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Abstract
In this paper, a class of high-order multi-resolution central Hermite WENO (C-HWENO)
schemes for solving hyperbolic conservation laws is proposed. Formulated in a central finite
volume framework on staggered meshes, the methods adopt the multi-resolution HWENO
reconstructions (Li et al. in J Comput Phys 446:110653, 2021; Li et al. in Commun Comput
Phys 32(2): 364-400, 2022) in space and the natural continuous extension of Runge–Kutta
methods in time. Based on the zeroth-order and first-order moments of the solution defined
on a series of hierarchical central spatial stencils, the proposed methods are sixth-order
while the C-HWENO methods by Tao et al. (J Comput Phys 318:222-251, 2016) are fifth-
order in accuracy. The linear weights of such HWENO reconstructions can be any positive
numbers as long as their sum equals one, which leads to much simpler implementation and
better cost efficiency than the methods by Tao et al. (J Comput Phys 318:222-251, 2016).
The first-order moments are modified and the HWENO reconstructions are applied in the
troubled-cells, while the linear reconstructions are used for the rest. Meanwhile, our new
methods have compact stencils in the reconstructions and require neither numerical fluxes
nor flux splitting. Extensive one- and two-dimensional numerical examples are performed to
illustrate the accuracy and high resolution of the new C-HWENO schemes.
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1 Introduction

In this paper, a class of high-order finite volume multi-resolution central Hermite weighted
essentially non-oscillatory (C-HWENO) schemes is designed for solving one- and two-
dimensional hyperbolic conservation laws{

ut + ∇ · f (u) = 0,

u(x, 0) = u0(x),
(1.1)

with suitable initial and boundary conditions. Hyperbolic conservation laws arise in a wide
range of applications in engineering and science, such as astrophysical modeling, aerody-
namics, explosion and blast waves, weather prediction, and multi-phase flow problems. Here
(1.1) can be scalar or a system, and it is often nonlinear. Shocks, compound waves, etc., may
appear in the solutions of the nonlinear equations regardless of the smoothness of the initial
and boundary conditions. When (1.1) is a system, the local characteristic decomposition is
applied to control the spurious oscillations.

Finite difference and finite volumeWENO (weighted essentially non-oscillatory) schemes
have been successfully applied to the simulation of hyperbolic conservation laws with excel-
lent property of the high order accuracy in the smooth region and the non-oscillatory shock
transitions near the discontinuities. To improve the accuracy in the smooth region without
destroying the non-oscillatory property of the ENO (essentially non-oscillatory) schemes, the
firstWENO scheme [16] was proposed by Liu, Osher and Chan as a third-order finite volume
method for one space dimension. Since then, the methods have been further developed in the
design of smoothness indicator, nonlinear weights, higher dimensions, unstructured meshes
and better accuracy [1, 6, 7, 11, 24, 25, 34]. Note that higher order accuracy in the WENO
scheme relies on enlarging the stencil of the reconstruction. To improve the compactness
while maintaining the high order accuracy, Hermite WENO (HWENO) methods were fur-
ther developed in a finite volume or finite difference framwork [15, 21, 23, 29, 32, 33]. Here,
the solution as well as its first-order derivative(s) or moment(s) evolve over time and are used
in the Hermite type reconstruction in space.

WENO methods were originally used within the upwind or Godunov framework. Com-
pared with the upwind scheme, the central scheme is an efficient alternative for hyperbolic
conservation laws, and it is relatively simpler. The central scheme requires neither numerical
flux, that are exact or approximate Riemann solver, nor the flux splitting, and the local charac-
teristic decomposition is not necessary for the low order central schemes. In 1990, Nessyahu
and Tadmor first proposed a second-order central scheme [19]. Later, various semi-discrete
as well as multi-dimensional versions of the central schemes were developed in [2, 8, 10, 17,
18]. WENO or HWENOmethods were also integrated into the central framework [5, 11, 12,
20, 26, 27] to improve the accuracy and resolution. Many central schemes use the natural
continuous extension of Runge–Kutta method [30] as time discretization. In addition, the
Lax-Wendroff type time discretization was also applied in the C-HWENOmethods [26, 27].

