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In this paper, high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-
resolution weighted essentially non-oscillatory (WENO) limiters are designed for solving 
hyperbolic conservation laws on triangular meshes. These multi-resolution WENO limiters 
are new extensions of the associated multi-resolution WENO finite volume schemes [49,50]
which serve as limiters for RKDG methods from structured meshes [47] to triangular 
meshes. Such new WENO limiters use information of the DG solution essentially only 
within the troubled cell itself which is identified by a new modified version of the 
original KXRCF indicator [24], to build a sequence of hierarchical L2 projection polynomials 
from zeroth degree to the highest degree of the RKDG method. The second-order, third-
order, and fourth-order RKDG methods with associated multi-resolution WENO limiters 
are developed as examples, which could maintain the original order of accuracy in 
smooth regions and keep essentially non-oscillatory property near strong shocks or contact 
discontinuities by gradually degrading from the highest order to the first order. The linear 
weights inside the procedure of the new multi-resolution WENO limiters can be any 
positive numbers on the condition that their sum equals one. This is the first time that 
a series of polynomials of different degrees within the troubled cell itself are applied in 
a WENO fashion to modify the DG solutions in the troubled cell on triangular meshes. 
These new WENO limiters are very simple to construct, and can be easily implemented 
to arbitrary high-order accuracy and in higher dimensions on unstructured meshes. Such 
spatial reconstruction methodology improves the robustness in the simulation on the 
same compact spatial stencil of the original DG methods on triangular meshes. Extensive 
one-dimensional (run as two-dimensional problems on triangular meshes) and two-
dimensional tests are performed to demonstrate the effectiveness of these RKDG methods 
with the new multi-resolution WENO limiters.
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1. Introduction

In this paper we study two-dimensional conservation laws{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y),
(1.1)

using the Runge-Kutta discontinuous Galerkin (RKDG) methods [7–9,11] with new multi-resolution WENO limiters on trian-
gular meshes. We apply the DG methods to discretize the spatial variables and adopt explicit, nonlinearly stable high-order 
Runge-Kutta methods [6,12,21,28,38,40] to discretize the temporal variable. Our objective of this paper is to design a new 
simple and robust high-order spatial limiting procedure to obtain uniform high-order accuracy in smooth regions and sus-
tain sharp, non-oscillatory shock transitions in non-smooth regions for arbitrary high-order RKDG methods on triangular 
meshes.

As it is well known, DG methods can be directly applied to compute the numerical solution of (1.1) on the condition 
that the solution is smooth enough or contains weak discontinuities in the computational field. We first briefly review the 
development history of the DG methods. In 1973, Reed and Hill [36] proposed the first discontinuous Galerkin (DG) method 
in the framework of neutron transport. But if problems contain strong discontinuities, the numerical solution has spurious 
oscillations near these discontinuities and this may lead to nonlinear instability. One common strategy to control these 
oscillations is to apply nonlinear limiters to RKDG methods. A major development of the DG method with a classical minmod
type total variation bounded (TVB) limiter was carried out by Cockburn et al. in a series of papers [7–11] to solve nonlinear 
time dependent hyperbolic conservation laws together with the application of an explicit, nonlinearly stable high-order 
Runge-Kutta time discretization method [40]. Such methods are termed as RKDG methods. One type of limiters is based on 
slope modification, such as above mentioned minmod type limiters [7–9,11], the moment based limiter [1], and an improved 
moment limiter [3], etc. Such limiters belong to the slope type limiters and they could suppress spurious oscillations at the 
price of possibly degrading the numerical accuracy at smooth extrema. Another type of limiters is based on the weighted 
essentially non-oscillatory (WENO) methodology [14,22,23,29,37], which can achieve high-order accuracy in smooth regions 
and keep the essentially non-oscillatory property near strong discontinuities. The WENO limiters [30,33,34,48] and Hermite 
WENO limiters [30–32,35] belong to the second type of limiters. These limiters are designed in a finite volume WENO 
fashion, but they need a wider spatial stencil for obtaining high-order schemes. Therefore, it is difficult to implement them 
for multi-dimensional problems, especially on triangular meshes or tetrahedral meshes.

Recently, a new type of multi-resolution finite difference or finite volume WENO schemes is designed in [49–51] for 
solving hyperbolic conservation laws, in which only the information defined on a hierarchy of nested central spatial stencils 
is used and no equivalent multi-resolution representation [16–20] is introduced. These new WENO schemes adopt the same 
large stencils as that of the classical WENO schemes in [23,39] on structured meshes, could obtain the optimal order of 
accuracy in smooth regions, and could gradually degrade from the optimal order to first order accuracy near strong shocks 
or contact discontinuities. The linear weights of them can be any positive numbers on the condition that their sum is 
one. In [47], we adapted this new class of multi-resolution WENO schemes as limiters for high-order RKDG methods on 
structured meshes. In this paper, as a continuation of [47], we extend this new multi-resolution WENO limiter for high-
order RKDG methods to unstructured triangular meshes. Two major advantages of these multi-resolution WENO limiters are 
the compactness of their spatial stencil, which essentially only contain the triangular troubled cell itself with information 
from neighboring triangular cells used only to determine the smoothness indicator of the zeroth degree polynomial in the 
hierarchy, and the simplicity in implementation. In order to keep the advantages of the compact stencil and simplicity of 
linear weights, we make a small modification of the procedure in [49], using orthogonal basis and L2 projection to define 
the sequence of hierarchical polynomials of different degrees in the triangular troubled cell. This modification facilitates the 
achievement of strict conservation and the maintenance of as much information of the original polynomial in the triangular 
troubled cell as possible through the mechanism of a gradual degradation to lower degree polynomials in a L2 projection 
fashion with the spatial WENO procedure. Numerical experiments indicate the good behavior of the resulting scheme in its 
robustness and sharp shock transition.

