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I. INTRODUCTION

In this paper, we present a new fifth-order accurate finite difference weighted essentially
non-oscillatory (WENO) reconstruction methodology for solving the Hamilton-Jacobi (H-J)
equations: {

φt + H(x1, · · · , xn, t , φ, ∇φ) = 0, (x1, . . . , xn, t) ∈ � × [0, ∞),

φ(x1, . . . , xn, 0) = φ0(x1, . . . , xn), (x1, . . . , xn) ∈ �,
(1.1)

where ∇φ = (φx1 , . . . , φxn)
T . The Hamilton-Jacobi equations are often used in many applications

such as geometric optics, computer vision, material science, image processing and variational cal-
culus [1–3] and so on. It is well known that the solutions to (1.1) are continuous but their associated
derivatives might be discontinuous. And such solutions may not be unique unless using the physi-
cal implications and then getting the viscosity solutions [4]. As everyone knows, the H-J equations
are closely related to conservation laws, hence we can get the exact solutions of H-J equations
from those of conservation laws and successful numerical methods for conservation laws can be
adapted for solving the H-J equations. In this literature, we refer the crucial works, Osher and
Sethian [5] presented a second order essentially non-oscillatory (ENO) scheme and Osher and
Shu [6] put forward some high order ENO schemes for solving the Hamilton-Jacobi equations.
In 2000, a finite difference fifth-order accurate weighted ENO (WENO) scheme was proposed by
Jiang and Peng [7]. Recently, Qiu [8, 9] and together with Shu [10] also gained Hermite WENO
schemes for solving the Hamilton-Jacobi equations on structured meshes. In 1996, Lafon and
Osher [11] constructed the ENO schemes for solving the Hamilton-Jacobi equations on unstruc-
tured meshes. Recently, Zhang and Shu [12], Li and Chan [13] investigated high order WENO
schemes for solving two-dimensional Hamilton-Jacobi equations by the usage of the nodal based
WENO polynomial reconstructions on triangular meshes. And some finite element methods for
arbitrary triangular meshes were proposed in [14–17]. In 1999, Hu and Shu [16] applied a discon-
tinuous Galerkin (DG) framework on the conservation law system satisfied by the derivatives of
the solution to solve H-J equations. Based on such DG method, in 2007, Cheng and Shu presented
direct DG methods to solve for the H-J equations (1.1) for φ in [18] and new flux was presented
to keep stability of the method. In [19], Yan and Osher gave a new DG method to directly solve
H-J Eq. (1.1), in which a local DG method was applied to approximate derivatives of φ precisely.

Following the original idea of WENO methodologies [20, 21], this paper is mainly based on
[7] and is a new generation of the approach of doing WENO in [22] from conservation laws
to Hamilton-Jacobi equations in the literature. Comparing with the classical WENO schemes
of Jiang and Peng [7], the major advantage of this new fifth order WENO scheme is its easy
implementation in the computation. This new WENO scheme has a convex combination of a
modified fourth degree polynomial which should subtract other two linear polynomials by multi-
plying proper constant parameters first, then compound these three unequal degree polynomials
in a WENO type methodology including artificially setting linear weights for the robustness,
computing smoothness indicators and proposing a new type of nonlinear weights which are little
different from the formula specified in [22–24], for solving the Hamilton-Jacobi equations in one
and two dimensions. The essential merits of such methodology are its robustness in spatial field
by the definition of positive linear weights, and only one six-point stencil and two three-point
stencils are used to reconstruct three different polynomials. The thought to modify the fourth
degree polynomial is very crucial for obtaining the scheme’s high-order accuracy, otherwise,
the traditional WENO methodology will inevitably degrade its numerical accuracy. Therefore,
we try to use central scheme in smooth regions for simplicity and easy implementation for the
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sake of obtaining high-order accuracy, and switch it to either of two second order schemes on
compact spatial stencils when the computing field is adjacent discontinuities for the purpose of
avoiding spurious oscillations. Thereafter, new nonlinear weight formulas are presented for these
polynomials of different degrees based on the information defined on the unequal size stencils
[25, 26]. Generally speaking, the primary innovations of this paper lie in three aspects: the new
way of reconstructing the modified fourth degree polynomial by subtracts two linear polynomials
with different parameters, a robust WENO type communications among three unequal (modified)
polynomials for high accurate approximations to the derivative quantities in different directions
and the new manner of obtaining associated nonlinear weights.

The organization of this paper is as follows: In Section II, we review and construct the
new fifth-order accurate finite difference WENO scheme in 1D and 2D in detail for solving
the Hamilton-Jacobi equations and present extensive numerical results in Section III to verify
the accuracy and easy implementation of these approaches. Concluding remarks are given in
Section IV.

