1+β1y2+β1y3+β1y4, β1z1+β1z2+β1z3+β1z4),
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where λ1 =
1
2 , λ2 =

1
6 , β1 =

1
4 , and the quadrature weights are σ1 =

9
20 , σ2 =

9
20 , σ3 =

9
20 ,

σ4 =
9

20 , and σ5 =− 4
5 ). The surface integrals in (2.4) are discretized by a quadrature inte-

gration formula on every triangular element (for example, EG =6 for k=1,2 and a trian-
gular element ∂∆0ll

has three vertexes (x1,y1,z1), (x2,y2,z2), and (x3,y3,z3), the six-point
quadrature points are

(x̄ll1 ,ȳll1 , z̄ll1)=(λ1x1+λ2x2+λ2x3, λ1y1+λ2y2+λ2y3, λ1z1+λ2z2+λ2z3),

(x̄ll2 ,ȳll2 , z̄ll2)=(λ2x1+λ1x2+λ2x3, λ2y1+λ1y2+λ2y3, λ2z1+λ1z2+λ2z3),

(x̄ll3 ,ȳll3 , z̄ll3)=(λ2x1+λ2x2+λ1x3, λ2y1+λ2y2+λ1y3, λ2z1+λ2z2+λ1z3),

(x̄ll4 ,ȳll4 , z̄ll4)=(β1x1+β2x2+β2x3, β1y1+β2y2+β2y3, β1z1+β2z2+β2z3),

(x̄ll5 ,ȳll5 , z̄ll5)=(β2x1+β1x2+β2x3, β2y1+β1y2+β2y3, β2z1+β1z2+β2z3),

(x̄ll6 ,ȳll6 , z̄ll6)=(β2x1+β2x2+β1x3, β2y1+β2y2+β1y3, β2z1+β2z2+β1z3),

where

λ1=0.816847572980459, λ2=0.091576213509771,

β1=0.108103018168070, β2=0.445948490915965,

and the quadrature weights are σ̄1 = σ̄2 = σ̄3 = 0.109951743655322 and σ̄4 = σ̄5 = σ̄6 =
0.22338158967 8011). Since the face integral is on boundaries where the numerical solu-
tion is discontinuous, the flux ( f (uh(x,y,z,t)),g(uh(x,y,z,t)), r(uh(x,y,z,t)))·n is replaced
by a monotone numerical flux in the scalar case or by an exact or approximate Riemann
solver based numerical flux for the system case. The simple Lax-Friedrichs flux is used
in all of our numerical tests. The semi-discrete scheme (2.2) is discretized in time by a
nonlinear stable Runge-Kutta time discretization, e.g. the third-order version [66]:





u(1)=un+∆tL(un),

u(2)= 3
4 un+ 1

4 u(1)+ 1
4 ∆tL(u(1)),

un+1= 1
3 un+ 2

3 u(2)+ 2
3 ∆tL(u(2)).

(2.5)

The method described above can compute solutions to (1.1), which are either smooth or
have weak shocks and other discontinuities, without further modification. If the discon-
tinuities are strong, however, the scheme will generate significant oscillations and even
nonlinear instability. To avoid such difficulties, we borrow the technique of a slope lim-
iter from the finite volume methodology and use it after each Runge-Kutta inner stage
to control the numerical solution. For the purpose of explaining how to apply a non-
linear limiter for the RKDG methods as shown in [73], we adopt a forward Euler time
discretization of (2.2) as an example. In this three-dimensional case, starting from a solu-
tion un

h ∈Wk
h at time level n, it is limited to obtain a new function un,new

h before advancing
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it to the next time level. We need to find un+1
h ∈Wk

h which satisfies

∫

∆0

un+1
h −un,new

h

∆t
vdxdydz−

∫

∆0

(
f (un,new

h )vx+g(un,new
h )vy+r(un,new

h )vz

)
dxdydz

+
∫

∂∆0

(
f̂ (un,new

h ), ĝ(un,new
h ),r̂(un,new

h )
)
·nvds=0, (2.6)

for all test functions v(x,y,z)∈Wk
h . We will focus on how to obtain the three-dimensional

un,new
h |∆0

and omit its sup-index n in the following, if it does not cause confusion.

3 Multi-resolution WENO limiter on tetrahedral meshes

In this section, we focus on designing a new multi-resolution WENO reconstruction pro-
cedure as a limiter for the second-order and third-order RKDG methods on tetrahedral
meshes. It is an extension to tetrahedral meshes of the high-order limiting procedure
that was developed in [76, 78] on structured meshes and triangular meshes. The main
framework of the new multi-resolution WENO limiting procedure on tetrahedral cells is
narrated in the following.

