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We propose a one-stage high-order gas-kinetic scheme (GKS) with interface-sharpening 
technique for the 4-equations model of compressible multi-component stiffened-gas flows. 
The scheme is constructed based on the framework of a one-stage efficient high-order 
GKS (EHGKS), which can achieve uniform high-order accuracy in both space and time. 
The main idea in the construction of the new scheme consists of three parts. Firstly, 
different from the original EHGKS, the non-oscillatory kinetic (NOK) flux is introduced to 
compute the leading term and the related flux evaluations, which enables the modified 
EHGKS suitable for stiffened gases, together with no pressure and velocity oscillations 
across the contact discontinuities. Then the modified scheme is utilized to discrete the 
conservative parts of the 4-equations model. Secondly, in order to avoid the oscillations 
across material interfaces, a high-order GKS is derived to solve the non-conservative parts 
of the 4-equations model following the idea of Abgrall [1]. Finally, to further reduce 
the over diffusion near a material interface, a simple interface-sharpening technique is 
developed, which combines the idea of interface construction and downwind scheme. The 
numerical results demonstrate that the proposed scheme can not only achieve the designed 
uniform accuracy in both space and time, but also sharply capture material interfaces.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In the past decades, numerical simulations for the compressible immiscible multi-component flows have attracted much 
attention. The diffuse interface method (DIM), which presents numerically diffused zones at a material interface, provides 
an efficient and robust framework [53,1,57] in this issue. Since the interface is considered as an artificial mixture zone, DIM 
is naturally suitable for large interface deformations and topological changes. However, particular attention must be paid 
since a DIM always introduces over diffusion near the material interface. Even worse, it will definitely fail to identify the 
material interface in the long time simulation [23,40]. Therefore, high-order and high-resolution schemes are required [53].

The high-order schemes, including the weighted essentially non-oscillatory (WENO) method [27,28,50], the discontinuous 
Galerkin (DG) method [52,8,18,24] and the spectral volume (SV) scheme [38], have been extended to solve compressible 
multi-component flows. Actually, these schemes can achieve arbitrary high order of accuracy in space. And considering the 
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simplicity and easy implementation, they are often coupled with a multi-stage method for time evolution [18,38,12,55]. 
However, to achieve uniform arbitrary high order of accuracy in both space and time, it is recommended to use the one-
stage methods such as the arbitrary derivative in space and time method (ADER) [65,15,16] and the high-order GKS (HGKS) 
[33,37,34].

ADER is a one-step and fully discrete Godunov approach. The predecessor of ADER is the generalized Riemann problem 
(GRP) solver, which solves the generalized Riemann problem with piecewise smooth initial data [3,30,6]. However, it’s too 
sophisticated to design a higher than third-order GRP [30]. By introducing a linearization technique, ADER can achieve 
arbitrary high order of accuracy both in space and time in implement.

Instead of solving the traditional Riemann problem, the flux evaluation of HGKS initiates from the integral solution of 
the Bhatnagar-Gross-Krook (BGK) equation [68,69,54]. This mechanism renders HGKS as an accurate and robust solver for 
compressible flows [33,37,42,48,26]. Based on the Taylor expansion of the integral solution, the one-stage third-order and 
fourth-order HGKS methods have been developed in [33,41,37]. However, it will be very complex and time-consuming for 
a higher-order HGKS proposed by employing the higher-order Taylor expansion [34]. To overcome this difficulty, EHGKS is 
developed as an efficient and easy-implement one-stage gas-kinetic method to solve the Euler equations [34]. It can achieve 
arbitrary high order of accuracy in both space and time [34,35].

The extensions of GKS to multi-component flows include [31,32,36,38,44,47,67]. Some of them introduce spurious os-
cillations in the vicinity of material interfaces [47]. This drawback was induced by the two factors: firstly, the GKS flux 
solver inherently induces the spurious velocity and pressure oscillations in the vicinity of the contact discontinuity [9,10]; 
secondly, it also produces spurious oscillations to solve any conservative version of the additional equation to identify dif-
ferent components [1,10]. The modified KFVS (MKFVS) and NOK give a remedy for the first difficulty [9,10]. Then, following 
the idea of Abgrall’s quasi-conservative method, a series of oscillation-free GKS are proposed for multi-component flows 
[10,38,40,39,2]. However, the schemes MKFVS and NOK are the first-order flux solver only. To the authors’ best knowledge, 
all these schemes use the multi-stage method in time [10,38,40,39], which will definitely encounter the accuracy barrier 
[65,15,16]. In this paper, by coupling with NOK, EHGKS is extended to solve multi-component flows, which can not only 
achieve arbitrary high order of accuracy in both space and time, but also be oscillation-free for multi-component stiffened 
gases.

In the DIM framework, high-order schemes can significantly reduce the over diffusion of a material interface. But it’s 
impossible to obtain a sharp interface without introducing an interface-sharpening technique. The traditional approaches in-
clude the level-set methods [17,14,46], the front tracking methods [62] and the volume of fraction or volume of fluid (VOF) 
methods [58–60,29,66,49,51,4,25]. These methods are either no-conservative, or somewhat complex because they have to 
introduce complex front tracking [62]/geometrical reconstruction computations [4,5,7,58] or additional interface compres-
sion/anti-diffusion source terms [64,53]. The algebraic type VOF methods evidently simplify the computational complexity 
and have attracted more practical interest in the recent years [59,13,61,11,70,22]. One of the most popular algebraic type 
VOF methods is THINC (tangent hyperbola for interface capturing), based on the use of hyperbolic tangent functions to 
approximate solutions with jump [59]. The drawback of THINC lies in the reconstruction of the multi-dimensional interface 
function, which can not be computed analytically. In this paper, to reduce the computational complexity, we develop, in 
addition, a novel simple interface-sharpening technique, by combining the idea of SLIC (simple line interface construction) 
[45], the ancestral VOF method and the downwind scheme.

This paper is organized as follows. Firstly, both EHGKS and NOK are briefly reviewed in Section 2. In Section 3, the 
construction of the new scheme is presented. Numerical examples are presented in Section 4 to validate the accuracy and 
resolution of the new scheme. A conclusion is made in the last section.

2. Review

2.1. EHGKS

EHGKS provides an efficient high-order flux solver for the Euler equations [34]. The one-dimensional Euler equations can 
be written as

∂W

∂t
+ ∂F

∂x
= 0. (1)

Here W = (ρ, ρU , ρE) and F = (ρU , ρU 2 + p, ρEU + pU ). ρ , U , p are the density, velocity and pressure, respectively. ρE
is the total energy. ρe is the internal energy and E = 1

2 U 2 + e. For an ideal gas, p = (γ − 1)ρe. γ is the specific heat ratio.
Under the finite volume framework, assume the space domain is discretized into N cells. The cell over [xi− 1

2
, xi+ 1

2
] is 

indexed as i. The cell size is �x = xi+ 1
2

− xi− 1
2

. The time domain is discretized into 0, �t0, · · · , tn, tn+1 = tn + �tn, · · · . Here 
we take �tn by �t for simplicity. tn = 0 is adopted without loss of generality. The cell average of the variable W(x, t) over 
the i-th cell at time tn is recorded as W

n
i . Under the one-step fully discrete method, the cell averages of the conservative 

variables are updated by
2
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W
n+1
i = W

n
i − 1

�x

⎛⎝ �t∫
0

Fi+ 1
2
(t)dt −

�t∫
0

Fi− 1
2
(t)dt

⎞⎠ . (2)