This paper is organized as follows. In section 2, we briefly review the RKDG methods for solving (1.1) on triangular 
meshes. In section 3, we present the details of the new multi-resolution WENO procedure for two-dimensional scalar and 
system problems on triangular meshes. Numerical examples are provided in section 4 to verify the compactness, accuracy, 
and stability of this new approach. Concluding remarks are given in section 5.

2. Review of the RKDG method on triangular meshes

This section provides a brief review of the RKDG methods for solving two-dimensional hyperbolic conservation laws (1.1)
on triangular meshes.

We first use DG methods to discretize the spatial variables. Given a triangulation of the computational domain consisting 
of cells � j , the DG method has its solution as well as the test function space given by V k

h = {v(x, y) : v(x, y)|� j ∈ Pk(� j)}, 
where Pk(� j) denotes the set of polynomials of degree at most k defined on � j . The semi-discrete DG method for solving 
(1.1) is defined as follows. We find the function uh ∈ V k , such that
h
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∫
�0

(uh)t v dx dy =
∫
�0

(
f (uh)vx + g(uh)v y

)
dx dy −

∫
∂�0

( f (uh), g(uh)) · n v ds, (2.1)

holds for all test functions v ∈ V k
h . Here n = (nx, ny)

T is an outward unit normal of the triangle boundary ∂�0, 
( f (uh), g(uh)) · n is a monotone numerical flux for the scalar case and an exact or approximate Riemann solver for the 
system case, and v in the last integral over ∂�0 is taken from inside the cell �0. The Lax-Friedrichs flux is used in this 
paper. For time discretization procedure, a classical third-order Runge-Kutta time discretization method [40]

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)), (2.2)

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)),

is applied to obtain a fully discrete scheme both in space and in time.

3. Multi-resolution WENO limiter on triangular meshes

In this section, we focus on designing a new multi-resolution WENO reconstruction procedure as a limiter for the second-
order, third-order, and fourth-order RKDG methods on triangular meshes. It is an extension to triangular meshes of high-
order limiting procedure that was developed in [47] on structured meshes. The main framework of the new multi-resolution 
WENO limiting procedure on triangular cell is narrated in the following.

3.1. A new modified KXRCF shock detection technique

One crucial objective of this subsection is to identify the troubled cells precisely, namely those triangular cells which may 
need the new multi-resolution WENO limiting procedure later. This is important for limiters. If excessive triangular cells are 
identified as troubled cells, the computational cost will increase greatly. If too few triangular cells are identified as troubled 
cells, the spurious oscillations may appear in non-smooth regions and the codes may stop computing for the appearance of 
negative density, negative pressure, or negative energy, etc. A comparison among different troubled cell indicators is given in 
[34]. The classical KXRCF shock detection technique [24] is widely used in detecting troubled cells, which are cells that may 
contain strong shocks or contact discontinuities and in which the multi-resolution WENO limiter is applied. We propose a 
new modified version of the classical KXRCF shock detection technique [24] to detect troubled cells on triangular meshes. 
Other troubled cell detectors can of course also be used, but our emphasis in this paper is not to study the pros and cons 
of various troubled cell indicators. As shown in [24], we will divide the boundary of the triangular cell � j into two parts: 
∂�−

j and ∂�+
j , where the flow is into and out of � j , respectively. In the one-dimensional case, Fu and Shu [15] noted that 

the scaling of |x j+ 1
2

− x j− 1
2
| k+1

2 tends to mark a lot more troubled cells than necessary for high-order DG methods. They 

decreased the power of |x j+ 1
2

− x j− 1
2
| to be min(k,2)+1

2 , which seems to be strong enough to single out discontinuities [15]. 
Now on triangular meshes, we define the triangular cell �0 as a troubled cell on the condition that

| ∫
∂�−

0
(uh(x, y, t)|�0 − uh(x, y, t)|�l )ds|

hR
0 |∂�−

0 | · |||ûh(x, y, t)|∂�0 |||
≥ Ck, (3.1)

where R = 1 for k = 1 and R = 1.5 for k > 1, h0 is the radius of the circumscribed circle in the triangular cell �0, and Ck
is a constant, usually, we take Ck = 1 as specified in [24]. Here �l, l = 1, 2, 3 (as shown in Fig. 3.1) denote the neighboring 
triangular cells of �0 on the side of ∂�−

0 . uh(x, y, t) is the numerical solution corresponding to the indicator variable(s) 
and |||ûh(x, y, t)|∂�0 ||| is defined as the minimum value of |uh(x, y, t)| along ∂�0. By using (3.1), we do not need to adopt 
different types of Ck to compute multi-dimensional test problems as in [15] and can simply set Ck = 1 in all numerical 
computations, unless specified otherwise. This new modified KXRCF shock detection technique is simple and robust enough 
to catch strong discontinuities without identifying excessive troubled cells on triangular meshes.

3.2. New multi-resolution WENO limiting procedure

The objective of this subsection is to reconstruct a new polynomial using the multi-resolution WENO limiting procedure 
to replace the solution polynomial on the troubled cell. The new polynomial should maintain the cell average and high-order 
accuracy of the original DG solution without introducing oscillations on triangular meshes.