3.1 The new three-dimensional modified KXRCF shock detection technique

The main purpose of this subsection is to precisely detect the troubled cells, which may
need the new multi-resolution WENO limiting procedure later. This detective procedure
is important for designing limiters. If excessive tetrahedral cells are detected as troubled
cells, the computational cost will increase. If too few tetrahedral cells are identified as
troubled cells, spurious oscillations may appear in non-smooth regions. Since a com-
parison among different troubled cell indicators was given in [60], the classical KXRCF
shock detection technique [42] has been widely used in detecting troubled cells, which
are cells that may contain strong shocks or contact discontinuities and in which the multi-
resolution WENO limiter is applied. We now propose a new three-dimensional modified
version of the classical KXRCF shock detection technique [42] to detect troubled cells on
tetrahedral meshes. As shown in [42], we will divide the boundary of the tetrahedral
cell ∆j into two parts: ∂∆−

j and ∂∆+
j , where the flow is into and out of ∆j, respectively.

In the one-dimensional case, Fu and Shu [28] noted that the scaling of |xj+ 1
2
−xj− 1

2
|

k+1
2

tends to mark a lot more troubled cells than necessary for high-order DG methods. They

decreased the power of |xj+ 1
2
−xj− 1

2
| to be min(k,2)+1

2 , which seems to be strong enough to

single out discontinuities [28]. Now on tetrahedral meshes, we define the tetrahedral cell
∆0 as a troubled cell on the condition that

|
∫

∂∆−
0
(uh(x,y,z,t)|∆0

−uh(x,y,z,t)|∆l
)ds|

hR
0 |∂∆−

0 |·|||ûh(x,y,z,t)|∂∆0
|||

≥Ck, (3.1)
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where R=1 for k=1 and R=1.5 for k>1, h0 is the radius of the circumscribed circle in the
tetrahedral cell ∆0, and Ck is a constant, usually, we take Ck =1 as specified in [42]. Here
∆l , l is chosen as 1, or 2, or 3, or 4, which denotes the neighboring tetrahedral cells of ∆0

on the side of ∂∆−
0 . uh(x,y,z,t) is the numerical solution corresponding to the indicator

variable(s) and |||ûh(x,y,z,t)|∂∆0
||| is defined as the minimum value of |uh(x,y,z,t)| along

∂∆0. By using (3.1), we do not need to adopt different types of Ck to compute multi-
dimensional test problems as specified in [28] and can simply set Ck =1 in all numerical
computations, unless specified otherwise. This new three-dimensional modified KXRCF
shock detection technique is simple and robust enough to catch strong discontinuities
without identifying excessive troubled cells on tetrahedral meshes.

3.2 Multi-resolution WENO reconstruction

The objective of this subsection is to reconstruct a new polynomial using the multi-
resolution WENO limiting procedure to replace the solution polynomial on the troubled
cell. The new polynomial should maintain the cell average and high-order accuracy of
the original DG solution without introducing oscillations on tetrahedral meshes.

First, the details of the new multi-resolution WENO limiting procedure are presented
for the scalar case. The basic idea is to reconstruct a new polynomial on the troubled cell
∆0 which is a convex combination of polynomials of different degrees: the DG solution
polynomial on this tetrahedral cell and a sequence of hierarchical “modified” solution
polynomials based on the L2 projection methodology. The nonlinear weights in the con-
vex combination coefficients follow the multi-resolution WENO procedure. For simplic-
ity, we rewrite uh(x,y,z,t) to be uh(x,y,z)∈Wk

h = {v(x,y,z) : v(x,y,z)|∆0
∈P

k(∆0)} in the
following, if it does not cause confusion. Now we assume ∆0 is a troubled cell which
is detected by our new three-dimensional troubled cell indicator. The procedure to re-
construct a new polynomial on the troubled cell ∆0 by using the new multi-resolution
WENO reconstruction procedure is summarized in the following:

Step 1.1. Define a series of polynomials of different degrees on the troubled cell ∆0. The
polynomials qζ(x,y,z), ζ=0,··· ,k should satisfy the conditions that

∫

∆0

qζ(x,y,z)v
(0)
l (x,y,z)dxdydz=

∫

∆0

uh(x,y,z)v
(0)
l (x,y,z)dxdydz, l=0,··· ,Kζ , (3.2)

where Kζ =
(ζ+1)(ζ+2)(ζ+3)

6 −1.

Remark 3.1. The construction of different polynomials qζ(x,y,z), ζ =0,··· ,k is very sim-

ple, since the local orthonormal basis v
(0)
l (x,y,z) is defined over ∆0. In this case, we can

directly obtain qζ(x,y,z)=∑
Kζ

l=0u
(l)
0 (t)v

(0)
l (x,y,z), ζ=0,··· ,k, respectively.