GKS uses the integral solution of the BGK equation to evaluate Fi+ 1
2
(t) [69]. EHGKS provides a simplification and modi-

fication on the integral solution for an efficient flux evaluation with arbitrary high order of accuracy, which is [34]

Fi+ 1
2
(t) =

(
1 − e− �t

τ

)
Fe(t) + e− �t

τ Fk(t). (3)

Fe(t) is the term to guarantee EHGKS with arbitrary (r + 1)-th order of accuracy in smooth regions, which contains the 
leading term and high-order terms [34]:

Fe(t) = Fe +
r∑

l=1

tl

l!
∂ lFe

∂tl
, (4)

where Fe = (
ρU ,ρU 2 + p,ρEU + pU

)e
. The variables in Fe are determined by W e = (ρ,ρU ,ρE)e , where W e =W e+ +

W e− and [69,34]

W e± =
〈
u0
〉±⎛⎝ ρ

0
ρe

⎞⎠
i+ 1

2
±

+ 〈u1〉±⎛⎝ 0
ρ
1
2ρU

⎞⎠
i+ 1

2
±

,

〈
u0
〉± = 1

2
erfc

(
±√λ

i+ 1
2

± U
i+ 1

2
±
)

,

〈
u1〉± = U

i+ 1
2

±
〈
u0
〉± ∓ 1

2

e
−λ

i+ 1
2

± U 2

i+ 1
2

±√
πλ

i+ 1
2

±
. (5)

Here λ = ρ
2p . W

i+ 1
2

± = (ρ,ρU ,ρE)
i+ 1

2
± are the point-wise values after the reconstruction over the i-th and (i + 1)-th cell. 

See Appendix A for more details on the reconstruction. To obtain the temporal derivatives in Eq. (4), the state-of-art Lax-
Wendroff procedure [21,63] is introduced in EHGKS. It is implemented based on the primary variables for simplicity [34]. 
Fk(t) in Eq. (3) is the low-order KFVS flux solver [34]. The first-order KFVS solver is [69,9]

Fk(t) = Fk, (6)

where Fk = Fk+ +Fk− and

Fk± = 〈u1〉±⎛⎝ ρ
ρU
ρE + 1

2 p

⎞⎠
i+ 1

2
±

+
〈
u0
〉±⎛⎝ 0

p
1
2 pU

⎞⎠
i+ 1

2
±

. (7)

The weight between Fe(t) and Fk(t) is related to τ [69]:

τ = C1�t + C2

∣∣∣∣∣∣
p

i+ 1
2

+ − p
i+ 1

2
−

p
i+ 1

2
+ + p

i+ 1
2

−

∣∣∣∣∣∣�t, (8)

where C1 and C2 are two constant parameters; C1 � 1 and C2 ∼ O (1) [34,26]. In a smooth region where τ � �t , Fi+ 1
2
(t) ≈

Fe(t) to obtain high accuracy. Near the discontinuities, Fi+ 1
2
(t) approaches to Fk(t) for the robustness.

2.2. The 4-equations model and NOK

The 4-equations model is based on the extended Euler equations, such as with the equation of a mass fraction (Y ) 
[1,10,38]:

∂Y

∂t
+ ∂U Y

∂x
= Y

∂U

∂x
. (9)

The scheme for the equation of Y can be written by [1,10]
3
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Y
n+1
i = Y

n
i − 1

�x

⎛⎝ �t∫
0

FY
i+ 1

2
(t)dt −

�t∫
0

FY
i− 1

2
(t)dt

⎞⎠
+Y

n
i

1

�x

⎛⎝ �t∫
0

U Y
i+ 1

2
(t)dt −

�t∫
0

U Y
i− 1

2
(t)dt

⎞⎠ , (10)

where FY = U Y and U Y = U . The flux and source evaluations are [10,38]

FY
i+ 1

2
(t) =

(
1 − e− �t

τ

)
F e

Y (t) + e− �t
τ F k

Y (t),

U Y
i+ 1

2
(t) =

(
1 − e− �t

τ

)
U e

Y (t) + e− �t
τ Uk

Y (t). (11)

To avoid the velocity and pressure oscillations in the vicinity of the contact discontinuity, NOK provides a modification on 
the original first-order GKS by [9,10,40,38]

Fe(t) = Fe,NOK,

Fk(t) = Fk,NOK, (12)

where Fe,NOK = (ρU ,ρU 2 + p,ρEU + pU
)e,NOK

. The variables in Fe,NOK are determined by Qe,NOK = (ρ, U , p)e,NOK, where 
Qe,NOK =Qe+,NOK +Qe−,NOK and [10]

Qe±,NOK =
〈
u0
〉±,NOK

⎛⎝ ρ
0
p

⎞⎠
i+ 1

2
±

+ 〈u1〉±,NOK

⎛⎝ 0
1
0

⎞⎠
i+ 1

2
±

, (13)

where 
〈
u0
〉±,NOK

and 
〈
u1
〉±,NOK

have the same expressions as Eq. (5) with λ
i+ 1

2
± replaced by [10]

λNOK
i+ 1

2
= min

⎧⎨⎩ 1

c2
i+ 1

2
+

,
1

c2
i+ 1

2
−

⎫⎬⎭ ,

with c being the speed of sound. For a stiffened gas, p = (γ − 1)ρe − γ p∞ and c =
√

γ (p+p∞)
ρ [56]. Fk,NOK has the same 

expression as Eq. (6) with 
〈
u0
〉±

and 
〈
u1
〉±

replaced by 
〈
u0
〉±,NOK

and 
〈
u1
〉±,NOK

respectively [10]. To solve the equation of 
the mass fraction, NOK follows the idea of Abgrall’s 4-equations model [1] to guarantee oscillation-free across the material 
interface, which is [10]

F e
Y (t) = Fe,NOK

Y = U e,NOKY e,NOK,

F k
Y (t) = Fk,NOK

Y = 〈u1〉+,NOK
Y

i+ 1
2

+ + 〈u1〉−,NOK
Y

i+ 1
2

− ,

U e
Y (t) = Ue,NOK

Y = U e,NOK,

Uk
Y (t) = Uk,NOK

Y = 〈u1〉+,NOK + 〈u1〉−,NOK
, (14)

where Y e,NOK = 〈u0
〉+,NOK

Y
i+ 1

2
+ + 〈u0

〉−,NOK
Y

i+ 1
2

− . In multi-component flows, γ and p∞ of the mixture are given by [1,56]

1

γ − 1
= 1

γ (1) − 1
Y + 1

γ (2) − 1
(1 − Y ) ,

γ p∞
γ − 1

= γ (1)p(1)∞
γ (1) − 1

Y + γ (2)p(2)∞
γ (2) − 1

(1 − Y ) , (15)

where Y = 1 denotes the first component, which is notated as (1); Y = 0 denotes the second component, which is notated 
as (2).

Remark 1. EHGKS can achieve arbitrary high order of accuracy in both space and time, but is applicable only for a single 
ideal gas [34]. NOK is a modification of GKS to avoid the velocity and pressure oscillations in the vicinity of the contact 
discontinuity [9,10]. Based on Abgrall’s 4-equations model, it’s straight-forward to extend NOK for multi-component flows 
with no spurious pressure oscillations across the material interface [10,38,40]. However, NOK provides only a first-order flux 
solver. The existing schemes using the NOK flux solver are built under the multi-stage framework to obtain high order of 
temporal accuracy [38,40,39].
4
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3. MEHGKS: EHGKS for multi-component stiffened gases

In this section, EHGKS is extended for the 4-equations model of compressible multi-component stiffened gases. 
A straight-forward way to preserve high order of accuracy in smooth regions and without spurious velocity and pressure 
oscillations across a material interface is to replace Fe by Fe,NOK and Fk by Fk,NOK. To further reduce the over diffusion 
near the material interface, a simple interface-sharpening technique is also proposed, which combines the idea of VOF-SLIC 
[45] and a downwind scheme. These two methods are illustrated in the following respectively.