First, the details of the new multi-resolution WENO limiting procedure are presented for the scalar case. The basic idea is 
to reconstruct a new polynomial on the troubled cell Ii, j which is a convex combination of polynomials of different degrees: 
the DG solution polynomial on this triangular cell and a sequence of hierarchical “modified” solution polynomials based on 
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Fig. 3.1. �0 and its neighboring triangular cells �1, �2, and �3.

the L2 projection methodology. The nonlinear weights in the convex combination coefficients follow the standard WENO 
procedure. For simplicity, we also rewrite uh(x, y, t) to be uh(x, y) ∈ W k

h = {v(x, y) : v(x, y)|�0 ∈ Pk(�0)} in the following, 
if it does not cause confusion. Now we assume �0 is a troubled cell which is detected by our new proposed troubled cell 
indicator. The procedure to reconstruct a new polynomial on the troubled cell �0 by using the new multi-resolution WENO 
reconstruction procedure is summarized as follows:

Step 1.1. Define a series of polynomials of different degrees on the troubled cell �0. We construct polynomials 
q�(x, y), � = 0, ..., k, which satisfy∫

�0

q�(x, y)v(0)

l (x, y)dxdy =
∫
�0

uh(x, y)v(0)

l (x, y)dxdy, l = 0, ...,
(� + 1)(� + 2)

2
− 1. (3.2)

Remark 1. The construction of different polynomials q�(x, y), � = 0, ..., k is very simple, if we adopt local orthonormal basis 

v(0)

l (x, y) over �0. In this case, we can directly obtain q�(x, y) = ∑ (�+1)(�+2)
2 −1

l=0 u(l)
0 (t)v(0)

l (x, y), � = 0, ..., k, respectively.

Step 1.2. Obtain equivalent expressions for these constructed polynomials of different degrees. To keep consistent no-
tation, we will denote p0,1(x, y) = q0(x, y). For different high-order approximations, following similar ideas for classical 
CWENO schemes [4,26,27] and in [45,46], we obtain polynomials p�,�(x, y), � = 1, ..., k through

p�,�(x, y) = 1

γ�,�

q�(x, y) − γ�−1,�

γ�,�

p�−1,�(x, y), � = 1, ...,k, (3.3)

with γ�−1,� + γ�,� = 1 and γ�,� �= 0, together with polynomials p�,�+1(x, y), � = 1, ..., k − 1 through

p�,�+1(x, y) = ω�,� p�,�(x, y) + ω�−1,�p�−1,�(x, y), � = 1, ...,k − 1, (3.4)

with ω�−1,� + ω�,� = 1. In these expressions, γ�−1,� and γ�,� are the linear weights, and ω�−1,� and ω�,� are the nonlinear 
weights (which will be precisely narrated later), respectively. Based on a balance between the sharp and essentially non-
oscillatory shock transitions in non-smooth regions and accuracy in smooth regions, following the practice in [13,44–46,52], 
we set the linear weights as γ�−1,� = 0.01 and γ�,� = 0.99, � = 1, ..., k, respectively.

Step 1.3. Compute the smoothness indicators β�,�2 , which measure how smooth the functions p�,�2 (x, y) for � = �2 −
1, �2; �2 = 1, 2, 3 are in the triangular cell �0. We use the same recipe for the smoothness indicators as in [23,39]:

β�,�2 =
κ∑

|α|=1

∫
�0

�
|α|−1
0

(
∂ |α|

∂xα1∂ yα2
p�,�2(x, y)

)2

dx dy, � = �2 − 1, �2; �2 = 1,2,3, (3.5)

where κ = �, α = (α1, α2), and |α| = α1 +α2, respectively. The only exception is β0,1, which we magnify from zero to a value 
defined below. As shown in Fig. 3.1, we first denote the linear polynomial q0,1(x, y) with the L2 projection methodology of 
uh(x, y) ∈ W k

h = {v(x, y) : v(x, y)|�1 ∈Pk(�1)} satisfying∫
�1

q0,1(x, y)v(1)

l (x, y)dxdy =
∫
�1

uh(x, y)v(1)

l (x, y)dxdy, l = 0,1,2, (3.6)

the linear polynomial q0,2(x, y) with the L2 projection methodology of uh(x, y) ∈ W k
h = {v(x, y) : v(x, y)|�2 ∈ Pk(�2)} sat-

isfying∫
q0,2(x, y)v(2)

l (x, y)dxdy =
∫

uh(x, y)v(2)

l (x, y)dxdy, l = 0,1,2, (3.7)
�2 �2



J. Zhu et al. / Applied Numerical Mathematics 153 (2020) 519–539 523
and the linear polynomial q0,3(x, y) with the L2 projection methodology of uh(x, y) ∈ W k
h = {v(x, y) : v(x, y)|�3 ∈ Pk(�3)}

satisfying∫
�3

q0,3(x, y)v(3)

l (x, y)dxdy =
∫
�3

uh(x, y)v(3)

l (x, y)dxdy, l = 0,1,2. (3.8)

Remark 2. We can obtain q0,1(x, y) = ∑2
l=0 u(l)

1 (t)v(1)

l (x, y), q0,2(x, y) = ∑2
l=0 u(l)

2 (t)v(2)

l (x, y), and q0,3(x, y) =∑2
l=0 u(l)

3 (t)v(3)

l (x, y), respectively.

Then the associated smoothness indicators are

ς0,1 =
∫
�0

(
∂

∂x
q0,1(x, y)

)2

+
(

∂

∂ y
q0,1(x, y)

)2

dxdy, (3.9)

ς0,2 =
∫
�0

(
∂

∂x
q0,2(x, y)

)2

+
(

∂

∂ y
q0,2(x, y)

)2

dxdy, (3.10)

and

ς0,3 =
∫
�0

(
∂

∂x
q0,3(x, y)

)2

+
(

∂

∂ y
q0,3(x, y)

)2

dxdy. (3.11)

After that, we define β0,1 as

β0,1 = min(ς0,1, ς0,2, ς0,3). (3.12)

Step 1.4. Compute the nonlinear weights based on the linear weights and the smoothness indicators. We adopt the 
WENO-Z recipe as shown in [2,5], with τ�2 for �2 = 1, 2, 3 defined as related to the absolute difference between the smooth-
ness indicators:

τ�2 = (
β�2,�2 − β�2−1,�2

)2
, �2 = 1,2,3. (3.13)

The nonlinear weights are then given as

ω�1,�2 = ω̄�1,�2∑�2
�=�2−1 ω̄�,�2

, ω̄�1,�2 = γ�1,�2

(
1 + τ�2

ε + β�1,�2

)
, �1 = �2 − 1, �2; �2 = 1,2,3. (3.14)