Step 1.2. Obtain equivalent expressions for these constructed polynomials of different
degrees. To keep consistent notation, we will denote p0,1(x,y,z)=q0(x,y,z). For different
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high-order approximations, following original ideas for classical CWENO schemes [8,46,
47], we obtain polynomials pζ,ζ(x,y,z), ζ=1,··· ,k through

pζ,ζ(x,y,z)=
1

γζ,ζ
qζ(x,y,z)−

γζ−1,ζ

γζ,ζ
pζ−1,ζ(x,y,z), ζ=1,··· ,k, (3.3)

with γζ−1,ζ+γζ,ζ =1 and γζ,ζ 6=0, together with polynomials pζ,ζ+1(x,y,z), ζ =1,··· ,k−1
through

pζ,ζ+1(x,y,z)=ωζ,ζ pζ,ζ(x,y,z)+ωζ−1,ζ pζ−1,ζ(x,y,z), ζ=1,··· ,k−1, (3.4)

with ωζ−1,ζ+ωζ,ζ = 1. In these expressions, γζ−1,ζ and γζ,ζ are the linear weights, and
ωζ−1,ζ and ωζ,ζ are the nonlinear weights (which will be precisely narrated later), re-
spectively. Based on a balance between the sharp and essentially non-oscillatory shock
transitions in non-smooth regions and accuracy in smooth regions, following the prac-
tice in [25, 73, 82], we set the linear weights as γζ−1,ζ = 0.01 and γζ,ζ = 0.99, ζ = 1,··· ,k,
respectively.

Step 1.3. Compute the smoothness indicators βζ2 ,ζ , which measure how smooth the func-
tions pζ2 ,ζ(x,y,z) for ζ2=ζ−1,ζ; ζ=1,··· ,k are in the tetrahedral cell ∆0. We use the same
recipe for the smoothness indicators as in [41, 65]:

βζ2 ,ζ =
κ

∑
|α|=1

∫

∆0

∆
|α|−1
0

(
∂|α|

∂xα1 ∂yα2 ∂zα3
pζ2 ,ζ(x,y,z)

)2

dxdydz, ζ2= ζ−1,ζ; ζ=1,··· ,k, (3.5)

where κ=ζ2, α=(α1,α2,α3), and |α|=α1+α2+α3, respectively. The only exception is β0,1,
which we magnify from zero to a value defined below. Since ∆ξ , ξ =1,··· ,4 are denoted
as the four neighboring tetrahedral cells of ∆0, we first denote the linear polynomials
q0,ξ(x,y,z) with the L2 projection methodology of uh(x,y,z)∈Wk

h ={v(x,y,z) : v(x,y,z)|∆ξ
∈

P
k(∆ξ)}, ξ=1,··· ,4, satisfying

∫

∆ξ

q0,ξ(x,y,z)v
(ξ)
l (x,y,z)dxdydz=

∫

∆ξ

uh(x,y,z)v
(ξ)
l (x,y,z)dxdydz,

l=0,··· ,3; ξ=1,··· ,4. (3.6)

Remark 3.2. Since the local orthonormal bases v
(ξ)
l (x,y,z) are defined over ∆ξ , we can

obtain q0,ξ(x,y,z)=∑
3
l=0u

(l)
ξ (t)v

(ξ)
l (x,y,z), ξ=1,··· ,4.

Then the associated smoothness indicators are

θ0,ξ =
∫

∆0

( ∂

∂x
q0,ξ(x,y,z)

)2
+
( ∂

∂y
q0,ξ(x,y,z)

)2
+
( ∂

∂z
q0,ξ(x,y,z)

)2
dxdydz, ξ=1,··· ,4.

(3.7)
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After that, we define β0,1 as

β0,1=min(θ0,1,θ0,2,θ0,3,θ0,4). (3.8)

Step 1.4. Compute the nonlinear weights based on the linear weights and the smoothness
indicators. We adopt the WENO-Z recipe as shown in [4,9], with τζ for ζ=1,··· ,k defined
as related to the absolute difference between the smoothness indicators:

τζ =
(

βζ,ζ−βζ−1,ζ

)2
, ζ=1,··· ,k. (3.9)

The nonlinear weights are then given as

ωζ2,ζ =
ω̄ζ2,ζ

ω̄ζ−1,ζ+ω̄ζ,ζ
, ω̄ζ2,ζ =γζ2,ζ

(
1+

τζ

ε+βζ2 ,ζ

)
, ζ2= ζ−1,ζ; ζ=1,··· ,k. (3.10)

Here ε is taken as 10−6 in all numerical simulations.

Step 1.5. The new final reconstruction polynomial on the troubled cell ∆0 is given by

unew
h |∆0

=
ζ

∑
ζ2=ζ−1

ωζ2,ζ pζ2 ,ζ(x,y,z), ζ=1,··· ,k, (3.11)

for the second-order (k=1) and third-order (k=2) approximations.