3.1. MEHGKS for multi-component flows with uniform high order of accuracy in both space and time

This part introduces a combination of EHGKS and NOK with careful treatment, firstly to avoid the spurious velocity and 
pressure oscillations across a material interface, and secondly to achieve high order of accuracy in both space and time in 
smooth regions.

The flux and source evaluations are based on Eqs. (3) and (11). To avoid the spurious velocity and pressure oscillations 
across the contact discontinuity, it’s possible to give

Fe(t) = Fk,NOK +
r∑

l=1

tl

l!
∂ lFe,NOK

∂tl
,

Fk(t) = Fk,NOK. (16)

The high-order terms are included in Fe(t) to achieve high accuracy in the smooth regions of a pure material. The leading 
term Fk,NOK works near the discontinuity to provide the robustness. According to the idea in [1], to avoid the spurious 
velocity and pressure oscillations across a material interface, the following condition should be satisfied: assuming that the 
velocity and pressure are constant at the n-th time step, i.e.,

U
n
i = U0,

pn
i = p0, (17)

for i = 1, 2, · · · , N , then they should keep constant at the next time step:

U
n+1
i = U0,

pn+1
i = p0. (18)

To simplify the notations, we introduce ∇ Q = Q i+ 1
2

− Q i− 1
2

. Q can be any quantity. The traditional WENO method is 
implemented based on the primary variables for reconstruction, which can be referred in Appendix A. The reconstruction 
then gives U

i+ 1
2

± = U0 and p
i+ 1

2
± = p0. 

〈
u0
〉±,NOK

and 
〈
u1
〉±,NOK

thus have the following properties [38]:

〈
u0
〉+,NOK +

〈
u0
〉−,NOK = 1,〈

u1〉+,NOK + 〈u1〉−,NOK = U0. (19)

τ is then τ = C1�t . After some algebraic simplifications on Eqs. (2) and (10), ρn+1
i is updated by

ρn+1
i = ρn

i − �t

�x

(
∇F(1)k,NOK + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l∇ρe,NOK

∂tl

)
, (20)

ρU
n+1
i is updated by

ρU
n+1
i = ρn

i U0 − U0�t

�x

(
∇F(1)k,NOK + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l∇ρe,NOK

∂tl

)
, (21)

and ρE
n+1
i is updated by

ρE
n+1
i = ρE

n
i − �t

�x

(
∇F(3)k,NOK + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l∇ (ρe,NOK Ee,NOK

)
∂tl

)
. (22)

After substituting Eq. (20) to Eq. (21), we can get obviously
5
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U
n+1
i = ρU

n+1
i

ρn+1
i

= U0.

After substituting Eq. (20) and Eq. (15) into Eq. (22), the condition pn+1
i = p0 is preserved by

Y
n+1
i = Y

n
i − �t

�x

(
∇Fk,NOK

Y + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l∇Y e,NOK

∂tl

)
. (23)

The details of the derivation can be referred in Appendix B. If we take the same expressions as Eq. (11), this condition is 
also satisfied by the following flux and source evaluations:

F e
Y (t) = Fk,NOK

Y +
r∑

l=1

tl

l!
∂ lFe,NOK

Y

∂tl
,

F k
Y (t) = Fk,NOK

Y ,

U e
Y (t) = Uk,NOK

Y +
r∑

l=1

tl

l!
∂ lUe,NOK

Y

∂tl
,

Uk
Y (t) = Uk,NOK

Y . (24)

The Lax-Wendroff procedure to obtain the temporal derivatives is replaced by:

∂m+l

∂xm∂tl

(
∂

∂t

(
Q
Y

)e,NOK

+Ae,NOK · ∂

∂x

(
Q
Y

)e,NOK
)

= 0,

A =

⎡⎢⎢⎣
U ρ 0 0
0 U 1/ρ 0
0 γ (p + p∞) U 0
0 0 0 U

⎤⎥⎥⎦ . (25)

Here m + l = 0, 1, · · · , r − 1.
As a summary, Eqs. (16) and (24) provide the flux and source evaluations of the currently constructed scheme, which is 

called MEHGKS in this work.

Remark 2. MEHGKS is applicable for stiffened gases, with uniform high order of accuracy in both space and time in smooth 
regions of a pure material. To simulate multi-component flows, MEHGKS can avoid the spurious velocity and pressure 
oscillations across material interfaces. However, MEHGKS, as a DIM, presents over diffusion of material interfaces. An 
interface-sharpening technique is developed in the following to preserve MEHGKS with high resolution on material in-
terfaces.

3.2. MEHGKS for multi-component flows with high resolution on material interfaces

In this part, a simple and effective interface-sharpening technique is developed under the framework of MEHGKS. The 
new technique takes the advantages of both the traditional VOF method, which possesses high resolution but introduces 
complex geometric intersection operations [45,58], and the downwind method, which is simple but unstable if without re-
strictions. In the new method, SLIC [45] is firstly used to track the movement of a material interface. Tracking the movement 
takes only simple geometric calculations, without the complex intersection operations in the complete VOF method [45,58]. 
Based on the movement of the material interface, a novel restriction is then given on the downwind scheme to preserve 
the robustness. The details are given in the following.

(1). Track the movement of a material interface.
We use the condition (Y

n
i − Y

n
i+1)(Y

n
i−1 − Y

n
i ) > 0 to indicate the existence of a material interface within the i-th 

cell. According to the idea of SLIC [45], a jump in mass fraction is assumed in this cell to divide the two components, 
which locates at

xn
i,Y = xi− 1

2
+ Y

n
i − Y

n
i+1

Y
n
i−1 − Y

n
i+1

�x.

By evaluating with first-order of accuracy, the material interface moves at a speed of U
n
i from tn to tn+1. The location 

of the jump at tn+1 is then
6
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xn+1
i,Y = xi− 1

2
+ Y

n
i − Y

n
i+1

Y
n
i−1 − Y

n
i+1

�x + U
n
i �t.

Similarly, if the jump is evaluated by density, the location of the jump at tn+1 will be

xn+1
i,ρ = xi− 1

2
+ ρn

i − ρn
i+1

ρn
i−1 − ρn

i+1
�x + U

n
i �t.

(2). Reconstruct the point-wise density and mass fraction.
After the WENO reconstruction in MEHGKS, the point-wise density and mass fraction are modified if the updated 

jump remains in the i-th cell. That is, if xn+1
i,ρ and xn+1

i,Y are below xi+ 1
2

, the point-wise density and mass fraction are 
modified by the cell averages in the (i + 1)-th cell, i.e.,(

ρ
Y

)
i+ 1

2
− =

(
ρn

i+1
Y

n
i+1

)
, if xn+1

i,ρ < xi+ 1
2

and xn+1
i,Y < xi+ 1

2
; (26)

if xn+1
i,ρ and xn+1

i,Y are above xi− 1
2

, the point-wise density and mass fraction are modified by the (i − 1)-th cell averages, 
i.e., (

ρ
Y

)
i− 1

2
+ =

(
ρn

i−1
Y

n
i−1

)
, if xn+1

i,ρ > xi− 1
2

and xn+1
i,Y > xi− 1

2
. (27)

The above reconstruction acts only near material interfaces where |Y n
i+1 − Y

n
i | > ε or |Y n

i−1 − Y
n
i | > ε . If else, it remains to 

the former MEHGKS. Following the idea in [22], only the density and mass fraction, which vary across a material interface, 
are modified. It should be mentioned that the present method results in an unstable downwind scheme if without the re-
strictions in Eqs. (26)-(27). The novel restriction is given based on the movement of an evaluated material interface in order 
to preserve the robustness. The new method thus possesses: (1) stability under the restrictions; (2) high resolution near 
material interfaces which is initiated from both VOF and the downwind scheme; (3) simplicity compared to the traditional 
VOF method.