II. NEW WENO SCHEME FOR HAMILTON-JACOBI EQUATION

In this section, we give the framework for solving the Hamilton-Jacobi equations briefly and
then develop the procedures of the new WENO scheme for both one and two-dimensional
Hamilton-Jacobi equations in detail.

A. The framework for one-dimensional case

We take the control Eq. (1.1) in one dimension. For simplicity, the computational field � has
been divided as the uniform mesh with intervals Ii = [xi−1/2, xi+1/2], i = 1, . . . , N . We denote
xi = 1

2 (xi−1/2 + xi+1/2) to be the interval center and |Ii | = h to be the length of I i , respectively.
(1.1) can be rewritten in one dimension as:

{
φt + H(x, t , φ, φx) = 0,

φ(x, 0) = φ0(x).
(2.1)

We define φi ≡ φi(t) = φ(xi , t) and �+φi = φi+1 − φi . And we would like to omit variable t in
the following if not cause confusion. The semidiscrete form is

dφi(t)

dt
= L(φi) = −Ĥ (xi , t , φi , φ

+
x,i , φ

−
x,i ). (2.2)

Where Ĥ is a Lipschitz continuous monotone flux consistent with H, in the sense that
Ĥ (x, t , φ, φx , φx) = H(x, t , φ, φx). The Lax-Friedrichs flux is applied here:

Ĥ (x, t , φ, u+, u−) = H

(
x, t , φ,

u+ + u−

2

)
− α

u+ − u−

2
, (2.3)

where α = maxu|H1(u)|. And H1 stands for the partial derivative of H with respect to φx .
Now, we would like to reconstruct the approximations of φx,i from the left and right sides of

the point xi , and these procedures confirm the new scheme’s high order of accuracy in smooth
regions. The simple flowchart is elaborated in detail as follows:
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Step 1. For the purpose of approximating φx(xi) on a left-biased six-point stencil
{xi−3, . . . , xi+2} and on a right-biased six-point stencil {xi−2, . . . , xi+3}, we do some definitions of
the polynomials as:

p−
1 (x) is a fourth degree polynomial defined on {xi−3, xi−2, xi−1, xi , xi+1, xi+2} and satisfies

1

h

∫ xj+1

xj

p−
1 (x)dx = �+φj

h
, j = i − 3, i − 2, i − 1, i, i + 1. (2.4)

p+
1 (x) is a fourth degree polynomial defined on {xi−2, xi−1, xi , xi+1, xi+2, xi+3} and satisfies

1

h

∫ xj+1

xj

p+
1 (x)dx = �+φj

h
, j = i − 2, i − 1, i, i + 1, i + 2. (2.5)

p−
2 (x) is a linear polynomial defined on {xi−2, xi−1, xi} and satisfies

1

h

∫ xj+1

xj

p−
2 (x)dx = �+φj

h
, j = i − 2, i − 1. (2.6)

p+
2 (x) is a linear polynomial defined on {xi−1, xi , xi+1} and satisfies

1

h

∫ xj+1

xj

p+
2 (x)dx = �+φj

h
, j = i − 1, i. (2.7)

p−
3 (x) is a linear polynomial defined on {xi−1, xi , xi+1} and satisfies

1

h

∫ xj+1

xj

p−
3 (x)dx = �+φj

h
, j = i − 1, i. (2.8)

p+
3 (x) is a linear polynomial defined on {xi , xi+1, xi+2} and satisfies

1

h

∫ xj+1

xj

p+
3 (x)dx = �+φj

h
, j = i, i + 1. (2.9)

The fifth order approximations of φx at xi from left and right sides are given, respectively, by

φ
−,1
x,i = p−

1 (xi) =

+ 1

30

�+φi−3

h
− 13

60

�+φi−2

h
+ 47

60

�+φi−1

h
+ 9

20

�+φi

h
− 1

20

�+φi+1

h
, (2.10)

φ
+,1
x,i = p+

1 (xi) =

− 1

20

�+φi−2

h
+ 9

20

�+φi−1

h
+ 47

60

�+φi

h
− 13

60

�+φi+1

h
+ 1

30

�+φi+2

h
, (2.11)

the the third order approximations of φx at xi from left and right sides are given, respectively, by

φ
−,2
x,i = p−

2 (xi) = −1

2

�+φi−2

h
+ 3

2

�+φi−1

h
, (2.12)
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φ
+,2
x,i = p+

2 (xi) = 1

2

�+φi−1

h
+ 1

2

�+φi

h
, (2.13)

φ
−,3
x,i = p−

3 (xi) = 1

2

�+φi−1

h
+ 1

2

�+φi

h
, (2.14)

φ
+,3
x,i = p+

3 (xi) = 3

2

�+φi

h
− 1

2

�+φi+1

h
, (2.15)

Step 2. Set any positive linear weights γ1, γ2, γ3, such that γ1 + γ2 + γ3 = 1, in this paper, we
take γ1 = 0.998 and γ2 = γ3 = 0.001.