Here ε is taken as 10−6 in all numerical simulations.
Step 1.5. The new final reconstruction polynomial unew

h |�0 = pnew(x, y) on the troubled cell �0 is given by

pnew(x, y) =
�2∑

�=�2−1

ω�,�2 p�,�2(x, y), �2 = 1,2,3, (3.15)

for the second-order, third-order, and fourth-order approximations, respectively.
Thereafter, the details of the new multi-resolution WENO limiting procedure are presented for the systems case. Now 

we study equation (1.1), where u, f (u), and g(u) are vectors with m components. For the purpose of achieving better non-
oscillatory property, the new multi-resolution WENO reconstruction limiter is used with a local characteristic decomposition 
[37]. In this paper, we only consider the two-dimensional Euler equations and set m = 4.

ut + f (u)x + g(u)y = ∂

∂t

⎛
⎜⎜⎝

ρ
ρμ
ρν
E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎞
⎟⎟⎠ + ∂

∂ y

⎛
⎜⎜⎝

ρν
ρμν

ρν2 + p
ν(E + p)

⎞
⎟⎟⎠ = 0, (3.16)

with u(x, y, 0) = u0(x, y), where ρ is the density, μ is the x-direction velocity, ν is the y-direction velocity, E is the total 
energy, p = E

γ −1 − 1
2 ρ(μ2 +ν2) is the pressure, and γ = 1.4, respectively. We denote the Jacobian matrices as ( f ′(u), g′(u)) ·

ni and ni = (ni x,ni y)
T , i = 1, 2, 3, are the outward unit normals to different edges of the target cell. We then give the left 

and right eigenvectors of such Jacobian matrices as specified in [53]. Assuming �0 is the troubled cell detected by the new 
modified version of original KXRCF technique [24], we denote associated polynomial vectors p0, p1, p2, and p3, respectively, 
on the troubled cell. We then perform the new multi-resolution WENO limiting procedure as follows:
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Fig. 4.1. Burgers’ equation. Sample mesh.

Table 4.1
ut +

(
u2

2

)
x
+

(
u2

2

)
y

= 0. u(x, y, 0) = 0.5 + sin(π(x + y)/2). Periodic boundary conditions in both directions. T = 0.5/π . L1, L∞ , and L2 errors.

RKDG with new multi-resolution WENO limiter RKDG without limiter

cell L1 error order L∞ error order L2 error order L1 error order L∞ error order L2 error order

P 1 232 1.56E-2 1.89E-1 2.23E-2 1.43E-2 1.06E-1 2.07E-2
928 3.52E-3 2.15 2.88E-2 2.71 5.35E-3 2.06 3.54E-3 2.01 2.92E-2 1.86 5.38E-3 1.94
3712 8.67E-4 2.02 7.78E-3 1.89 1.36E-3 1.97 8.68E-4 2.02 7.79E-3 1.91 1.36E-3 1.98
14848 2.15E-4 2.01 2.13E-3 1.87 3.45E-4 1.98 2.15E-4 2.01 2.13E-3 1.87 3.45E-4 1.98
59392 5.36E-5 2.00 5.58E-4 1.93 8.70E-5 1.99 5.36E-5 2.00 5.58E-4 1.93 8.70E-5 1.99

P 2 232 2.40E-3 2.26E-2 3.81E-3 1.92E-3 2.27E-2 3.16E-3
928 3.10E-4 2.95 4.33E-3 2.39 5.39E-4 2.82 2.98E-4 2.69 4.33E-3 2.39 5.16E-4 2.61
3712 4.22E-5 2.88 7.58E-4 2.52 7.96E-5 2.76 4.23E-5 2.81 7.58E-4 2.52 7.96E-5 2.70
14848 5.70E-6 2.89 1.18E-4 2.68 1.15E-5 2.79 5.70E-6 2.89 1.18E-4 2.68 1.15E-5 2.79
59392 7.67E-7 2.89 1.77E-5 2.73 1.63E-6 2.82 7.67E-7 2.89 1.77E-5 2.73 1.63E-6 2.82

P 3 232 3.38E-4 5.24E-3 7.49E-4 3.07E-4 5.40E-3 7.04E-4
928 2.20E-5 3.94 5.46E-4 3.26 5.88E-5 3.67 2.20E-5 3.80 5.46E-4 3.31 5.88E-5 3.58
3712 1.28E-6 4.10 3.91E-5 3.80 3.64E-6 4.01 1.28E-6 4.10 3.91E-5 3.80 3.64E-6 4.01
14848 8.01E-8 4.00 2.59E-6 3.91 2.28E-7 4.00 8.01E-8 4.00 2.59E-6 3.91 2.28E-7 4.00
59392 5.14E-9 3.96 1.73E-7 3.90 1.46E-8 3.96 5.14E-9 3.96 1.73E-7 3.90 1.46E-8 3.96

Step 2.1. In each ni -direction among three normal directions of ∂�0, we reconstruct new polynomial vectors pnew
i , 

i = 1, 2, 3, by using the characteristic-wise new multi-resolution WENO limiting procedure with the associated Jacobian 
f ′(u)ni x + g′(u)ni y , i = 1, 2, 3 as specified in [53]:

Step 2.1.1. Project the polynomial vectors p0, p1, p2, and p3 into the characteristic fields ˜̃pil = Li · pl , i = 1, 2, 3, l =
0, 1, 2, 3. ˜̃pil is a 4-component vector with each component being a polynomial of degree up to k.

Step 2.1.2. For each component of ˜̃pil , we perform Step 1.1 to Step 1.5 of the new multi-resolution WENO limiting 
procedure that has been specified for the scalar case, to obtain new 4-component vectors on the troubled cell �0 as ˜̃pnew

i , 
i = 1, 2, 3, respectively.

Step 2.1.3. Project ˜̃pnew
i into the physical space pnew

i = Ri · ˜̃pnew
i , i = 1, 2, 3.