To enhance the robustness of the method with the new interface-sharpening technique, the leading terms in the original 
flux and source evaluations of MEHGKS are replaced by

Fk (t) =
(

1 − e− �t
τ∗
)
Fk,NOK + e− �t

τ∗ F ,

F k
Y (t) =

(
1 − e− �t

τ∗
)
Fk,NOK

Y + e− �t
τ∗ FY ,

Uk
Y (t) =

(
1 − e− �t

τ∗
)
Uk,NOK

Y + e− �t
τ∗ UY , (28)

where

F = 1 + sign(Ũ )

2
F− + 1 − sign(Ũ )

2
F+,

FY = 1 + sign(Ũ )

2
F−

Y + 1 − sign(Ũ )

2
F+

Y ,

UY = 1 + sign(Ũ )

2
U −

Y + 1 − sign(Ũ )

2
U +

Y , (29)

and

F± = Ũ

⎛⎝ ρ
ρU
ρE

⎞⎠
i+ 1

2
±

+
⎛⎝ 0

p̃
p̃Ũ

⎞⎠ ,

F±
Y = Ũ Y

i+ 1
2

± ,

U ±
Y = Ũ . (30)

F , FY and UY are given by a simple splitting technique. The velocity Ũ and pressure p̃ are evaluated by the acoustic 
impedance and inverse interpolation respectively with artificial viscosity [43]:
7
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Ũ =
(ρcU )

i+ 1
2

−

(ρc)
i+ 1

2
− + (ρc)

i+ 1
2

+
+

(ρcU )
i+ 1

2
+

(ρc)
i+ 1

2
− + (ρc)

i+ 1
2

+
− �t

p
i+ 1

2
+ − p

i+ 1
2

−

ρ
i+ 1

2
− + ρ

i+ 1
2

+
,

p̃ =
(ρc)

i+ 1
2

− p
i+ 1

2
+

(ρc)
i+ 1

2
− + (ρc)

i+ 1
2

+
+

(ρc)
i+ 1

2
+ p

i+ 1
2

−

(ρc)
i+ 1

2
− + (ρc)

i+ 1
2

+

+
⎧⎨⎩

0, U
i+ 1

2
+ − U

i+ 1
2

− ≥ 0

0.3 ×
(
ρ

i+ 1
2

+ + ρ
i+ 1

2
−
)(

U
i+ 1

2
+ − U

i+ 1
2

−
)2

, U
i+ 1

2
+ − U

i+ 1
2

− < 0
.

The resultant scheme, called MEHGKS-IS, utilizes the new reconstruction, flux and source solvers which act only near a 
material interface. It remains to the original MEHGKS elsewhere. The weight in the new solver is related to τ ∗:

τ ∗ = C3

∣∣∣Y n
i − Y

n
i+1

∣∣∣�t. (31)

C3 is a constant.

Remark 3. To simulate immiscible multi-component flows, MEHGKS-IS is developed to preserve not only high order of 
accuracy in both space and time in smooth regions of a pure material, but also high resolution near material interfaces.

3.3. The two-dimensional case

In this section, MEHGKS and MEHGKS-IS are extended to the two-dimensional case. In the two-dimensional case, the 
4-equations model is updated by

(
W

n+1
i, j

Y
n+1
i, j

)
=
(

W
n
i, j

Y
n
i, j

)
− 1

�x

�t∫
0

((
Fi+ 1

2 , j (t)

FY
i+ 1

2 , j
(t)

)
−
(

Fi− 1
2 , j (t)

FY
i− 1

2 , j
(t)

))
dt

− 1

�y

�t∫
0

((
Gi, j+ 1

2
(t)

GY
i, j+ 1

2
(t)

)
−
(

Gi, j− 1
2
(t)

GY
i, j− 1

2
(t)

))
dt

+Y
n
i, j

1

�x

�t∫
0

((
0
U Y

i+ 1
2 , j

(t)

)
−
(

0
U Y

i− 1
2 , j

(t)

))
dt

+Y
n
i, j

1

�y

�t∫
0

((
0
V Y

i, j+ 1
2

(t)

)
−
(

0
V Y

i, j− 1
2

(t)

))
dt. (32)

Here W = (ρ, ρU , ρV , ρE) and F = (ρU , ρU 2 + p, ρU V , ρEU + pU ). Fi+ 1
2 , j(t), FY

i+ 1
2 , j

(t) and U Y
i+ 1

2 , j
(t) have the similar 

form to Eqs. (3) and (11). The high-order terms in the flux and source evaluations are

Fe(t) = Fk,NOK +
r∑

l=1

1

l!
(

t
∂

∂t
+ y

∂

∂ y

)l

Fe,NOK,

F e
Y (t) = Fk,NOK

Y +
r∑

l=1

1

l!
(

t
∂

∂t
+ y

∂

∂ y

)l

Fe,NOK
Y ,

U e
Y (t) = Uk,NOK

Y +
r∑

l=1

1

l!
(

t
∂

∂t
+ y

∂

∂ y

)l

Ue,NOK
Y . (33)

The Lax-Wendroff procedure to obtain the temporal derivatives reads as

∂m+l+q

∂xm∂ yl∂tq

(
∂

∂t

(
Q
Y

)e,NOK

+Ae,NOK · ∂

∂x

(
Q
Y

)e,NOK

+Be,NOK · ∂

∂ y

(
Q
Y

)e,NOK
)

= 0,
8
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A =

⎡⎢⎢⎢⎣
U ρ 0 0 0
0 U 0 1/ρ 0
0 0 U 0 0
0 γ (p + p∞) 0 U 0
0 0 0 0 U

⎤⎥⎥⎥⎦ ,B =

⎡⎢⎢⎢⎣
V 0 ρ 0 0
0 V 0 0 0
0 0 V 1/ρ 0
0 0 γ (p + p∞) V 0
0 0 0 0 V

⎤⎥⎥⎥⎦ . (34)

Here m + l + q = 0, 1, · · · , r − 1. The terms Fk(t), F k
Y (t) and U k

Y (t) are given as follows.

(1). In MEHGKS, they are given by

Fk(t) = Fk,NOK,

F k
Y (t) = Fk,NOK

Y ,

Uk
Y (t) = Uk,NOK

Y . (35)

(2). In MEHGKS-IS, they are given by

Fk (t) =
(

1 − e− �t
τ∗
)
Fk,NOK + e− �t

τ∗ F ,

F k
Y (t) =

(
1 − e− �t

τ∗
)
Fk,NOK

Y + e− �t
τ∗ FY ,

Uk
Y (t) =

(
1 − e− �t

τ∗
)
Uk,NOK

Y + e− �t
τ∗ UY , (36)

where F , FY and UY have the same expressions as Eq. (29) with F± replaced by

F± = Ũ

⎛⎜⎜⎝
ρ
ρU
ρV
ρE

⎞⎟⎟⎠
i+ 1

2
±

, j

+

⎛⎜⎜⎝
0
p̃
0
p̃Ũ

⎞⎟⎟⎠ .