Step 3. Compute the smoothness indicators β±
n , which measure how smooth the functions

p±
n (x) are in the target cells [xi−1, xi] and [xi , xi+1], respectively. The smaller these smoothness

indicators, the smoother the functions are in different target cells. We use the similar recipe for
the smoothness indicators as in [27, 28].

β−
n =

r∑
α=1

∫ xi

xi−1

h2α−1

(
dαp−

n (x)

dxα

)2

dx, n = 1, 2, 3, (2.16)

and

β+
n =

r∑
α=1

∫ xi+1

xi

h2α−1

(
dαp+

n (x)

dxα

)2

dx, n = 1, 2, 3. (2.17)

For n = 1, r equals four and if n = 2, 3, r equals one. The associated smoothness indicators are
explicitly written and the associated expansions of them in Taylor series about φi are obtained as

β−
1 = 1

144

(�+φi−3

h
− 8

�+φi−2

h
+ 8

�+φi

h
− �+φi+1

h

)2

+ 1

15600

(
−11

�+φi−3

h
+ 174

�+φi−2

h
− 326

�+φi−1

h
+ 174

�+φi

h
− 11

�+φi+1

h

)2

+ 781

2880

(
−�+φi−3

h
+ 2

�+φi−2

h
− 2

�+φi

h
+ �+φi+1

h

)2

+ 1421461

1310400

(�+φi−3

h
+ 4

�+φi−2

h
+ 6

�+φi−1

h
− 4

�+φi

h
+ �+φi+1

h

)2

= h2(φi
′′)2 − h3(φi

′′)(φi
′′′) + O(h4), (2.18)

β−
2 =

(�+φi−2

h
− �+φi−1

h

)2

= h2(φi
′′)2 − 2h3(φi

′′)(φi
′′′) + O(h4), (2.19)

β−
3 =

(�+φi−1

h
− �+φi

h

)2

= h2(φi
′′)2 + h4

6
(φi

′′)(φ(4)

i ) + O(h6), (2.20)

β+
1 = 1

144

(�+φi−2

h
− 8

�+φi−1

h
+ 8

�+φi+1

h
− �+φi+2

h

)2

+ 1

15600

(
−11

�+φi−2

h
+ 174

�+φi−1

h
− 326

�+φi

h
+ 174

�+φi+1

h
− 11

�+φi+2

h

)2
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+ 781

2880

(
−�+φi−2

h
+ 2

�+φi−1

h
− 2

�+φi+1

h
+ �+φi+2

h

)2

+ 1421461

1310400

(�+φi−2

h
− 4

�+φi−1

h
+ 6

�+φi

h
− 4

�+φi+1

h
+ �+φi+2

h

)2

= h2(φi
′′)2 + h3(φi

′′)(φi
′′′) + O(h4), (2.21)

β+
2 =

(�+φi−1

h
− �+φi

h

)2

= h2(φi
′′)2 + h4

6
(φi

′′)(φ(4)

i ) + O(h6), (2.22)

β+
3 =

(�+φi

h
− �+φi+1

h

)2

= h2(φi
′′)2 + 2h3(φi

′′)(φ(3)

i ) + O(h4), (2.23)

Step 4. We compute the nonlinear weights based on the linear weights and the smoothness
indicators. For instance, as shown in [23, 24], we use new τ± which are simply defined as the
absolute difference between β±

1 , β±
2 , and β±

3 , and are little different from that specified in [23, 24].
So the associated difference expansions in Taylor series about φi are

τ± =
( |β±

1 − β±
2 | + |β±

1 − β±
3 |

2

)2

= O(h6). (2.24)

ω±
n = ω±

n∑3
	=1 ω±

	

, ωn = γn

(
1 + τ±

ε + β±
n

)
, n = 1, 2, 3. (2.25)

Here ε is a small positive number to avoid the denominator to become zero. It is directly to verify
from (2.18) to (2.23) and the parameters τ±, at the smooth regions of the numerical solution
satisfying

τ±

ε + β±
n

= O(h4), n = 1, 2, 3, (2.26)

on condition that ε � β±
n . Therefore, the nonlinear weights ω±

n satisfy the order accuracy condi-
tion ω±

n = γn + O(h4) [23, 24], providing the formal fifth-order accuracy to the WENO scheme
in [7], 28, [29]. We take ε = 10−6 in our computation.

Step 5. The final nonlinear WENO reconstructions φ±
x,i are defined by a convex combination

of the three (modified) reconstructed polynomial approximations.