Then the details of the new multi-resolution WENO limiting procedure are presented
for the system case. Consider (1.1), where u, f (u), g(u), and r(u) are vectors with
five components. In order to keep the essentially non-oscillatory property, the multi-
resolution WENO reconstruction limiter is used with a local characteristic field decompo-
sitions. In this paper, three-dimensional Euler equations are considered in the following

∂

∂t




ρ
ρµ
ρν
ρw
E



+

∂

∂x




ρµ
ρµ2+p

ρνµ
ρwµ

µ(E+p)



+

∂

∂y




ρν
ρµν

ρν2+p
ρwν

ν(E+p)



+

∂

∂z




ρw
ρµw
ρνw

ρw2+p
w(E+p)



=0, (3.12)

where ρ is the density, µ is the x-direction velocity, ν is the y-direction velocity, w is
the z-direction velocity, E is the total energy, p is the pressure, and γ = 1.4 in the test
cases. We denote the Jacobian matrices as ( f ′(u),g′(u),r′(u))·ni and ni = (nix,niy,niz)

T,
i = 1,··· ,4, are the outward unit normals to different triangular faces of the tetrahedral
cell. The left and right eigenvector matrices of such Jacobian matrices are specified in [75].
Assuming △0 is the troubled cell detected by the new modified version of the original

KXRCF technique [42], we denote associated polynomial vectors p
ξ
l (each of them is a

5-component vector with each component being an l-th degree polynomial, which is one
of a sequence of hierarchical “modified” solution polynomials based on the L2 projection
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methodology), l = 0,··· ,k on the troubled cell and its neighboring four tetrahedral cells
(∆ξ , ξ=0,··· ,4, respectively). We then perform the new multi-resolution WENO limiting
procedure as follows:

Step 2.1. In each ni-direction among four normal directions of ∂△0, we reconstruct new
polynomial vectors pnew

i , i=1,··· ,4 by using the characteristic-wise new multi-resolution
WENO limiting procedure with the associated Jacobian f ′(u)nix+g′(u)niy+r′(u)niz, i=
1,··· ,4 as specified in [75]:

Step 2.1.1. Project the polynomial vectors p
ξ
l into the characteristic fields ˜̃p

ξ
il
= Li ·p

ξ
l , and

˜̃p
ξ
il
, i=1,··· ,4; l=0,··· ,k; and ξ=0,··· ,4, respectively.

Step 2.1.2. For each component, we perform Step 1.1 to Step 1.5 of the new multi-
resolution WENO limiting procedure that has been specified for the scalar case, to obtain
the new 5-component vectors on the troubled cell △0 as ˜̃pnew

i , i=1,··· ,4, respectively.

Step 2.1.3. Project ˜̃pnew
i into the physical space pnew

i =Ri · ˜̃pnew
i , i=1,··· ,4.

Step 2.2. The final new 5-component vector on the troubled cell △0 is defined as

unew
h |∆0

=
∑

4
i=1 pnew

i |△i|

∑
4
i=1 |△i|

.

4 Numerical results

In this section, some benchmark numerical results are applied to demonstrate the good
performance of the new three-dimensional multi-resolution WENO reconstructions as
limiters for the RKDG methods on tetrahedral meshes described before. The time step is
chosen according to the CFL condition

∆tmax1≤i≤N

(
∑

4
ℓℓ=1(|(µi,νi,wi)·niℓℓ |+ci)|∂∆iℓℓ |

|∆i|

)
≤CFL,

where ci =
√

γ pi

ρi
is the sound speed with γ=1.4. The CFL number is 0.3 for the second-

order (P1) and 0.18 for the third-order (P2) RKDG methods [17] with and without the
new multi-resolution WENO limiters on tetrahedral meshes. We perform the new multi-
resolution WENO limiting procedure on every tetrahedral cell (that is, we artificially de-
clare all cells to be troubled cells) for solving all the accuracy tests, in order to fully testify
the influence of the limiter upon accuracy. To be more specific, we define all tetrahedral
cells as troubled cells in Example 4.1, Example 4.2, and Example 4.3, and we will set the
constant Ck=1 in (3.1) for other examples, unless specified otherwise. The linear weights
are set as γζ−1,ζ=0.01 and γζ,ζ=0.99, ζ=1,2, for simplicity in this paper.
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Example 4.1. The linear scalar equation