Following the idea in [71], we take a simple and effective weight for τ ∗:

τ ∗ = C3
�Yx

�Yx + �Y y
�t, (37)

where

�Yx = 1

3

1∑
k=−1

∣∣∣Y n
i, j+k − Y

n
i+1, j+k

∣∣∣,
�Y y =

1∑
l=0

1∑
k=−2

∣∣∣Y n
i+l, j+k+1 − Y

n
i+l, j+k

∣∣∣.
Gi, j+ 1

2
(t), GY

i, j+ 1
2
(t) and V Y

i, j+ 1
2
(t) take the same form as Fi+ 1

2 , j(t), FY
i+ 1

2 , j
(t) and U Y

i+ 1
2 , j

(t) after transformation to the 

local normal direction.

4. Numerical tests

The time step �t is determined by the C F L condition [34,35]

�t = C F L × min

{
�x∣∣U ∣∣+ c

,
�y∣∣V ∣∣+ c

}
, (38)

where we take C F L = 0.4 if without specification. C1 = 0.05 (Eq. (8)), C2 = 5 (Eq. (8)) and C3 = 50 (Eq. (31), Eq. (37)) are 
adopted in this work [26]. ε = 10−3 is taken to identify a material interface. The results are not sensitive to ε . The details 
are given in Appendix C. The numerical results of the r-th-order MEHGKS which is noted as MEHGKS-r, and MEHGKS-IS 
which is noted as MEHGKS-r-IS are performed. The reference solution is calculated under refined grids. The calculations are 
dimensionless. A number of one-dimensional and two-dimensional benchmark tests are carried out.
9
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Table 1
Accuracy test for MEHGKS in the one-dimensional advection of density pertur-
bation.

MEHGKS-3

N L1 error Order L2 error Order L∞ error Order
10 1.57E-02 1.72E-02 2.49E-02
20 2.15E-03 2.87 2.39E-03 2.85 3.54E-03 2.81
40 2.73E-04 2.98 3.05E-04 2.97 4.61E-04 2.94
80 3.43E-05 2.99 3.83E-05 2.99 5.81E-05 2.99
MEHGKS-5

N L1 error Order L2 error Order L∞ error Order
10 1.32E-03 1.44E-03 2.13E-03
20 4.39E-05 4.91 4.88E-05 4.89 7.29E-05 4.87
40 1.39E-06 4.98 1.55E-06 4.97 2.35E-06 4.95
80 4.38E-08 4.99 4.88E-08 4.99 7.40E-08 4.99

4.1. The one-dimensional accuracy test

In this case, we assess the accuracy of MEHGKS in the smooth linear advection of density perturbation in a single 
stiffened gas [47]. The initial condition is given by

(ρ, U , p) = (1 + 0.2 sin x,1,1) .

γ = 1.4. p∞ = 1. Under the periodic boundary condition, the analytic solution is

(ρ, U , p) = (1 + 0.2 sin(x − t),1,1) .

The computational domain is [0,2π ] divided by N uniform cells. The output time is 2π . To test the accuracy in both space 
and time, we take C F L = 0.9 in this case.

The results of the errors and the accuracy order computed by MEHGKS-3 and MEHGKS-5 are shown in Table 1. All the 
MEHGKS-r schemes can achieve the designed order of accuracy in both space and time.

4.2. The interface only problem

This case contains an interface propagating at a constant speed to verify MEHGKS with no spurious velocity and pressure 
oscillations across a material interface. The initial condition is [56]

(ρ, U , p, γ , p∞) =
{

(1,1,1,4,1) , x < 0.2,

(0.125,1,1,1.4,0) , else.

The computational domain [0, 1]. The output time is 0.12. 100 uniform cells are used in this simulation [56].
Fig. 1 shows the results given by MEHGKS-3, MEHGKS-5 and MEHGKS-5-IS. The velocity and pressure are confirmed to 

be oscillation-free across the material interface. It also shows that MEHGKS-5 resolves the interface sharper than MEHGKS-3, 
illustrating the advantage of the higher accuracy. MEHGKS-5-IS gives the sharpest interface, and this demonstrates the high 
resolution of MEHGKS-5-IS.

4.3. The square wave propagation problem

This case contains a square wave propagating at a constant speed to assess the accuracy and resolution of the scheme 
[38,59]. The initial condition is given by

(ρ, U , p, γ , p∞) =
{

(1,1,1,1.4,0) , 0.3 ≤ x ≤ 0.7,

(5,1,1,4,1) , else,

with periodic boundary conditions on both sides of the computational domain [0, 1]. 20, 40 and 80 uniform cells are used. 
The output time of 100 periods is taken in this case for long time evolution.

Fig. 2 shows the results given by MEHGKS-3, MEHGKS-5 and MEHGKS-5-IS. They demonstrate the advantage of the high 
accuracy and high resolution of MEHGKS-5-IS in capturing a sharp interface. The velocity and pressure are also confirmed 
to be oscillation-free across a material interface.

4.4. The gas-helium shock tube problem

The initial conditions are given by [60]

(ρ, U , p, γ , p∞) =
{

(1,0,1,1.4,0) , x ≤ 0.5,

(0.125,0,0.1,1.667,0) , else.
10
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Fig. 1. ρ , U and p of the interface only problem with 100 uniform cells at t = 0.12.

The computational domain is [0, 1]. The output time t = 0.15. 400 uniform cells are used [60].
Fig. 3 shows the result given by MEHGKS-3, MEHGKS-5 and MEHGKS-5-IS. It confirms the resolution of MEHGKS-5-IS 

better than MEHGKS-5, and MEHGKS-5 better than MEHGKS-3.

4.5. The gas-liquid shock tube problems

Three different initial conditions of the gas-liquid shock tube problem are tested. The computational domain is [0, 1]. In 
the first case, the initial conditions are given by [56]

(ρ, U , p, γ , p∞) =
{

(1.241,0,2.753,1.4,0) , x < 0.5,(
0.991,0,3.059 × 10−4,5.5,1.505

)
, else.

The output time t = 0.1. 1000 uniform cells are used. In the second case, the initial conditions are given by [56]

(ρ, U , p, γ , p∞) =
⎧⎨⎩ (1,0,1,1.4,0) , x < 0.5,

(5,0,1,4,1) , 0.5 ≤ x < 0.6,

(7.093,−0.7288,10,4,1) , else.

The output time t = 0.2. 1000 uniform cells are used. The third case is a gas-liquid shock tube problem with large pressure 
ratio [57,29,38]. It will be very challenging with a strong shock wave while the shock and the material interface are very 
close [38]. The initial conditions are given by

(ρ, U , p, γ , p∞) =
{ (

103,0,109,4.4,6 × 108
)
, x ≤ 0.6,(

50,0,105,1.4,0
)
, else.
11
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Fig. 2. ρ , U and p of the square wave propagation problem with 20 (left), 40 (middle) and 80 (right) uniform cells at t = 100.

The output time t = 2.4 × 10−4. 5000 uniform cells are used.
Fig. 4 shows the results given by MEHGKS-3, MEHGKS-5 and MEHGKS-5-IS, demonstrating the best resolution of 

MEHGKS-5-IS.