φ±
x,i = ω±

1

(
1

γ1
φ

±,1
x,i − γ2

γ1
φ

±,2
x,i − γ3

γ1
φ

±,3
x,i

)
+ ω±

2 φ
±,2
x,i + ω±

3 φ
±,3
x,i . (2.27)

The terms on the right-hand side of (2.27) are very sophisticated than the usual definition
ω±

1 φ
±,1
x,i + ω±

2 φ
±,2
x,i + ω±

3 φ
±,3
x,i which would degrade the optimal fifth-order accuracy because of

φ
±,2
x,i and φ

±,3
x,i are active and the convex combination together with φ

±,1
x,i would not offer high

order approximation at point xi to numerical flux in smooth region. Thus we should abolish their
contribution in smooth region. By doing such procedure, if a big spatial stencil permits optimal
stability and accuracy to be reached, (2.27) could obtain that stability and accuracy obviously.
Nevertheless, when the solution on the big spatial stencil is rough, it is beneficial to search for
two smaller three-point stencils. Such two small spatial stencils that are used ensure that (when
the large six-point spatial stencil may be inoperative). In this way, it is not very essential for us
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to deliberately choose linear weights for the purpose of obtaining high-order accuracy in smooth
region and could keep high resolutions for the singularities of the derivatives in nonsmooth region.

Step 6. The ODE (2.2) is rewritten as the formula

dφi(t)

dt
= L(φi). (2.28)

Then we use third order version TVD Runge-Kutta time discretization method [30]:

⎧⎪⎪⎨
⎪⎪⎩

φ(1) = φn + �tL(φn),

φ(2) = 3
4φ

n + 1
4φ

(1) + 1
4 � tL(φ(1)),

φn+1 = 1
3φ

n + 2
3φ

(2) + 2
3 � tL(φ(2)),

(2.29)

to obtain fully discrete scheme both in space and time.

B. The Framework for Two-Dimensional Case

We take the control Eq. (1.1) in two dimensions. For simplicity, we also assume � has been divided
as an uniform mesh with intervals Ii,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2], i = 1, . . . , N , j =
1, . . . , M . We denote (xi , yj ) = ( 1

2 (xi−1/2 + xi+1/2), 1
2 (yj−1/2 + yj+1/2)), |Ii,j | = (xi+1/2 − xi−1/2)

(yj+1/2 − yj−1/2) = h2 to be the interval center and the area of Ii,j , respectively. Then (1.1) can
be reformulated as:

{
φt + H(x, y, t , φ, φx , φy) = 0,

φ(x, y, 0) = φ0(x, y).
(2.30)

We define φi,j = φ(xi , yj ), �+
x φi,j = φi+1,j − φi,j and �+

y φi,j = φi,j+1 − φi,j . The semidiscrete
form in two dimensions is

dφi,j (t)

dt
= L(φi,j ) = −Ĥ (xi , yj , t , φi,j , φ+

x,i,j , φ−
x,i,j , φ+

y,i,j , φ−
y,i,j ). (2.31)

where Ĥ is a Lipschitz continuous monotone flux consistent with H, in the sense that
Ĥ (x, y, t , φ, φx , φx , φy , φy) = H(x, y, t , φ, φx , φy). The Lax-Friedrichs flux is applied here:

Ĥ (x, y, t , φ, u+, u−, v+, v−) = H

(
x, y, t , φ,

u+ + u−

2
,
v+ + v−

2

)
− α

u+ − u−

2
− β

v+ − v−

2
,

(2.32)

where α = maxuH1(u, v) and β = maxvH2(u, v). H1 stands for the partial derivative of H with
respect to φx and H2 stands for the partial derivative of H with respect to φy . Here φ±

x,i,j are WENO

approximations to
∂φ(xi ,yj )

∂x
, and φ±

y,i,j are WENO approximations to
∂φ(xi ,yj )

∂y
, which are similar to

one-dimensional approximations (2.27). The approximation procedures of φ±
x,i,j and φ±

y,i,j use a
dimension-by-dimension fashion with fixed subscript j and i, respectively.
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TABLE I. φt + φx = 0. φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 2..

Grid points L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JP scheme
10 1.49 E−2 1.95 E−2 2.71 E−2 4.63 E−2
20 5.35 E−4 4.80 1.22 E−3 4.00 1.11 E−3 4.59 2.31 E−3 4.32
40 8.62 E−6 5.96 1.48 E−5 6.36 4.06 E−5 4.78 7.09 E−5 5.02
80 2.13 E−7 5.33 3.29 E−7 5.50 1.35 E−6 4.90 2.21 E−6 5.00
160 6.57 E−9 5.02 1.03 E−8 5.00 4.34 E−8 4.96 6.90 E−8 5.00
320 2.05 E−10 5.00 3.22 E−10 5.00 1.36 E−9 4.99 2.15 E−9 5.00