The work in this paper is a continuation of the C-HWENO scheme in [27], and they
have similar advantages such as the compactness in the reconstruction. Based on the multi-
resolution HWENO reconstructions [13, 14], our new schemes are sixth-order while the
schemes in [27] are fifth-order in accuracy, and they have better resolution for some examples
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than the previous schemes. The truly two-dimensional reconstructions are used such that we
do not need the information of the mixed-type first-order moment vwn

i j which is involved
in the two-dimensional reconstructions in [27] with a dimension-by-dimension procedure.
Furthermore, the same reconstructed polynomials and nonlinear weights are used in our new
reconstructions for different quantities, and this leads to much simpler implementation. The
newmulti-resolution reconstructions were first developed for theWENO schemes [34] where
a series of unequal-sized hierarchical central spatial stencils were used in the reconstructions
and the linear weights of such schemes can be any positive numbers on the condition that
their sum equals one. Following the idea in [31, 32], we alsomodify the first-order moment(s)
when the target cell is identified as a troubled-cell to further improve the stability. Besides, the
HWENO reconstructions are only applied in the troubled-cells and the linear reconstructions
are used for the rest to save the cost of our schemes.

The structure of this paper is as follows: in Sect. 2, we describe in detail the implementation
of the new C-HWENO schemes with the multi-resolution HWENO spatial reconstructions
and the natural continuous extension of the Runge–Kutta method as time discretization for
one- and two-dimensional hyperbolic conservation laws. In Sect. 3, extensive benchmark
examples are presented to verify the accuracy and good performance of the proposed schemes.
Concluding remarks are made in Sect. 4.

2 Multi-resolution C-HWENO Schemes with Natural Continuous
Extension of Runge–Kutta Time Discretization

In this section, we introduce the finite volume central schemes with sixth-order multi-
resolution HWENO reconstructions and the natural continuous extension of Runge–Kutta
time discretization for solving hyperbolic conversation laws in one and two dimensions.

2.1 One-Dimensional Case

Consider the one-dimensional scalar conservation law{
ut + f (u)x = 0,

u(x, 0) = u0(x).
(2.1)

Let {xi }i be a uniform partition of the one-dimensional computational domain with the mesh
size�x . Based on xi+1/2 = 1

2 (xi +xi+1), we denote the primalmesh as Ii = [xi−1/2, xi+1/2]
with the center xi and the dualmesh as Ii+1/2 = [xi , xi+1]with the center xi+1/2. Ourmethod
evolves the numerical solutions in a staggered manner with the two meshes.

The first two moments of the solution on primal mesh Ii are denoted as {ui , vi }, that is

ui ≈ 1

�x

∫
Ii
u(x, t)dx, vi ≈ 1

�x

∫
Ii
u(x, t)

x − xi
�x

dx .

The moments of the solution on dual mesh Ii+1/2 are denoted as {ui+1/2, vi+1/2}, that is

ui+1/2 ≈ 1

�x

∫
Ii+1/2

u(x, t)dx, vi+1/2 ≈ 1

�x

∫
Ii+1/2

u(x, t)
x − xi+1/2

�x
dx .

Suppose at t = tn , the moments of the solution {uni , vni }i are available on primal mesh.

We multiply (2.1) by 1
�x and

x−xi+1/2

(�x)2
, respectively, integrate over Ii+1/2 × [tn, tn+1], apply
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integration by parts, and obtain

un+1
i+1/2 = uni+1/2 − 1

�x

∫ tn+1

tn
[ f (u(xi+1, t)) − f (u(xi , t))]dt, (2.2)

vn+1
i+1/2 = vni+1/2 − 1

�x

∫ tn+1

tn

[
1

2
[ f (u(xi+1, t)) + f (u(xi , t))]− 1

�x

∫ xi+1

xi
f (u(x, t))dx

]
dt .