4.6. The two-dimensional accuracy test

In this case we assess the accuracy of MEHGKS in the two-dimensional smooth linear advection of density perturbation. 
The initial conditions are given by

(ρ, U , V , p) = (1 + 0.2 sin(x + y),0.7,0.3,1) .

We take γ = 1.4, p∞ = 1. The corresponding analytic solutions are

(ρ, U , V , p) = (1 + 0.2 sin(x + y − t),0.7,0.3,1) .

The computational domain is [0,2π ] ×[0,2π ] divided by N × N uniform cells. The output time t = 2π . To test the accuracy 
in both space and time, C F L = 0.9 in this case.

The results of the errors and the accuracy order given by MEHGKS-3 and MEHGKS-5 are shown in Table 2, from which 
we see that the MEHGKS scheme can achieve the designed order of accuracy in both space and time in the two-dimensional 
case.
12



Fig. 3. ρ , U , p and γ of the gas-helium shock tube problem with 400 uniform cells at t = 0.15.

4.7. The two-dimensional square wave propagating problem

Here we assess the resolution of MEHGKS in the square wave propagation [59]. The initial conditions are given by

(ρ, U , V , p, γ , p∞) =
{

(1,1,1,1,1.4,1) , 0.3 < x < 0.7 ∩ 0.3 < y < 0.7,

(0.125,1,1,1,1.9,0) , else.
S. Li, D. Luo, J. Qiu et al. Journal of Computational Physics 490 (2023) 112318
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Fig. 4. ρ of the first (top), second (middle) and third (bottom) gas-liquid shock tube problems.

Table 2
Accuracy test for MEHGKS in the two-dimensional advection of density pertur-
bation.

MEHGKS-3

N L1 error Order L2 error Order L∞ error Order
10 2.62E-02 2.99E-02 4.09E-02
20 3.98E-03 2.72 4.43E-03 2.76 6.68E-03 2.61
40 5.13E-04 2.96 5.71E-04 2.96 8.79E-04 2.93
80 6.44E-05 2.99 7.18E-05 2.99 1.11E-04 2.99
MEHGKS-5

N L1 error Order L2 error Order L∞ error Order
10 2.25E-03 2.55E-03 3.58E-03
20 7.89E-05 4.83 8.77E-05 4.86 1.35E-04 4.73
40 2.52E-06 4.97 2.80E-06 4.97 4.34E-06 4.96
80 7.89E-08 4.99 8.80E-08 4.99 1.36E-07 4.99
14
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Fig. 5. The contours of ρ of the two-dimensional square wave propagating problem with 80 × 80 cells at t = 4.

Fig. 6. The schlieren-type images of ρ of the two-dimensional sod problem with 200 × 200 cells at t = 2.

The computational domain is [0,1] × [0,1]. 80 × 80 uniform cells are used. The periodic boundary conditions are applied 
on all sides of the domain. 80 × 80 uniform cells are adopted.

The density distributions at t = 4 are shown in Fig. 5. The interface is observed with better resolution by MEHGKS-
5 than by MEHGKS-3, and by MEHGKS-5-IS than by MEHGKS-5. Fig. 5 demonstrates the advantage of high-accuracy and 
high-resolution scheme in simulating multi-component flows.

4.8. The two-dimensional sod problem

For this problem, the initial conditions are given by

(ρ, U , V , p, γ , p∞) =
{

(1,0,0,1,1.4,0) , (x − 0.5)2 ≤ 0.32,

(0.125,0,0,0.1,1.9,0) , else.

The computational domain is [0,1] × [0,1]. The reflecting boundary conditions are imposed on all sides of the domain. 
200 × 200 uniform cells are adopted.

The schlieren-type images of the density at t = 2 are shown in Fig. 6, which confirm the best resolution of MEHGKS-5-IS.

4.9. The triple point problem

The initial conditions are [59]

(ρ, U , V , p, γ , p∞) =
⎧⎨⎩ (1,0,0,1,1.5,0) , x ≤ 1,

(1,0,0,0.1,1.4,0) , x > 1 ∩ y < 1.5,

(0.125,0,0,0.1,1.5,0) , else.

The computational domain is [0,7] × [0,3]. The reflecting boundary conditions are imposed on the top and bottom of the 
domain. The non-reflecting boundary conditions are used on the left and right sides. 840 × 360 uniform cells are adopted.

The schlieren-type of density at t = 2.4 and t = 5 are shown in Fig. 7, from which it is observed that the flow details are 
better captured by MEHGKS-5 than by MEHGKS-3, and further better resolved by MEHGKS-5-IS than by MEHGKS-5.

4.10. The shock-bubble interaction problem

This case contains the interaction of a shock wave in air with a circular R22 bubble [58,20]. It starts from a leftward-
moving shock wave with Mach 1.22 in air located at x = 0.25. In front of the shock, there is a R22 bubble with radius 
0.025 centered at (0.225, 0) in water. Air is given by (ρ, U , V , p, γ , p∞) = (1.225, 0, 0, 1.01325 × 105, 1.4, 0) in the pre-
shock and (ρ, U , V , p, γ , p∞) = (1.686, −113.5, 0, 1.59 × 105, 1.4, 0) in the post-shock regions. R22 inside the bubble is 
15
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Fig. 7. The schlieren-type images of ρ of the triple point problem with 840 × 360 cells at t = 2.4 (top) and t = 5 (bottom).

Fig. 8. The schlieren-type images of ρ of the shock-bubble interaction problem with 1780 × 178 cells at t = (115, 187, 417, 1020) × 10−6 (from top to 
bottom).

(ρ, U , V , p, γ , p∞) = (3.863, 0, 0, 1.01325 × 105, 1.249, 1). The computational domain is [0, 0.445] × [0, 0.0445]. The re-
flecting boundary conditions are imposed on the top and bottom of the domain. The non-reflecting boundary conditions are 
used on the left sides. The flows are inner flows on the right side. 1780 × 178 uniform cells are adopted.

The schlieren-type images of the density are shown in Fig. 8, which demonstrate the advantage of high-accuracy scheme 
in capturing the flow details and high-resolution scheme in resolving the interface.

4.11. Richtmyer-Meshkov instability problem

In this case, the interface between air and liquid is initially generated at x = 1.2+0.1 cos(2π y) = f (y) [56,38]. The initial 
conditions are

(ρ, U , V , p, γ , p∞) =
⎧⎨⎩ (1,0,0,1,1.4,0) , x ≤ f (y),

(5,0,0,1,4,1) , x ≤ 1.325,

(7.093,−0.7288,0,10,4,1) , else.

The computational domain is [−2, 2] × [0, 0.5]. The reflecting boundary conditions are imposed on the top and bottom of 
the domain. The non-reflecting boundary conditions are used on the left sides. The flows are inner flows on the right side. 
2560 × 320 uniform cells are adopted.
16
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Fig. 9. The schlieren-type images of ρ of the Richtmyer-Meshkov instability problem with 2560 × 320 cells at t = 0.1,0.5,1,2 (from top to bottom).

The schlieren-type images of the density are shown in Fig. 9. The oscillations are captured by MEHGKS-5 and MEHGKS-
5-IS. The interface is better resolved by MEHGKS-5-IS than by MEHGKS-5.