Step 2.2. The final new 4-component vector on the troubled cell �0 is defined as

pnew =
∑3

i=1 pnew
i |�i |∑3

i=1 |�i |
.

4. Numerical results

In this section, we provide numerical results to testify the performance of the new multi-resolution WENO limiters for 
the RKDG methods on triangular meshes described in previous sections. For all of our accuracy tests, the refinement is 
performed by a structured refinement (each triangle is divided into four similar smaller triangles for every level of the 
refinement). The CFL number is 0.3 for the second-order (P 1), 0.18 for the third-order (P 2), and 0.1 for the fourth-order 
(P 3) RKDG methods with and without new multi-resolution WENO limiters on triangular meshes, except for the accuracy 
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Fig. 4.2. 2D-Euler equations. Sample mesh.

Table 4.2
2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, and p(x, y, 0) = 1. Periodic boundary conditions in both 
directions. T = 2.0. L1, L∞ , and L2 errors.

RKDG with new multi-resolution WENO limiter RKDG without limiter

cell L1 error order L∞ error order L2 error order L1 error order L∞ error order L2 error order

P 1 232 3.62E-3 1.60E-2 4.59E-3 3.62E-3 1.60E-2 4.59E-3
928 6.51E-4 2.48 3.46E-3 2.22 8.68E-4 2.40 6.51E-4 2.48 3.46E-3 2.22 8.68E-4 2.40
3712 1.45E-4 2.17 8.68E-4 1.99 1.98E-4 2.13 1.45E-4 2.17 8.68E-4 1.99 1.98E-4 2.13
14848 3.47E-5 2.06 2.21E-4 1.97 4.77E-5 2.05 3.47E-5 2.06 2.21E-4 1.97 4.77E-5 2.05
59392 8.53E-6 2.03 5.61E-5 1.98 1.17E-5 2.02 8.53E-6 2.03 5.61E-5 1.98 1.17E-5 2.02

P 2 232 4.84E-4 3.73E-3 6.91E-4 3.36E-4 2.35E-3 4.44E-4
928 4.42E-5 3.45 3.45E-4 3.44 5.92E-5 3.54 4.32E-5 2.96 3.38E-4 2.80 5.74E-5 2.95
3712 5.10E-6 3.12 3.63E-5 3.25 6.70E-6 3.14 5.10E-6 3.08 3.63E-5 3.22 6.70E-6 3.09
14848 5.96E-7 3.09 4.56E-6 2.99 7.89E-7 3.08 5.96E-7 3.09 4.56E-6 2.99 7.89E-7 3.08
59392 7.16E-8 3.06 5.63E-7 3.02 9.58E-8 3.04 7.16E-8 3.06 5.63E-7 3.02 9.58E-8 3.04

P 3 232 1.07E-5 8.42E-5 1.51E-5 1.07E-5 8.42E-5 1.51E-5
928 5.79E-7 4.22 5.89E-6 3.84 8.47E-7 4.16 5.79E-7 4.22 5.89E-6 3.84 8.47E-7 4.16
3712 3.41E-8 4.08 3.93E-7 3.91 5.14E-8 4.04 3.41E-8 4.08 3.93E-7 3.91 5.14E-8 4.04
14848 2.06E-9 4.05 2.20E-8 4.15 3.15E-9 4.03 2.06E-9 4.05 2.20E-8 4.15 3.15E-9 4.03
59392 1.27E-10 4.02 1.51E-9 3.86 1.95E-10 4.01 1.27E-10 4.02 1.51E-9 3.86 1.95E-10 4.01

Table 4.3
The Lax problem. The maximum and average percentages of troubled cells subject to the new multi-resolution WENO limiting.

Percentage of the troubled cells

P 1 cell length h 1/200 P 2 cell length h 1/200 P 3 cell length h 1/200
maximum percent 2.97 maximum percent 6.56 maximum percent 7.65
average percent 2.09 average percent 4.95 average percent 5.08

Table 4.4
The Sod problem. The maximum and average percentages of troubled cells subject to the new multi-resolution WENO limiting.

Percentage of the troubled cells

P 1 cell length h 10/200 P 2 cell length h 10/200 P 3 cell length h 10/200
maximum percent 0.35 maximum percent 1.92 maximum percent 1.22
average percent 0.03 average percent 1.00 average percent 0.75

Table 4.5
The shock density wave interaction problem. The maximum and average percentages of troubled cells subject to the new multi-resolution WENO limiting.

Percentage of the troubled cells

P 1 cell length h 10/200 P 2 cell length h 10/200 P 3 cell length h 10/200
maximum percent 0.99 maximum percent 1.40 maximum percent 1.05
average percent 0.60 average percent 0.75 average percent 0.57
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Fig. 4.3. Burgers’ equation. T = 1.5/π . The surface of the solution. RKDG with new multi-resolution WENO limiter. Top: Ck = 1; bottom: all cells are defined 
as troubled cells. Left: second-order (k = 1); middle: third-order (k = 2); right: fourth-order (k = 3).

Fig. 4.4. The Lax problem. T = 0.16. Density cut at y = 0. Solid line: the exact solution; numbers: RKDG with new multi-resolution WENO limiter. From 
left to right: “1” for second-order (k = 1); “2” for third-order (k = 2); “3” for fourth-order (k = 3); density zoomed-in. The mesh points on the boundary 
are uniformly distributed with cell length h = 1/200.

Fig. 4.5. The Sod problem. T = 2. Density cut at y = 0. Solid line: the exact solution; numbers: RKDG with new multi-resolution WENO limiter. From left 
to right: “1” for second-order (k = 1); “2” for third-order (k = 2); “3” for fourth-order (k = 3); density zoomed-in. The mesh points on the boundary are 
uniformly distributed with cell length h = 10/200.
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Fig. 4.6. The shock density wave interaction problem. T = 1.8. Density cut at y = 0. Solid line: the “exact” solution; numbers: RKDG with new multi-
resolution WENO limiter. From left to right: “1” for second-order (k = 1); “2” for third-order (k = 2); “3” for fourth-order (k = 3); density zoomed-in. The 
mesh points on the boundary are uniformly distributed with cell length h = 10/200.