µt+µx+µy+µz=0, (4.1)

is considered in the computational domain [−2,2]×[−2,2]×[−2,2] on the uniform tetra-
hedral meshes. The initial condition is µ(x,y,z,0)=sin(π(x+y+z)/2) and periodic bound-
ary conditions are applied in all three directions. The final time is t= 1. The errors and
numerical orders of accuracy for the RKDG methods with multi-resolution WENO lim-
iters comparing with the original RKDG methods without limiters are shown in Table 1.
The numerical error against CPU time graphs for the RKDG methods with and without
the multi-resolution WENO limiters are shown in Fig. 1 for a comparison. We can see
that the new multi-resolution WENO limiters can keep the designed order of accuracy,
although the magnitude of the errors is bigger than that of the original RKDG methods
on the same mesh, especially for the coarser meshes.
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Figure 1: The linear scalar equation. T= 1. Computing time and error. Squares and a solid line: the results
of RKDG methods without multi-resolution WENO limiters; circles and a dashed line: the results of RKDG
methods with multi-resolution WENO limiters. From left to right: L1 error; L∞ error. From top to bottom:
second-order (P1); third-order (P2).
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Table 1: µt+µx+µy+µz=0. µ(x,y,z,0)=sin(π(x+y+z)/2). Periodic boundary conditions in three directions.

T=1. L1 and L∞ errors. RKDG with/without WENO limiter. Uniform tetrahedral mesh.

RKDG with WENO limiter RKDG without WENO limiter

tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 1.73E-1 4.06E-1 9.76E-2 2.98E-1

6000 2.22E-2 2.97 8.24E-2 2.30 1.55E-2 2.65 6.82E-2 2.13

P1 48000 3.17E-3 2.81 1.67E-2 2.30 3.15E-3 2.30 1.60E-2 2.09

384000 7.35E-4 2.11 3.98E-3 2.07 7.34E-4 2.10 3.84E-3 2.06

750 3.99E-2 1.24E-1 1.33E-2 8.94E-2

6000 4.00E-3 3.32 1.77E-2 2.81 1.92E-3 2.79 1.33E-2 2.74

P2 48000 2.86E-4 3.80 1.75E-3 3.34 2.63E-4 2.87 1.74E-3 2.94

384000 3.44E-5 3.06 2.21E-4 2.99 3.43E-5 2.94 2.21E-4 2.98

Example 4.2. The following nonlinear scalar Burgers’ equation

µt+

(
µ2

2

)

x

+

(
µ2

2

)

y

+

(
µ2

2

)

z

=0, (4.2)

is considered in the computational domain [−3,3]×[−3,3]×[−3,3] on the uniform tetra-
hedral meshes. The initial condition is µ(x,y,z,0) = 0.5+sin(π(x+y+z)/3) and peri-
odic boundary conditions are applied in all three directions. The final time is t=0.5/π2,
when the solution is still smooth. The errors and numerical orders of accuracy for the
RKDG methods with the new multi-resolution WENO limiters comparing with the orig-
inal RKDG methods without the multi-resolution WENO limiters are shown in Table 2.
The numerical errors against CPU time graphs for the RKDG methods with and without
the multi-resolution WENO limiters are shown in Fig. 2 for a comparison. We can also see

Table 2: µt+
( µ2

2

)
x
+
( µ2

2

)
y
+
( µ2

2

)
z
=0. µ(x,y,z,0)=0.5+sin(π(x+y+z)/3). Periodic boundary conditions in

three directions. T=0.5/π2. L1 and L∞ errors. RKDG with/without limiter. Uniform tetrahedral mesh.

RKDG with WENO limiter RKDG without limiter

tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 3.31E-2 1.38E-1 3.32E-2 1.40E-1

6000 1.43E-2 1.21 5.08E-2 1.45 1.08E-2 1.61 5.07E-2 1.47

P1 48000 3.22E-3 2.15 1.47E-2 1.79 3.23E-3 1.75 1.49E-2 1.77

384000 8.51E-4 1.92 4.24E-3 1.79 8.50E-4 1.93 3.94E-3 1.92

750 1.28E-2 9.64E-2 7.63E-3 7.82E-2

6000 1.50E-3 3.09 1.24E-2 2.96 1.12E-3 2.76 1.23E-2 2.66

P2 48000 1.69E-4 3.15 2.02E-3 2.62 1.66E-4 2.76 2.02E-3 2.61

384000 2.46E-5 2.78 3.04E-4 2.73 2.46E-5 2.75 3.04E-4 2.73
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Figure 2: The Burgers’ equation. T = 0.5
π . Computing time and error. Squares and a solid line: the results

of RKDG methods without multi-resolution WENO limiters; circles and a dashed line: the results of RKDG
methods with multi-resolution WENO limiters. From left to right: L1 error; L∞ error. From top to bottom:
second-order (P1); third-order (P2).

that the new multi-resolution WENO limiters could keep the designed order of accuracy,
however the magnitude of the errors is larger than that of the original RKDG methods
without limiters on the same mesh, especially for coarser meshes.