4.12. Underwater explosion problem

This case has been extensively adopted to test the performance of numerical schemes in media with large variations of 
the pressure and density [58,19]. Initially, a stationary interface between air and water is located at y = 0. Air is given by 
(ρ, p, γ , p∞) = (1.225, 1.01325 × 105, 1.4, 0). Water is (ρ, p, γ , p∞) = (103, 1.01325 × 105, 4.4, 6 × 108). There is a bubble 
with air (ρ, p, γ , p∞) = (1250, 109, 1.4, 0) centering at (0, −0.3) in water. Its radius is 0.12. The computational domain is 
[0, 2] × [−1.5, 1]. The reflecting boundary conditions are imposed on the bottom and left sides of the domain. The non-
reflecting boundary conditions are used on the remaining sides. 400 × 500 uniform cells are adopted.

The schlieren-type images of the density and pressure are shown in Figs. 10-11. The interface is better resolved 
by MEHGKS-5 than by MEHGKS-3, which demonstrates the advantage of a high-accuracy scheme in the simulations of 
multi-component flows. It also shows that the interface is better resolved by MEHGKS-5-IS than by MEHGKS-5, which 
demonstrates the advantage of a high-resolution scheme.

5. Conclusions and comments

Based on the framework of EHGKS with a newly-developed interface-sharpening technique, a one-stage high-accuracy 
and high-resolution scheme is proposed for invisid compressible immiscible multi-component flows. Firstly, the original 
EHGKS for a single ideal gas is modified for stiffened gases based on NOK. Secondly, the scheme is extended under Abgrall’s 
4-equations model to solve the non-conservative parts of model with no spurious oscillations across material interfaces. 
Together with a newly-developed interface-sharpening technique, the proposed scheme possesses not only uniform high 
order of accuracy in both space and time in smooth regions of a pure medium, but also the high resolution on the material 
interfaces.

Several benchmark tests are carried out to validate the high accuracy and resolution of the proposed scheme. The de-
signed third and fifth order of accuracy in both space and time is validated. Comparisons are made between MEHGKS-3, 
MEHGKS-5 and MEHGKS-IS. On the one hand, MEHGKS-5 presents more flow details than MEHGKS-3, illustrating the ad-
vantage of high accuracy. On the other hand, MEHGKS-5-IS can capture a material interface more sharply than MEHGKS-5, 
demonstrating the advantage of its high resolution. As a conclusion, the high accuracy and resolution of the new scheme is 
confirmed.
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Fig. 10. The schlieren-type images of ρ of the underwater explosion problem with 400 × 500 cells at t = 2 × 10−4, 4 × 10−3, 8 × 10−3 and 1.2 × 10−3 (from 
top to bottom).

The new method is developed for the stiffened gases in this work. It is also possible to extend it to a more general 
equation of state. In fact, NOK, which builds up the leading terms in flux and source evaluations of MEHGKS, has already 
been extended to the Mie-Grüneisen equation of state [40]. The key then should be on the modification of the Lax-Wendroff 
procedure to obtain the high-order terms in flux evaluations. We will continue this work in the future.
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Fig. 11. The schlieren-type images of p of the underwater explosion problem with 400 × 500 cells at t = 2 × 10−4, 4 × 10−3, 8 × 10−3 and 1.2 × 10−3 (from 
top to bottom).
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Appendix A. Reconstruction

The traditional WENO reconstruction technique [27] is applied to obtain the point-wise values at a cell interface. The 
definitions of W

i+ 1
2

± are

W
i+ 1

2
− = lim

x→x
i+ 1

W(x,0), x ∈
[

xi− 1
2
, xi+ 1

2

]
,

2
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W
i+ 1

2
+ = lim

x→x
i+ 1

2

W(x,0), x ∈
[

xi+ 1
2
, xi+ 3

2

]
.

To guarantee U
i+ 1

2
± = U0 and p

i+ 1
2

± = p0 under the condition U
n
i = U0 and pn

i = p0 for i = 1, 2, · · · , N , the WENO recon-

struction is implemented on (ρn
i , U

n
i , p

n
i , Y

n
i ). In this section, we define Q = (ρ, U , p, Y ) for simplicity.

To evaluate the spatial derivatives of Qe , the linear reconstruction is implemented based on the point-wise values Qe and 
the centremost cell averages Qn

i , Qn
i+1, · · · , i.e., in the third-order scheme,

∂Qe

∂x
= 1

�x

(
Q

n
i+1 − Q

n
i

)
,

∂2Qe

∂x2
= 1

�x2

(
3Q

n
i − 6Qe + 3Q

n
i+1

)
;

in the fifth-order scheme,

∂Qe

∂x
= 1

12�x

(
Q

n
i−1 − 15Q

n
i + 15Q

n
i+1 − Q

n
i+2

)
,

∂2Qe

∂x2
= 1

8�x2

(
−Q

n
i−1 + 31Q

n
i − 60Qe + 31Q

n
i+1 − Q

n
i+2

)
,

∂3Qe

∂x3
= 1

�x3

(
−Q

n
i−1 + 3Q

n
i − 3Q

n
i+1 + Q

n
i+2

)
,

∂4Qe

∂x4
= 1

2�x4

(
5Q

n
i−1 − 35Q

n
i + 60Qe − 35Q

n
i+1 + 5Q

n
i+2

)
.

In the two-dimensional case, the reconstruction is implemented dimension-by-dimension. The tangential derivatives of 
Qe are evaluated by the linear reconstruction based on ∂mQe

∂xm in the centers of the tangential faces. The subscript j is added 
to indicate the j-th face in the tangential direction. In the third-order scheme,

∂m+1Qe
j

∂ y∂xm
= 1

2�y

(
∂mQe

j+1

∂xm
− ∂mQe

j−1

∂xm

)
,

∂m+2Qe
j

∂ y2∂xm
= 1

�y2

(
∂mQe

j−1

∂xm
− 2

∂mQe
j

∂xm
+ ∂mQe

j+1

∂xm

)
.

In the fifth-order scheme,

∂m+1Qe
j

∂ y∂xm
= 1

12�y

(
−∂mQe

j−2

∂xm
+ 8

∂mQe
j−1

∂xm
− 8

∂mQe
j+1

∂xm
+ ∂mQe

j+2

∂xm

)
,

∂m+2Qe
j

∂ y2∂xm
= 1

12�y2

(
∂mQe

j−2

∂xm
− 16

∂mQe
j−1

∂xm
+ 30

∂mQe
j

∂xm
− 16

∂mQe
j+1

∂xm
+ ∂mQe

j+2

∂xm

)
,

∂m+3Qe
j

∂ y3∂xm
= 1

2�y3

(
−∂mQe

j−2

∂xm
+ 2

∂mQe
j−1

∂xm
− 2

∂mQe
j+1

∂xm
+ ∂mQe

j+2

∂xm

)
,

∂m+4Qe
j

∂ y4∂xm
= 1

�y4

(
∂mQe

j−2

∂xm
− 4

∂mQe
j−1

∂xm
+ 6

∂mQe
j

∂xm
− 4

∂mQe
j+1

∂xm
+ ∂mQe

j+2

∂xm

)
.

Remark 4. The present reconstruction can not preserve the inherent positivity of the density and pressure. Y is also not 
ensured between the range [0, 1]. For simplicity, all the reconstruction and flux evaluations are reduced to the first order 
of accuracy when the reconstructed point-wise density is negative, or the speed of sound is not real, or Y

i+ 1
2

± < −ε or 
Y

i+ 1
2

± > 1 + ε . The work to develop a positivity-preserving and border-preserving one-stage high-order method [72] will be 
studied in the future.