WENO-ZQ (2) scheme WENO-ZQ (3) scheme
10 2.35 E−1 3.38 E−1 2.47 E−1 3.56 E−1
20 2.18 E−2 3.43 4.27 E−2 2.98 2.43 E−2 3.34 4.63 E−2 2.94
40 4.05 E−4 5.75 2.23 E−3 4.26 7.08 E−4 5.10 3.58 E−3 3.69
80 1.68 E−6 7.91 1.45 E−5 7.26 2.36 E−6 8.22 2.10 E−5 7.41
160 1.07 E−8 7.29 5.38 E−8 8.07 1.27 E−8 7.54 7.97 E−8 8.04
320 2.27 E−10 5.56 3.22 E−10 7.38 2.37 E−10 5.74 3.55 E−10 7.80

III. NUMERICAL TESTS

In this section, we set CFL number to be 0.6 and present the results of numerical tests of the new
finite difference WENO scheme as WENO-ZQ which is specified in the previous section both
in one and two dimensions, and classical finite difference WENO scheme as WENO-JP which
is specified in [7]. For the purpose of testing whether the random choice of the linear weights
would pollute the optimal fifth-order accuracy of WENO-ZQ scheme or not, we set different type
of linear weights in the numerical accuracy cases as: (1) γ1=0.998, γ2=0.001, and γ3=0.001; (2)
γ1=1.0/3.0, γ2=1.0/3.0, and γ3=1.0/3.0; (3) γ1=0.01, γ2=0.495, and γ3=0.495. And set γ1=0.998,
γ2=0.001, and γ3=0.001 in the other examples.

Example 3.1. We solve the following linear equation:

φt + φx = 0, −1 < x < 1, (3.1)

with the initial condition φ(x, 0) = − cos(πx) and periodic boundary conditions. When t = 2 the
solution is still smooth. The errors and numerical orders of accuracy are shown in Table I. We
can see the WENO-ZQ achieves its designed order of accuracy in one dimension and sustains
less absolute quantity of L1 and L∞ errors. We can see that the WENO-ZQ scheme with different
type of linear weights achieves close to its designed order of accuracy. And the Fig. 1 shows
that WENO-ZQ scheme needs less CPU time than WENO-JP scheme does to obtain the same
quantities of L1 and L∞ errors.

Example 3.2. We solve the following nonlinear scalar one-dimensional Hamilton-Jacobi
equation:

φt − cos(φx + 1) = 0, −1 < x < 1, (3.2)

with the initial condition φ(x, 0) = − cos(πx) and periodic boundary conditions. We compute
the result up to t = 0.5/π 2. The errors and numerical orders of accuracy are shown in Table II.
Again, we can see WENO-ZQ achieves its designed order of accuracy in one dimension. For com-
parison, errors and numerical orders of accuracy by the classical WENO-JP scheme are shown in
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FIG. 1. φt + φx = 0. φ(x, 0) = − cos(πx). Computing time and error. Number signs and a solid line
denote the results of WENO-ZQ scheme with different linear weights (1), (2), and (3); squares and a solid
line denote the results of WENO-JP scheme. [Color figure can be viewed at wileyonlinelibrary.com.]

TABLE II. φt − cos(φx + 1) = 0. φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 0.5/π2.

Grid points L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JP scheme
10 2.73 E−3 6.55 E−3 1.06 E−3 4.66 E−3
20 9.65 E−5 4.82 4.15 E−4 3.98 9.80 E−5 3.44 3.25 E−4 3.84
40 8.92 E−6 3.43 6.91 E−5 2.59 1.32 E−5 2.88 1.22 E−4 1.41
80 6.39 E−7 3.80 1.08 E−5 2.67 8.18 E−7 4.02 1.79 E−5 2.77
160 2.74 E−8 4.54 7.14 E−7 3.92 3.48 E−8 4.55 1.12 E−6 4.00
320 9.47 E−10 4.85 2.66 E−8 4.75 1.22 E−9 4.83 4.19 E−8 4.75

WENO-ZQ (2) scheme WENO-ZQ (3) scheme
10 6.61 E−3 1.41 E−2 6.74 E−3 1.42 E−2
20 2.94 E−4 4.49 1.19 E−3 3.56 3.69 E−4 4.19 1.43 E−3 3.32
40 2.63 E−5 3.48 1.57 E−4 2.92 3.22 E−5 3.52 2.10 E−4 2.76
80 6.91 E−7 5.25 1.08 E−5 3.86 7.20 E−7 5.48 1.08 E−5 4.28
160 2.74 E−8 4.66 7.14 E−7 3.92 2.74 E−8 4.71 7.14 E−7 3.92
320 9.47 E−10 4.85 2.66 E−8 4.75 9.47 E−10 4.86 2.66 E−8 4.75

the same table. We can see that both WENO-ZQ and WENO-JP schemes achieve their designed
order of accuracy. Figure 2 shows that WENO-ZQ scheme needs less CPU time than WENO-JP
does to obtain the same quantities of L1 and L∞ errors, so WENO-ZQ scheme is more efficient
than WENO-JP scheme in this test case.