Example 4.3. We solve three-dimensional Euler equations (3.12). The initial conditions
are: ρ(x,y,z,0) = 1+0.9sin(π(x+y+z)/3), µ(x,y,z,0) = 3, ν(x,y,z,0) = 3, w(x,y,z,0) = 3,
and p(x,y,z,0)=1. The computational domain is [0,6]×[0,6]×[0,6] on the uniform tetra-
hedral meshes and the periodic boundary conditions are applied in all three directions.
The final time is t=1. The errors and numerical orders of accuracy of the density for the
RKDG methods with the new multi-resolution WENO limiters comparing with the orig-
inal RKDG methods without limiters are shown in Table 3. The numerical errors against
CPU time graphs for the RKDG methods with and without the multi-resolution WENO
limiters are shown in Fig. 3 for a comparison. Similar to the previous example, we can
see that the new multi-resolution WENO limiters can again keep the designed order of
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Table 3: 3D-Euler equations: initial data ρ(x,y,z,0)=1+0.9sin(π(x+y+z)/3), µ(x,y,z,0)=3, ν(x,y,z,0)=3,

w(x,y,z,0)=3, and p(x,y,z,0)=1. Periodic boundary conditions in three directions. T=1. L1 and L∞ errors.
RKDG with/without limiter. Uniform tetrahedral mesh.

RKDG with WENO limiter RKDG without limiter

tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 2.87E-1 5.37E-1 1.61E-1 3.71E-1

P1 6000 4.56E-2 2.65 1.28E-1 2.06 1.92E-2 3.07 6.48E-2 2.52

20250 1.22E-2 3.24 4.38E-2 2.65 6.78E-3 2.57 2.67E-2 2.18

48000 4.07E-3 3.83 1.88E-2 2.92 3.51E-3 2.29 1.44E-2 2.15

750 6.14E-2 1.97E-1 2.31E-2 1.14E-1

P2 6000 6.88E-3 3.16 3.06E-2 2.69 3.74E-3 2.63 1.87E-2 2.61

20250 1.51E-3 3.73 8.37E-3 3.20 1.24E-3 2.72 6.11E-3 2.77

48000 5.70E-4 3.39 3.16E-3 3.38 5.54E-4 2.80 2.71E-3 2.82
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Figure 3: 3D-Euler equations. T=1. Computing time and error. Squares and a solid line: the results of RKDG
methods without multi-resolution WENO limiters; circles and a dashed line: the results of RKDG methods with
multi-resolution WENO limiters. From left to right: L1 error; L∞ error. From top to bottom: second-order
(P1); third-order (P2).
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accuracy, with the magnitude of the errors larger than that of the original RKDG methods
on the same mesh.

Example 4.4. We solve the three-dimensional Euler equations (3.12) with the Riemann
initial condition for the Lax problem [44]:

(ρ,µ,ν,w,p,γ)T (4.3)

=

{
(0.445,0.698,0,0,3.528,1.4)T , (x,y,z)T ∈ [−0.5,0)×[−0.02,0.02]×[−0.02,0.02],

(0.5,0,0,0,0.571,1.4)T , (x,y,z)T ∈ [0,0.5]×[−0.02,0.02]×[−0.02,0.02].

The new multi-resolution WENO limiters are applied to this one-dimensional shock tube
problem. The solution lies in the domain of [−0.5,0.5]×[−0.02,0.02]×[−0.02,0.02] with a
tetrahedralization of 101 vertices in the x-direction and 5 vertices in the y-direction and
z-direction, respectively. The velocities in the y-direction and z-direction are set as 0 and
periodic boundary conditions are applied in these directions. The final time is t=0.16. We
present the exact solution and the computed density ρ obtained by the RKDG methods
with the new multi-resolution WENO limiters in Fig. 4.
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Figure 4: The Lax problem. T=0.16. From top to bottom: second-order (P1); third-order (P2). From left to
right: density cutting-plot along y= z= 0; density zoomed in; density surface cutting-plot along z= 0. Solid
line: exact solution; squares: RKDG methods with multi-resolution WENO limiters. The mesh points on the
boundary are uniformly distributed with cell length ∆x=∆y=∆z=1/100.
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Example 4.5. We solve the three-dimensional Euler equations (3.12) with the Riemann
initial condition for the Sod problem [67]:

(ρ,µ,ν,w,p,γ)T

=

{
(1,0,0,0,2.5,1.4)T , (x,y,z)T ∈ [−5,0)×[−0.2,0.2]×[−0.2,0.2],

(0.125,0,0,0,0.25,1.4)T , (x,y,z)T ∈ [0,5]×[−0.2,0.2]×[−0.2,0.2].
(4.4)

The solution lies in the domain of [−5,5]×[−0.2,0.2]×[−0.2,0.2] with a tetrahedraliza-
tion of 101 vertices in the x-direction and 5 vertices in the y-direction and z-direction,
respectively. The velocities in the y-direction and z-direction are set as 0 and periodic
boundary conditions are applied in these directions. The final time is t= 2. We present
the exact solution and the computed density ρ obtained by the RKDG methods with the
new multi-resolution WENO limiters, and the RKDG methods with TVB limiter, TVB
constant M=1 [17] in Fig. 5 for a comparison. The numerical results computed by using
the new multi-resolution WENO limiters are good for this test case.