Appendix B. The proof of Eq. (18) for MEHGKS

Lemma. Assume Eq. (17), Eq. (18) is satisfied by MEHGKS with the reconstruction, flux and source evaluations defined in 
Appendix A, Eq. (16) and Eq. (24).
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Proof. The initial condition is given by Eq. (17). Based on the reconstruction in Appendix A, we have

U
i+ 1

2
± = U0,

p
i+ 1

2
± = p0. (B.1)

And given by the definition of Qe,NOK in Eq. (13), we have

U e,NOK = U0,

pe,NOK = p0,

∂mU e,NOK

∂xm
= 0,

∂m pe,NOK

∂xm
= 0, (B.2)

for m = 1, 2, · · · , r. The equation of state gives

1

γ e,NOK − 1
= 1

γ (1) − 1
Y e,NOK + 1

γ (2) − 1

(
1 − Y e,NOK

)
,

γ e,NOK pe,NOK∞
γ e,NOK − 1

= γ (1)p(1)∞
γ (1) − 1

Y e,NOK + γ (2)p(2)∞
γ (2) − 1

(
1 − Y e,NOK

)
. (B.3)

Substituting Eqs. (B.2)-(B.3) into Fe,NOK results in

Fe,NOK =
⎛⎜⎝ ρe,NOKU0

ρe,NOKU 2
0 + p0

1
2ρe,NOKU 3

0 + C0Y e,NOKU0 + p0U0 + p0+γ (2) p(2)∞
γ (2)−1

U0

⎞⎟⎠ , (B.4)

where C0 = p0+γ (1) p(1)∞
γ (1)−1

− p0+γ (2) p(2)∞
γ (2)−1

. The temporal derivatives of Fe,NOK can be obtained by the spatial derivatives 
according to the Lax-Wendroff procedure in Eq. (25), which gives

∂m+l

∂xm∂tl

(
∂U e,NOK

∂t
+ U e,NOK ∂U e,NOK

∂x
+ 1

ρe,NOK

∂ pe,NOK

∂x

)
= 0,

and

∂m+l

∂xm∂tl

(
∂ pe,NOK

∂t
+ γ e,NOK(pe,NOK + pe,NOK∞ )

∂U e,NOK

∂x
+ U e,NOK ∂ pe,NOK

∂x

)
= 0,

for m + l = 0, 1, · · · , r − 1. Since the reconstruction results in Eq. (B.2), we then have

m = 0, l = 0 : ∂U e,NOK

∂t
= 0,

∂ pe,NOK

∂t
= 0;

and subsequently

m = 1, l = 0 : ∂2U e,NOK

∂x∂t
= 0,

∂2 pe,NOK

∂x∂t
= 0;

m = 0, l = 1 : ∂2U e,NOK

∂t2
= 0,

∂2 pe,NOK

∂t2
= 0;

· · · , · · · ;
· · · , · · · ;

m = 0, l = r − 1 : ∂r U e,NOK

∂tr
= 0,

∂r pe,NOK

∂tr
= 0.

As a result,

∂ lFe,NOK

∂tl
= U0

∂ l

∂tl

⎛⎝ ρe,NOK

ρe,NOKU0
1
2ρe,NOKU0

2 + C0Y e,NOK

⎞⎠ . (B.5)

Substituting the equation of state into Fk,NOK results in
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Fig. C.12. ρ of the square wave propagation problem (Section 4.3) with 20 uniform cells at t = 100.

Fk,NOK =
⎛⎜⎝ F(1)k,NOK

U0F(1)k,NOK + p0

1
2 U 2

0F(1)k,NOK + C0F
k,NOK
Y + p0U0 + p0+γ (2) p(2)∞

γ (2)−1
U0

⎞⎟⎠ , (B.6)

where F(1)k,NOK = 〈u1
〉+,NOKρ

i+ 1
2

+ + 〈u1
〉−,NOKρ

i+ 1
2

− . In Eq. (22), F(3)k,NOK = 1
2 U 2

0F(1)k,NOK +C0F
k,NOK
Y + γ (2)

γ (2)−1
(p0 +

p(2)∞ )U0. Substituting Eqs. (B.5)-(B.6) back into Eqs. (2) and (10) results in Eqs. (20)-(23). Based on Eqs. (20) and (21), 
U

n+1
i = U0 is satisfied. After substituting the equation of state into Eq. (22), Eq. (22) can be written as

1

2
ρn+1

i U 2
0 +

(
pn+1

i + γ (1)p(1)∞
γ (1) − 1

− pn+1
i + γ (2)p(2)∞

γ (2) − 1

)
Y

n+1
i + pn+1

i + γ (2)p(2)∞
γ (2) − 1

= 1

2
ρn

i U 2
0 +

(
p0 + γ (1)p(1)∞

γ (1) − 1
− p0 + γ (2)p(2)∞

γ (2) − 1

)
Y

n
i + p0 + γ (2)p(2)∞

γ (2) − 1

−1

2
U 2

0
�t

�x

(
∇F(1)k,NOK + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l∇ρe,NOK

∂tl

)

−C0
�t

�x

(
∇Fk,NOK

Y + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l

∂tl
∇Y e,NOK

)
. (B.7)

And substituting Eq. (20) into Eq. (B.7) results in

C0Y
n+1
i = C0Y

n
i

−C0
�t

�x

(
∇Fk,NOK

Y + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l

∂tl
∇Y e,NOK

)

−
((

1
(1)

− 1
(2)

)
Y

n+1
i + 1

(2)

)(
pn+1

i − p0

)
. (B.8)
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Fig. C.13. ρ of the square wave propagation problem (Section 4.3) with 40 uniform cells at t = 100.

Fig. C.14. ρ of the square wave propagation problem (Section 4.3) with 80 uniform cells at t = 100.
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Fig. C.15. ρ of the gas-helium shock tube problem (Section 4.4) with 400 uniform cells at t = 0.15.

Fig. C.16. ρ of the gas-liquid shock tube problems (the third case in Section 4.5).
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Fig. C.17. The contours of ρ of the two-dimensional square wave propagating problem (Section 4.7) with 80 × 80 cells at t = 4.

Fig. C.18. The schlieren-type images of ρ of the triple point problem (Section 4.9) with 840 × 360 cells at t = 5.

Define C4 = 1
C0

(
1

γ (2)−1
− 1

γ (1)−1

)
and C5 = 1

C0
(
1−γ (2)

) , Eq. (B.8) can be written as

Y
n+1
i = Y

n
i − �t

�x

(
∇Fk,NOK

Y + U0

(
1 − e

− 1
C1

) r∑
l=1

�tl

(l + 1)!
∂ l

∂tl
∇Y e,NOK

)

+
(

C4Y
n+1
i + C5

)(
pn+1

i − p0

)
. (B.9)

Substituting Eq. (23) into Eq. (B.9) results in pn+1
i = p0. Consequently, Eq. (18) is satisfied by MEHGKS. Based on a 

similar derivation, we can also prove that Eq. (18) is satisfied by MEHGKS-IS.
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Fig. C.19. The schlieren-type images of ρ of the shock-bubble interaction problem (Section 4.10) with 1780 × 178 cells at t = 1020 × 10−6 (from top to 
bottom).

Fig. C.20. The schlieren-type images of ρ of the underwater explosion problem (Section 4.12) with 400 × 500 cells at t = 1.2 × 10−3.

Appendix C. The sensitivity of numerical results to ε

ε is a small value used to identify a material interface. In this section, the results of several cases are given as an 
example to demonstrate their sensitivity to ε , by using different values of ε from 10−3 to 10−12. The tests are conducted 
under the same conditions as the previous cases in Section 4, except for the value of ε . The comparisons demonstrate that 
the numerical results are not sensitive to ε in this range. See Figs. C.12–C.20.
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