Table 4.6
The blast wave problem. The maximum and average percentages of troubled cells subject to the new multi-resolution WENO limiting.

Percentage of the troubled cells

P 1 cell length h 1/400 P 2 cell length h 1/400 P 3 cell length h 1/400
maximum percent 2.72 maximum percent 3.46 maximum percent 3.26
average percent 1.70 average percent 2.58 average percent 1.98

Fig. 4.7. The blast wave problem. T=0.038. Density cut at y = 0. Solid line: the “exact” solution; numbers: RKDG with new multi-resolution WENO limiter. 
From left to right: “1” for second-order (k = 1); “2” for third-order (k = 2); “3” for fourth-order (k = 3); density zoomed-in. The mesh points on the 
boundary are uniformly distributed with cell length h = 1/400.

Fig. 4.8. Double Mach reflection problem. Sample mesh.

Table 4.7
Double Mach reflection problem. The maximum and average percentages of troubled cells subject to the new multi-resolution WENO limiting.

Percentage of the troubled cells

P 1 cell length h 1/200 P 2 cell length h 1/200 P 3 cell length h 1/200
maximum percent 1.95 maximum percent 6.95 maximum percent 6.95
average percent 1.31 average percent 3.85 average percent 3.84
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Fig. 4.9. Double Mach reflection problem. RKDG with new multi-resolution WENO limiter. Top: second-order (k = 1); middle: third-order (k = 2); bottom: 
fourth-order (k = 3). 30 equally spaced density contours from 1.5 to 21.5. The mesh points on the boundary are uniformly distributed with cell length 
h = 1/200.

Table 4.8
Forward step problem. The maximum and average percentages of troubled cells subject to the new multi-resolution WENO limiting.

Percentage of the troubled cells

P 1 cell length h 1/100 P 2 cell length h 1/100 P 3 cell length h 1/100
maximum percent 3.16 maximum percent 10.3 maximum percent 9.25
average percent 2.56 average percent 8.81 average percent 6.78
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Fig. 4.10. Double Mach reflection problem. RKDG with new multi-resolution WENO limiter. Left: second-order (k = 1); right: third-order (k = 2); bottom: 
fourth-order (k = 3). Zoomed-in pictures around the Mach stem. 30 equally spaced density contours from 1.5 to 21.5. The mesh points on the boundary are 
uniformly distributed with cell length h = 1/200.

examples where the time step is smaller so as to guarantee that the spatial error dominates. We perform the new multi-
resolution WENO limiting procedure on every triangular cell for simulating the accuracy tests, in order to fully testify 
the influence of the limiter upon accuracy. But we only define all triangular cells as troubled cells in Example 4.1 and 
Example 4.2, and will set the constant Ck = 1 in (3.1) in other examples, unless specified otherwise. We also set the linear 
weights as γ�−1,� = 0.01 and γ�,� = 0.99, � = 1, 2, 3, respectively, for simplicity in this paper.

Example 4.1. We first compute two-dimensional scalar Burgers’ equation

ut +
(

u2

2

)
x
+

(
u2

2

)
y
= 0, (x, y) ∈ [−2,2] × [−2,2], (4.1)

with the initial condition u(x, y, 0) = 0.5 + sin(π(x + y)/2) and periodic boundary conditions in both directions. The final 
time is t = 0.5/π , when the solution is still smooth. For this accuracy test case, the sample mesh is shown in Fig. 4.1. In 
order to fully test the effect of the new multi-resolution WENO limiter on accuracy, we perform the new limiting procedure 
on every triangular cell inside the computational domain. The L1, L∞, L2 errors, and numerical orders of accuracy for the 
RKDG methods with/without new multi-resolution WENO limiters are shown in Table 4.1. It is observed that the new 
multi-resolution WENO limiters maintain the designed order of accuracy.

Example 4.2. We solve two-dimensional Euler equations (3.16). The computational field is [0,2] × [0,2]. The initial conditions 
are: ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), μ(x, y, 0) = 0.7, ν(x, y, 0) = 0.3, and p(x, y, 0) = 1. Periodic boundary conditions are 
applied in both directions. The exact solution of density is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t)). The final time is t = 2. For 
this test case, the sample mesh is shown in Fig. 4.2. Similar to the previous example, we define all triangular cells in the 
computational field as troubled cells and perform the new multi-resolution WENO limiting procedure on every triangular 
cell. The L1, L∞, L2 errors, and numerical orders of accuracy of the density for the RKDG methods with new multi-resolution 
WENO limiters comparing with the original RKDG methods without limiters are shown in Table 4.2. Similar to the previous 
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Fig. 4.11. Double Mach reflection problem. RKDG with new multi-resolution WENO limiter. Top: second-order (k = 1); middle: third-order (k = 2); bottom: 
fourth-order (k = 3). Troubled cells. Circles denote triangles which are identified as troubled cells subject to the new multi-resolution WENO limiting at the 
last time step. The mesh points on the boundary are uniformly distributed with cell length h = 1/200.

example, the new multi-resolution WENO limiting procedure can maintain the desired order of accuracy even though the 
cells in smooth regions are all “intentionally” identified as troubled cells.

Example 4.3. We solve the nonlinear Burgers’ equation (4.1) with the same computational field [−2, 2] × [−2, 2] and the 
same initial condition u(x, y, 0) = 0.5 + sin(π(x + y)/2), except that we plot the results at t = 1.5/π when a shock has 
already appeared in the solution. The solutions with the constant Ck = 1 in the troubled cell indicator, and when all cells 
are defined as troubled cells in the computational field, are shown in Fig. 4.3 for comparisons. We can see different RKDG 
methods with new multi-resolution WENO limiters could give non-oscillatory shock transitions for this problem in either 
case.