Example 4.6. A higher order scheme would show its advantage when the solution con-
tains both shocks and complex smooth region structures. A typical example for this is the
problem of shock interaction with entropy waves [63]. We solve three-dimensional Eu-
ler equations (3.12) with a moving Mach number 3 shock interacting with sine waves in
density: (ρ,µ,ν,w,p,γ)T=(3.857143,2.629369,0,0,10.333333,1.4)T for (x,y,z)T∈ [−5,−4)×
[−0.1,0.1]×[−0.1,0.1]; (ρ,µ,ν,w,p,γ)T=(1+0.2sin(5x),0,0,0,1,1.4)T for (x,y,z)T∈[−4,5]×
[−0.1,0.1]×[−0.1,0.1]. The solution lies in the computational domain [−5,5]×[−0.1,0.1]×
[−0.1,0.1] with a tetrahedralization of 201 vertices in the x-direction and 5 vertices in the
y-direction and z-direction, respectively. The velocities in the y-direction and z-direction
are set as 0 and periodic boundary conditions are applied in these directions. The com-
puted density ρ is plotted at t = 1.8 against the reference “exact” solution which is a
converged solution computed by the one-dimensional fifth-order finite difference WENO
scheme [41] with 2000 grid points in Fig. 4. We also present the RKDG methods with TVB
limiter, TVB constant M=1 [17] in Fig. 4 for a comparison. The second-order and third-
order RKDG methods with the new multi-resolution WENO limiters could get good res-
olution for this benchmark example.

Example 4.7. We now consider the interaction of two blast waves [71]. The initial condi-
tions are

(ρ,µ,ν,w,p,γ)T

=





(1,0,0,0,103,1.4)T, (x,y,z)T ∈ [0,0.1]×[−0.005,0.005]×[−0.005,0.005],

(1,0,0,0,10−2,1.4)T, (x,y,z)T ∈ (0.1,0.9]×[−0.005,0.005]×[−0.005,0.005],

(1,0,0,0,102,1.4)T, (x,y,z)T ∈ (0.9,1]×[−0.005,0.005]×[−0.005,0.005].

(4.5)
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Figure 5: The Sod problem. T = 2. From top to bottom: second-order (P1), RKDG methods with multi-

resolution WENO limiters; second-order (P1), RKDG methods with TVB limiter, TVB constant M=1; third-
order (P2), RKDG methods with multi-resolution WENO limiters; third-order (P2), RKDG methods with TVB
limiter, TVB constant M=1. From left to right: density cutting-plot along y=z=0; density zoomed in; density
surface cutting-plot along z= 0. Solid line: exact solution; squares: RKDG methods with limiters. The mesh
points on the boundary are uniformly distributed with cell length ∆x=∆y=∆z=10/100.
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Figure 6: The shock density wave interaction problem. T = 1.8. From top to bottom: second-order (P1),

RKDG methods with multi-resolution WENO limiters; second-order (P1), RKDG methods with TVB limiter,
TVB constant M=1; third-order (P2), RKDG methods with multi-resolution WENO limiters; third-order (P2),
RKDG methods with TVB limiter, TVB constant M=1. From left to right: density cutting-plot along y=z=0;
density zoomed in; density surface cutting-plot along z = 0. Solid line: reference “exact” solution; squares:
RKDG methods with limiters. The mesh points on the boundary are uniformly distributed with cell length
∆x=∆y=∆z=10/200.
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Figure 7: The blast wave problem. T=0.038. From top to bottom: second-order (P1); third-order (P2). From
left to right: density cutting-plot along y= z= 0; density zoomed in; density surface cutting-plot along z= 0.
Solid line: exact solution; squares: RKDG methods with multi-resolution WENO limiters. The mesh points on
the boundary are uniformly distributed with cell length ∆x=∆y=∆z=1/400.

The solution of three-dimensional Euler equations (3.12) lies in the domain of [0,1]×
[−0.005,0.005]×[−0.005,0.005] with a tetrahedralization of 401 vertices in the x-direction
and 5 vertices in the y-direction and z-direction, respectively. The velocities in the y-
direction and z-direction are set as 0 and periodic boundary conditions are applied in
these directions. The computed density ρ is plotted at t = 0.038 against the reference
“exact” solution which is a converged solution computed by the one-dimensional fifth-
order finite difference WENO scheme [41] with 2000 grid points in Fig. 7. The RKDG
methods with the new multi-resolution WENO limiters could get good performance once
again.