Example 3.3. We solve the following nonlinear scalar two-dimensional Burgers’ equation:

φt + (φx + φy + 1)2

2
= 0, −2 ≤ x, y < 2, (3.3)

with the initial condition φ(x, y, 0) = − cos(π(x + y)/2) and periodic boundary conditions.
We compute the result to t = 0.5/π 2 and the solution is still smooth at that time. The errors
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FIG. 2. φt − cos(φx + 1) = 0. φ(x, 0) = − cos(πx). Computing time and error. Number signs and a solid
line denote the results of WENO-ZQ scheme with different linear weights (1), (2), and (3); squares and a
solid line denote the results of WENO-JP scheme. [Color figure can be viewed at wileyonlinelibrary.com.]

TABLE III. φt + (φx+φy+1)2

2 = 0. φ(x, y, 0) = − cos(π(x + y)/2). Periodic boundary conditions.
t = 0.5/π2.

Grid points L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JP scheme
20 × 20 1.43 E−4 6.22 E−4 2.70 E−4 1.73 E−3
40 × 40 5.91 E−6 4.60 6.57 E−5 3.24 1.35 E−5 4.32 1.55 E−4 3.48
80 × 80 2.23 E−7 4.73 2.83 E−6 4.54 5.30 E−7 4.67 6.57 E−6 4.56
160 × 160 7.34 E−9 4.92 9.71 E−8 4.87 1.91 E−8 4.79 2.23 E−7 4.88
320 × 320 2.34 E−10 4.97 3.10 E−9 4.97 6.63 E−10 4.85 7.12 E−9 4.97

WENO-ZQ (2) scheme WENO-ZQ (3) scheme
20 × 20 1.13 E−3 4.33 E−3 1.40 E−3 5.00 E−3
40 × 40 1.92 E−5 5.88 1.66 E−4 4.70 2.41 E−5 5.87 2.12 E−4 4.56
80 × 80 2.35 E−7 6.35 2.83 E−6 5.88 2.45 E−7 6.62 2.83 E−6 6.23
160 × 160 7.26 E−9 5.02 9.71 E−8 4.87 7.23 E−9 5.08 9.71 E−8 4.87
320 × 320 2.33 E−10 4.96 3.10 E−9 4.97 2.33 E−10 4.95 3.10 E−9 4.97

and numerical orders of accuracy by the WENO-ZQ are shown in Table III and the numerical
error against CPU time graphs are in Fig. 3. We can observe that the theoretical order is actually
achieved and the WENO-ZQ scheme can get better results and is more efficient than WENO-JP
scheme in this test case.

Example 3.4. We solve the following nonlinear scalar two-dimensional Hamilton-Jacobi
equation:

φt − cos(φx + φy + 1) = 0, −2 ≤ x, y < 2, (3.4)

with the initial condition φ(x, y, 0) = − cos(π(x + y)/2) and periodic boundary conditions. We
also compute the result until t = 0.5/π 2. The errors and numerical orders of accuracy by the
WENO-ZQ scheme with different linear weights in comparison with WENO-JP scheme are shown
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FIG. 3. φt + (φx+φy+1)2

2 = 0. φ(x, y, 0) = − cos(π(x+y)/2). Computing time and error. Number signs and
a solid line denote the results of WENO-ZQ scheme with different linear weights (1), (2), and (3); squares and
a solid line denote the results of WENO-JP scheme. [Color figure can be viewed at wileyonlinelibrary.com.]

TABLE IV. φt − cos(φx + φy + 1) = 0. φ(x, y, 0) = − cos(π(x + y)/2). Periodic boundary conditions.
t = 0.5/π2.

Grid points L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JP scheme
20 × 20 1.95 E−4 6.75 E−4 2.16 E−4 1.20 E−3
40 × 40 1.22 E−5 4.00 1.18 E−4 2.51 1.37 E−5 3.98 1.98 E−4 2.60
80 × 80 6.17 E−7 4.31 1.16 E−5 3.35 8.05 E−7 4.09 1.88 E−5 3.40
160 × 160 2.62 E−8 4.56 6.30 E−7 4.21 3.52 E−8 4.51 1.00 E−6 4.22
320 × 320 9.33 E−10 4.81 2.74 E−8 4.52 1.23 E−9 4.83 4.31 E−8 4.54