(2.3)

Since the sixth-order HWENO spatial reconstruction will be adopted, we would apply the
four-point Gauss-Lobatto quadrature to compute the spatial integral

1

�x

∫ xi+1

xi
f (u(x, t))dx ≈

4∑
l=1

ωl f (u(xGl , t)). (2.4)

where xG1 = xi , xG2 = x
i+ 1

2−
√
5

10
, xG3 = x

i+ 1
2+

√
5

10
and xG4 = xi+1 are the quadrature points

over the cell Ii+1/2, and ω1 = ω4 = 1
12 and ω2 = ω3 = 5

12 are the quadrature weights. This
implies that we need the quadrature points

xG,i = {x
i− 1

2+
√
5

10
, xi , xi+ 1

2−
√
5

10
}. (2.5)

in each cell Ii of primal mesh, and we define xG = ∪i xG,i .
Let’s consider the problem (2.1) with u|Ii as a constant at tn . Suppose we choose a suitable

time step �t ≤ Ccf l�x
max | f ′(u)| , the discontinuities starting from xi−1/2 and xi+1/2 at tn will

not affect the solutions at x∗(x∗ ∈ xG), and therefore u(x∗, t), t ∈ (tn, tn+1) are smooth.
Motivated by this, the three-point Gauss quadrature is used to approximate the temporal
integrals in (2.2) and (2.3) as below

∫ tn+1

tn
f (u(x, t))dt ≈ �t

3∑
m=1

αm f (u(x, tn + θm�t)), (2.6)

where θ1 = 1
2 −

√
15
10 , θ2 = 1

2 , θ3 = 1
2 +

√
15
10 are the quadrature points, and α1 = α3 =

5
18 , α2 = 4

9 are the quadrature weights.
Based on (2.2)–(2.6), the proposed central scheme is given as follows.

(a.1) With {uni , vni }i being available at t = tn on primal mesh, the first two moments
{un+1

i+1/2, v
n+1
i+1/2}i of the solution at t = tn+1 on dual mesh can be computed as follows,

un+1
i+1/2 = uni+1/2 − �t

�x

3∑
m=1

αm
[
f (u(xi+1, t)) − f (u(xi , t))

] ∣∣
t=tn+θm�t , (2.7)

vn+1
i+1/2 = vni+1/2 − �t

�x

3∑
m=1

αm

[
f (u(xi+1, t)) + f (u(xi , t))

2
−

4∑
l=1

ωl f (x
G
l , t))

] ∣∣∣
t=tn+θm�t

.

(2.8)

(a.2) With {un+1
i+1/2, v

n+1
i+1/2}i being available at t = tn+1 on dual mesh, the first two moments

{un+2
i , vn+2

i }i at t = tn+2 on primal mesh can be computed as follows,

un+2
i = un+1

i − �t

�x

3∑
m=1

αm
[
f (u(xi+1/2, t)) − f (u(xi−1/2, t))

] ∣∣
t=tn+1+θm�t ,
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vn+2
i = vn+1

i − �t

�x

3∑
m=1

αm

[
f (u(xi+1/2, t)) + f (u(xi−1/2, t))

2
−

4∑
l=1

ωl f (u(x̂Gl , t))

] ∣∣∣
t=tn+1+θm�t

,

where x̂G1 = xi− 1
2
, x̂G2 = x

i−
√
5

10
, x̂G3 = x

i+
√
5

10
and x̂G4 = xi+ 1

2
are the quadrature

points over the cell Ii .
(a.3) Set n to be n + 2, and return to (a.1).

In order to finalize the proposed scheme, certain quantities in (a.1) and (a.2) need to
be reconstructed. Because of its similarity, we only describe (a.1) in detail. To calculate
the quantities {un+1

i+1/2, v
n+1
i+1/2}i , according to (2.7)–(2.8), one will need to obtain accurate

approximations of the following quantities

uni+1/2, vni+1/2, u(x∗, tn + θm�t), ∀i, m = 1, 2, 3, x∗ ∈ xG , (2.9)

with the given data {uni , vni }i . Notice that one would want to get the half-cell averages
1

�x

∫ xi+1/2
xi

u(x, tn)dx and 1
�x

∫ xi+1
xi+1/2

u(x, tn)dx to approximate uni+1/2

uni+1/2 ≈ 1

�x

∫ xi+1

xi
u(x, tn)dx = 1

�x

∫ xi+1/2

xi
u(x, tn)dx + 1

�x

∫ xi+1

xi+1/2

u(x, tn)dx .