Example 4.8. We solve the same nonlinear Burgers’ equation (4.2) with the same initial
condition µ(x,y,z,0)= 0.5+sin(π(x+y+z)/3), except that the results are plotted at t=
5/π2, when a shock has already appeared in the solution. In Fig. 8, we show the contours
on the surface and one dimensional cutting-plot along x = y, z = 0 of the solutions by
the second-order and third-order RKDG methods with the new multi-resolution WENO
limiters. We can see that the new schemes give non-oscillatory shock transitions for this
problem.
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Figure 8: Burgers’ equation. T= 5/π2. From top to bottom: second-order (P1); third-order (P2). From left
to right: contour plot on the surface; 1D cutting-plot along x=y, z=0 with circles representing the numerical
solution of RKDG methods with multi-resolution WENO limiters and the line representing the exact solution.
The mesh points on the boundary are uniformly distributed with cell length ∆x=∆y=∆z=6/20.

Example 4.9. We use INRIA’s 3D tetrahedral elements for the BTC0 (streamlined body,
laminar) test case [43] in project ADIGMA with the initial conditions: the Mach number
M∞=0.5 and angle of attack α=0◦. The computational domain is

√
x2+y2+z2≤10 which

consists of 191753 tetrahedrons and 33708 points with 8244 triangles over the surface. The
surface mesh used in the computation is shown in Fig. 9. The second-order and third-
order RKDG methods with the new multi-resolution WENO limiters are used in this
numerical test. Density plotted on the surface with 80 equally spaced contours from 0.98
to 1.13 and pressure plotted on the surface with 80 equally spaced contours from 0.97 to
1.19 are shown in Fig. 10. We can also see that two schemes can perform well with good
resolution.

Example 4.10. We consider inviscid Euler transonic flow past a single Y3815-pb1l plane
(the repository of this free 3D model is available at INRIA’s Free 3D Meshes Download
http://www-rocq1.inria.fr/gamma) with Mach number M∞ = 0.8 and angle of attack
α=1.25◦ . The computational domain is

√
x2+y2+z2≤100 which consists of 180855 tetra-

hedrons and 50588 points with 24640 triangles over the surface. The surface mesh used in
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Figure 9: BTC0 surface mesh, zoomed in.
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Figure 10: BTC0 problem. M∞ = 0.5 and angle of attack α= 0◦. From top to bottom: second-order (P1);

third-order (P2). From left to right: density plotted on the surface with 80 equally spaced contours from 0.98
to 1.13; pressure plotted on the surface with 80 equally spaced contours from 0.97 to 1.19.

the computation is shown in Fig. 11. The second-order and third-order RKDG methods
with new multi-resolution WENO limiters are used in this benchmark numerical test.
Density plotted on the Y3815-pb1l plane with 80 equally spaced contours from 0.09 to
1.32 and pressure plotted on the Y3815-pb1l plane with 80 equally spaced contours from
0.06 to 1.53 are shown in Fig. 12. We can see that the second-order and third-order RKDG
methods with multi-resolution WENO limiters perform well with good resolution.
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Figure 11: Y3815-pb1l plane surface mesh, zoomed in.
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Figure 12: Y3815-pb1l plane problem. M∞ =0.8 and angle of attack α=1.25◦. From top to bottom: second-
order (P1); third-order (P2). From left to right: density plotted on the surface with 80 equally spaced contours
from 0.09 to 1.32; pressure plotted on the surface with 80 equally spaced contours from 0.06 to 1.53.

5 Concluding remarks

The second-order and third-order RKDG methods with multi-resolution WENO lim-
iters are applied to solve three-dimensional hyperbolic conservation laws on tetrahe-
dral meshes. The general framework of these new multi-resolution WENO limiters for
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the RKDG methods is to apply a new three-dimensional modified version of the orig-
inal KXRCF shock detection technique [42] to detect troubled cells subject to the multi-
resolution WENO limiting procedures on tetrahedral meshes, and to construct a sequence
of hierarchical L2 projection polynomial solutions of the DG methods over the tetrahe-
dral troubled cells. The main innovation is the new multi-resolution WENO reconstruc-
tion procedures, which basically only use the information defined within the tetrahedral
troubled cell, with information from neighboring four tetrahedral cells used marginally
in the determination of the smoothness indicator of the zeroth degree polynomial in the
hierarchy, and with simple positive linear weights in the spatial reconstruction proce-
dures. This new spatial reconstruction methodology is simpler, more robust, and could
lead to better resolutions for some benchmark numerical examples than previous WENO
type limiters that applied for high-order RKDG methods on tetrahedral meshes.
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