WENO-ZQ (2) scheme WENO-ZQ (3) scheme
20 × 20 5.46 E−4 1.99 E−3 6.15 E−4 2.19 E−3
40 × 40 1.38 E−5 5.30 1.19 E−4 4.06 1.45 E−5 5.40 1.19 E−4 4.19
80 × 80 6.19 E−7 4.48 1.16 E−5 3.36 6.21 E−7 4.55 1.16 E−5 3.37
160 × 160 2.62 E−8 4.56 6.30 E−7 4.21 2.62 E−8 4.57 6.30 E−7 4.21
320 × 320 9.33 E−10 4.81 2.74 E−8 4.52 9.33 E−10 4.81 2.74 E−8 4.52

in Table IV and the numerical error against CPU time graphs are in Fig. 4. WENO-ZQ scheme
with different type of linear weights is better than WENO-JP scheme in this two-dimensional test
case.

Example 3.5. We solve the linear equation:

φt + φx = 0, (3.5)

with the initial condition φ(x, 0) = φ0(x − 0.5) together with the periodic boundary conditions,
where:
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FIG. 4. φt − cos(φx + φy + 1) = 0. φ(x, y, 0) = − cos(π(x + y)/2). Computing time and error. Num-
ber signs and a solid line denote the results of WENO-ZQ scheme with different linear weights (1), (2),
and (3); squares and a solid line denote the results of WENO-JP scheme. [Color figure can be viewed at
wileyonlinelibrary.com.]

φ0(x) = −
(√

3

2
+ 9

2
+ 2π

3

)
(x + 1) +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 cos
(

3πx2

2

)
− √

3, −1 ≤ x < − 1
3 ,

3
2 + 3 cos(2πx), − 1

3 ≤ x < 0,
15
2 − 3 cos(2πx), 0 ≤ x < 1

3 ,
28+4π+cos(3πx)

3 + 6πx(x − 1), 1
3 ≤ x < 1.

(3.6)

We plot the results with 100 cells at t = 2 and t = 8 in Fig. 5. We can observe that the results by
the WENO-ZQ have good resolution for the corner singularity.

Example 3.6. We solve the one-dimensional nonlinear Burgers’ equation:

φt + (φx + 1)2

2
= 0, (3.7)

with the initial condition φ(x, 0) = − cos(πx) and the periodic boundary conditions. We plot the
results at t = 3.5/π 2 when discontinuous derivative appears. The solutions of the WENO-ZQ are
given in Fig. 6. We can see the scheme gives good results for this problem.

Example 3.7. We solve the nonlinear equation with a non-convex flux:

φt − cos(φx + 1) = 0, (3.8)

with the initial data φ(x, 0) = − cos(πx) and the periodic boundary conditions. Then we plot the
results at t = 1.5/π 2 in Fig. 7 when the discontinuous derivative appears in the solution. We can
see that the WENO-ZQ gives good results for this problem.
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FIG. 5. One dimensional linear equation. 100 grid points. Left: t = 2; right: t = 8. Solid line: the exact solu-
tion; cross symbols: WENO-ZQ scheme; square symbols: WENO-JP scheme. [Color figure can be viewed
at wileyonlinelibrary.com.]

FIG. 6. One dimensional Burgers’ equation. Left: 40 grid points; right: 80 grid points. t = 3.5/π2. Solid
line: the exact solution; cross symbols: WENO-ZQ scheme; square symbols: WENO-JP scheme. [Color
figure can be viewed at wileyonlinelibrary.com.]

Example 3.8. We solve the one-dimensional Riemann problem with a non-convex flux:{
φt + 1

4 (φ
2
x − 1)(φ2

x − 4) = 0, −1 < x < 1,

φ(x, 0) = −2|x|. (3.9)

This is a demanding test case, for many schemes have poor resolutions or could even converge
to a non-viscosity solution for this case. We plot the results at t = 1 by the scheme with 80 grid
points to verify the numerical solution in Fig. 8. We can see that such scheme gives good results
for this problem.
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FIG. 7. Problem with the non-convex flux H(φx) = − cos(φx + 1). Left: 40 cells; right: 80 grid points.
t = 3.5/π2. Solid line: the exact solution; cross symbols: WENO-ZQ scheme; square symbols: WENO-JP
scheme. [Color figure can be viewed at wileyonlinelibrary.com.]

FIG. 8. Problem with the non-convex flux H(φx) = 1
4 (φ2

x − 1)(φ2
x − 4). 80 grid points. t = 1. Solid line:

the exact solution; cross symbols: WENO-ZQ scheme; square symbols: WENO-JP scheme. [Color figure
can be viewed at wileyonlinelibrary.com.]