J. Zhu et al. / Applied Numerical Mathematics 153 (2020) 519–539 531
Fig. 4.12. Forward step problem. Sample mesh.

Example 4.4. We solve two-dimensional Euler equations (3.16) with the Riemann initial condition for the Lax problem [25]:

(ρ,μ,ν, p)T =
{

(0.445,0.698,0,3.528)T , x ∈ [−0.5,0),

(0.5,0,0,0.571)T , x ∈ [0,0.5]. (4.2)

The final time is t = 0.16. We seek the solution in the domain of [−0.5, 0.5] × [−0.025, 0.025] with a triangulation of 
201 vertices in the x-direction and 11 vertices in the y-direction. The periodic boundary condition is applied in the y-
direction. The results and zoomed-in pictures for different RKDG methods with new multi-resolution WENO limiters are 
shown in Fig. 4.4. The percentage of triangular cells declared to be troubled cells for different RKDG methods with new 
multi-resolution WENO limiters is given in Table 4.3. We observe good computational results obtained by the associated 
multi-resolution WENO limiting procedure.

Example 4.5. We solve two-dimensional Euler equations (3.16) with Riemann initial condition for the Sod problem [42]:

(ρ,μ,ν, p)T =
{

(1,0,0,2.5)T , x ∈ [−5,0),

(0.125,0,0,0.25)T , x ∈ [0,5]. (4.3)

The final time is t = 2. We seek the solution in the domain of [−5, 5] × [−0.25, 0.25] with a triangulation of 201 vertices 
in the x-direction and 11 vertices in the y-direction. The periodic boundary condition is applied in the y-direction. The 
results and zoomed-in pictures for associated methods are shown in Fig. 4.5. The percentage of triangular cells declared to 
be troubled cells for different RKDG methods with new multi-resolution WENO limiters is given in Table 4.4. The numerical 
results computed by RKDG methods with new multi-resolution WENO limiters are again in good shape.

Example 4.6. A higher order scheme would show its advantage when the solution contains both shocks and complex smooth 
region structures. A typical example for this is the problem of shock interaction with entropy waves [37,41]. We solve 
two-dimensional Euler equations (3.16) with a moving Mach 3 shock interacting with sine waves in density in the x-
direction: (ρ, μ, ν, p)T = (3.857143, 2.629369, 0, 10.333333)T for x ∈ [−5, −4); (ρ, μ, ν, p)T = (1 + 0.2 sin(5x), 0, 0, 1)T for 
x ∈ [−4, 5]. The solution of the Euler equations (3.16) is obtained in the domain of [−5, 5] × [−0.25, 0.25] with a triangu-
lation of 201 vertices in the x-direction and 11 vertices in the y-direction. The periodic boundary condition is applied in 
the y-direction. The computed density ρ is plotted at t = 1.8 against the reference “exact” solution which is a converged 
solution computed by the finite difference fifth-order WENO scheme [23] with 2000 grid points in Fig. 4.6. The percentage 
of triangular cells declared to be troubled cells for different RKDG methods with new multi-resolution WENO limiters is 
given in Table 4.5. The second-order, third-order, and fourth-order RKDG methods with new multi-resolution WENO lim-
iters could get good resolution for this example, and we can clearly observe increased resolution for higher order RKDG 
methods.

Example 4.7. We now consider the interaction of two blast waves [43]. The initial condition is:

(ρ,μ,ν, p)T =
⎧⎨
⎩

(1,0,0,103)T , 0 < x < 0.1,

(1,0,0,10−2)T , 0.1 < x < 0.9,

(1,0,0,102)T , 0.9 < x < 1.

(4.4)

The computed density ρ is plotted at t = 0.038 against the reference “exact” solution which is a converged solution com-
puted by the finite difference fifth-order WENO scheme [23] with 20000 grid points. The solution of the Euler equations 
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Fig. 4.13. Forward step problem. RKDG with new multi-resolution WENO limiter. Top: second-order (k = 1); middle: third-order (k = 2); bottom: fourth-
order (k = 3). 30 equally spaced density contours from 0.32 to 6.15. The mesh points on the boundary are uniformly distributed with cell length h = 1/100.

(3.16) is obtained in the domain of [0, 1] × [−0.0125, 0.0125] with a triangulation of 401 vertices in the x-direction and 11 
vertices in the y-direction. The periodic boundary condition is applied in the y-direction. The results and zoomed in pic-
tures for different RKDG methods are shown in Fig. 4.7. The percentage of triangular cells declared to be troubled cells for 
different RKDG methods with new multi-resolution WENO limiters is given in Table 4.6. The new multi-resolution WENO 
limiting procedure could get good performance as before, with increased resolution for higher order accuracy.

Example 4.8. Double Mach reflection problem. This model problem is originally from [43]. We solve the Euler equations 
(3.16) in a computational domain of [0, 4] × [0, 1]. The reflection boundary condition is used at the wall, while for the rest 
of the bottom boundary (the part from x = 0 to x = 1

6 ), and the exact post-shock condition is imposed. At the top boundary 
is the exact motion of the Mach 10 shock. The results shown are at t = 0.2. Three different orders of accuracy for the 
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Fig. 4.14. Forward step problem. RKDG with new multi-resolution WENO limiter. Top: second-order (k = 1); middle: third-order (k = 2); bottom: fourth-
order (k = 3). Troubled cells. Circles denote triangles which are identified as troubled cells subject to the new multi-resolution WENO limiting at the last 
time step. The mesh points on the boundary are uniformly distributed with cell length h = 1/100.

RKDG methods with new multi-resolution WENO limiters, k = 1, k = 2, and k = 3 (second-order, third-order, and fourth-
order accuracies), are used in this two-dimensional example. A sample mesh is shown in Fig. 4.8. The simulation results are 
shown in Fig. 4.9. The “zoomed-in” pictures around the double Mach stem to show more details are given in Fig. 4.10. The 
percentage of triangular cells declared to be troubled cells for different RKDG methods with new multi-resolution WENO 
limiters is given in Table 4.7. The troubled cells identified at the last time step are shown in Fig. 4.11. Clearly, the resolution 
improves with an increasing k on the same mesh level.