Example 3.9. We solve the same two-dimensional nonlinear Burgers’ Eq. (3.3) as in Example
3.3 with the same initial condition φ(x, y, 0) = − cos(π(x + y)/2), except that we now plot the
results at t = 1.5/π 2 in Fig. 9 when the discontinuous derivative has already appeared in the
solution. We observe good resolutions for this example.
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FIG. 9. Two dimensional Burgers’ equation. 40 × 40 grid points. t = 1.5/π2. WENO-ZQ scheme. Left:
contours of the solution; right: the surface of the solution.

FIG. 10. Two dimensional Riemann problem with a non-convex flux H(φx , φy) = sin(φx + φy). 80 × 80
grid points. t = 1. WENO-ZQ scheme. Left: contours of the solution; right: the surface of the solution.

Example 3.10. The two-dimensional Riemann problem with a non-convex flux:

{
φt + sin(φx + φy) = 0, −1 ≤ x, y < 1,

φ(x, y, 0) = π(|y| − |x|). (3.10)

The solution of the WENO-ZQ is plotted at t = 1 in Fig. 10. We can also observe good resolutions
for this numerical simulation.
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FIG. 11. The optimal control problem. 60 × 60 grid points. t = 1. WENO-ZQ scheme. Left: the surface of
the solution; right: the optimal control ω = sign (φy).

FIG. 12. Eikonal equation with a non-convex Hamiltonian. 80 × 80 grid points. t = 0.6. WENO-ZQ scheme.
Left: contours of the solution; right: the surface of the solution.

Example 3.11. A problem from optimal control:

{
φt + sin(y)φx + (sin(x) + sign(φy))φy − 1

2 sin (y)2 − (1 − cos(x)) = 0, π ≤ x, y < π ,

φ(x, y, 0) = 0,

(3.11)

with periodic conditions, see [6]. The solutions of WENO-ZQ are plotted at t = 1 and the optimal
control ω = sign (φy) is shown in Fig. 11.

Example 3.12. A two-dimensional Eikonal equation with a non-convex Hamiltonian, which
arises in geometric optics [31], is given by:
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FIG. 13. Propagating surface. 60 × 60 grid points. Left: ε = 0; right: ε = 0.1. WENO-ZQ scheme.

{
φt +

√
φ2

x + φ2
y + 1 = 0, 0 ≤ x, y < 1,

φ(x, y, 0) = 1
4 (cos(2πx) − 1)(cos(2πy) − 1) − 1,

(3.12)

The solutions of the WENO-ZQ are plotted at t = 0.6 in Fig. 12. Good resolutions are observed
with the proposed scheme.

Example 3.13. The problem of a propagating surface [5]:

{
φt − (1 − εK)

√
φ2

x + φ2
y + 1 = 0, 0 ≤ x, y < 1,

φ(x, y, 0) = 1 − 1
4 (cos(2πx) − 1)(cos(2πy) − 1),

(3.13)

where K is the mean curvature defined by:

K = −φxx(1 + φy)
2 − 2φxyφxφy + φyy(1 + φ2

x)

(1 + φ2
x + φ2

y)
3/2 ,

and ε is a small constant. Periodic boundary conditions are used. The approximation of K is
constructed by the methods similar to the first derivative terms and three different second order
derivatives of associated Hermite reconstruction polynomials are needed. The results of ε = 0
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(pure convection) and ε = 0.1 by WENO-ZQ are presented in Fig. 13. The surfaces at t = 0 for
ε = 0 and for ε = 0.1, and at t = 0.1 for ε = 0.1, are shifted downward to show the detail of the
solution at later time.

IV. CONCLUDING REMARKS

In this paper, we have constructed a new fifth order finite difference WENO scheme which is
a WENO type combination of a modified fifth order scheme and two second order schemes for
solving the Hamilton-Jacobi equations in one and two dimensions. The main advantages of such
methodology are its simplicity in spatial field by the definition of positive linear weights, and
only one six-point stencil and two three-point stencils are needed on constructing different poly-
nomials. Therefore, we try to use central scheme in smooth regions for simplicity and obtain
high order numerical accuracy, and switch to either of two lower order schemes when adjacent
discontinuities for the purpose of avoiding spurious oscillations. For the sake of confining the
new WENO scheme converge to the optimal fifth-order accuracy in smooth regions, we modify
the fourth degree polynomial by subtracting two parameterized linear polynomials. Thereafter,
new nonlinear weight’s formulas are presented for these polynomials of different degrees based
on the information that defined on these unequal spatial stencils. Generally speaking, the con-
structions of such new WENO scheme are based on WENO interpolation in spatial field and then
Runge-Kutta discretization is used for solving the ODE. In the new WENO scheme, the nodal
point information is used via time approaching and is easier to be implemented than the classical
finite difference WENO scheme. This scheme sustains high-order accuracy in the smooth regions
and obtains high resolutions for the singularities of the derivatives robustly. Extensive numerical
experiments are performed to illustrate the effectiveness of the new WENO scheme.
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