Example 4.9. A Mach 3 wind tunnel with a step. This model problem is also originally from [43]. The setup of the problem 
is as follows. The wind tunnel is one length unit wide and three length units long. The step is 0.2 length units high and 
is located 0.6 length units from the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow. 
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Fig. 4.15. NACA0012 airfoil mesh. Zoomed-in mesh.

Table 4.9
NACA0012 airfoil problem. The maximum and average percentages of troubled cells subject to the new multi-resolution WENO limiting.

M∞ = 0.8, angle of attack α = 1.25◦ M∞ = 0.85, angle of attack α = 1◦

P 1 maximum percentage 2.17 maximum percentage 2.24
average percentage 0.73 average percentage 1.26

P 2 maximum percentage 5.66 maximum percentage 5.80
average percentage 2.55 average percentage 3.41

P 3 maximum percentage 4.86 maximum percentage 5.07
average percentage 2.43 average percentage 3.91

Reflective boundary conditions are applied along the wall of the tunnel and inflow/outflow boundary conditions are applied 
at the entrance/exit. The results are shown at t = 4. We present a sample triangulation of the whole region [0, 3] × [0, 1]
in Fig. 4.12. In Fig. 4.13, we show 30 equally spaced density contours from 0.32 to 6.15 computed by the second-order, 
third-order, and fourth-order RKDG methods with new multi-resolution WENO limiters, respectively. The percentage of 
triangular cells declared to be troubled cells for different RKDG methods with new multi-resolution WENO limiters is given 
in Table 4.8. The troubled cells identified at the last time step are shown in Fig. 4.14. We can clearly observe that the 
fourth-order scheme gives better resolution than the second-order and third-order schemes, especially for the resolution of 
the physical instability and roll-up of the contact line.

Example 4.10. We consider inviscid Euler transonic flow past a single NACA0012 airfoil configuration with Mach number 
M∞ = 0.8, angle of attack α = 1.25◦ , and with M∞ = 0.85, angle of attack α = 1◦ . The computational domain is [−15, 15] ×
[−15, 15]. The mesh used in the computation is shown in Fig. 4.15, consisting of 9340 elements with the maximum diameter 
of the circumcircle being 1.4188 and the minimum diameter being 0.0031 near the airfoil. The mesh uses curved cells 
near the airfoil. The second-order, third-order, and fourth-order RKDG methods with new multi-resolution WENO limiters 
are used in the numerical experiment. Mach number distributions are shown in Fig. 4.16. Fig. 4.17 shows the pressure 
(C p ) distributions on each cell-face for solutions obtained by second-order, third-order, and fourth-order RKDG methods 
with new multi-resolution WENO limiters, respectively. The percentage of triangular cells declared to be troubled cells for 
different RKDG methods with new multi-resolution WENO limiters is given in Table 4.9. The troubled cells identified at the 
last time step are shown in Fig. 4.18 and very few cells are identified as troubled cells with the application of new modified 
version of the original KXRCF shock detection technique [24].

5. Concluding remarks

We have designed a new type of multi-resolution WENO limiters for the second-order, third-order, and fourth-order 
Runge-Kutta discontinuous Galerkin (RKDG) methods for solving two-dimensional scalar equation and hyperbolic conser-
vation laws on triangular meshes. The general framework of such multi-resolution WENO limiters for high-order RKDG 
methods is to modify a new version of the original KXRCF shock detection technique [24] to detect troubled cells subject to 
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Fig. 4.16. NACA0012 airfoil. RKDG with new multi-resolution WENO limiter. Top: second-order (k = 1); middle: third-order (k = 2); bottom: fourth-order 
(k = 3). Mach number. Left: M∞ = 0.8, angle of attack α = 1.25◦ , 30 equally spaced Mach number contours from 0.172 to 1.325; right: M∞ = 0.85, angle 
of attack α = 1◦ , 30 equally spaced Mach number contours from 0.158 to 1.357.

the multi-resolution WENO limiting procedure on triangular meshes, and construct a sequence of hierarchical L2 projection 
polynomial solutions of the DG methods over the troubled cell. The main innovation is the new multi-resolution WENO 
reconstruction procedure, which basically only uses the information defined within the triangular troubled cell, with infor-
mation from neighboring triangular cells used marginally in the determination of the smoothness indicator of the lowest 
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Fig. 4.17. NACA0012 airfoil. RKDG with new multi-resolution WENO limiter. Top: second-order (k = 1); middle: third-order (k = 2); bottom: fourth-order 
(k = 3). Pressure distribution. Left: M∞ = 0.8, angle of attack α = 1.25◦; right: M∞ = 0.85, angle of attack α = 1◦ .

order polynomial in the hierarchy, and with simple positive linear weights in the spatial reconstruction procedure. This new 
spatial reconstruction methodology is simpler, more robust, and could lead to better resolutions for standard test examples 
than previous WENO type limiters for the RKDG methods on triangular meshes. The framework of these multi-resolution 
WENO limiters for arbitrary high-order RKDG methods would also be very simple on three-dimensional tetrahedral meshes 
and the study of which is our ongoing work.



J. Zhu et al. / Applied Numerical Mathematics 153 (2020) 519–539 537
Fig. 4.18. NACA0012 airfoil. RKDG with new multi-resolution WENO limiter. Top: second-order (k = 1); middle: third-order (k = 2); bottom: fourth-order 
(k = 3). Troubled cells. Circles denote triangles which are identified as troubled cells subject to the new multi-resolution WENO limiting at the last time 
step. Left: M∞ = 0.8, angle of attack α = 1.25◦; right: M∞ = 0.85, angle of attack α = 1◦ .
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