The first-order moment vni+1/2 can be implemented in a similar way

vni+1/2 ≈ 1

�x

∫ xi+1/2

xi
u(x, tn)

x − xi+1/2

�x
dx + 1

�x

∫ xi+1

xi+1/2

u(x, tn)
x − xi+1/2

�x
dx .

Toapproximate the point valuesu(x∗, tn+θm�t)(m = 1, 2, 3, x∗ ∈ xG) in (2.9),we apply
the fourth-order natural continuous extension of Runge–Kutta (NCE-RK) time discretization.
For more details on this discretization, see [2, 30]. Consider a scalar or a system of ODE
problem {

y′(t) = H(y(t)),

y(t0) = y0.
(2.10)

We start with yn which is an approximation of y(tn), and the approximation for y(tn+1) can
be obtained by the RK method with ν stages

yn+1 = yn + �t
ν∑

i=1

bi K
(i), (2.11)

where K (i) are RK fluxes defined as

K (i) = H(Y (i)), i = 1, · · · , ν.

Here the intermediate values Y (i) can be computed as below

Y (i) = yn + �t
ν∑
j=1

ai j K
( j), i = 1, · · · , ν.

The vector b and the matrix A = (ai j ) characterize the RK method. In this paper, we use the
explicit fourth-order RK method with

A =

⎛
⎜⎜⎝

0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝
1/6
1/3
1/3
1/6

⎞
⎟⎟⎠ .
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Anatural continuous extension of the RKmethod (2.10)–(2.11) can further get the approx-
imation of y(t) with the same accuracy when t ∈ [tn, tn+1] by

w(t)|t=tn+θ�t = yn + �t
4∑

i=1

Bi (θ)K (i), 0 ≤ θ ≤ 1, (2.12)

where

B1(θ) = 2(1 − 4b1)θ
3 + 3(3b1 − 1)θ2 + θ,

Bi (θ) = 4(3ci − 2)biθ
3 + 3(3 − 4ci )biθ

2, i = 2, 3, 4.

Here c1 = 0, c2 = c3 = 1
2 , c4 = 1, and w(t) satisfies the following property

max
tn≤t≤tn+�t

|y(t) − w(t)| = O(�t4).

We apply the fourth-order NCE-RK method (2.12) to assist an auxiliary ODE problem
(2.10) starting from t = tn . Here y(t) in (2.10) is the point value u(x∗, t), and H(y(t)) is the
corresponding − fx (u(x∗, t)). Two ingredients are needed to approximate the point values
u(x∗, tn + θm�t). One part is the calculation of u(x∗, tn), which can be obtained by multi-
resolution HWENO reconstruction based on {uni , vni }i in step 4. The other is the calculation
of H(y(t)) = − fx (u(x∗, t)), which can be calculated using a high-order linear interpolation
based on f (u(x∗, t)), x∗ ∈ xG in step 5.

The sixth-order multi-resolution HWENO reconstruction of Li, Shu and Qiu [13, 14] is
applied to compute the quantities mentioned above. The multi-resolution HWENO recon-
struction has many advantages. First, the linear weights of such reconstruction do not need
to be computed like the classical HWENO reconstruction, but can be taken as any positive
numbers to avoid the appearance of negative weights which need splitting strategy. Second,
this HWENO format uses the same large template as the classical HWENO format and has
higher order of accuracy. Since the data is at the same time level during the reconstruction,
the superscript n and the dependence on time t will be omitted below.
Step 1 Identify the troubled-cells and modify the first-order moments.

Step 1.1 The troubled-cells indicate that the solutions in those cells may contain disconti-
nuities. In [22], Qiu and Shu compared different troubled-cell indicators for the Runge–Kutta
discontinuous Galerkin method, and the KXRCF troubled-cell indicator [9] is used in this
paper. First, we divide the boundary of the cell Ii into two parts: inflow boundary ∂ I−

i
(−→v · −→n < 0, where −→v is the velocity of flow, −→n is the outer normal vector to ∂ Ii ) and
outflow boundary ∂ I+

i (−→v · −→n > 0). The target cell Ii is identified as a troubled-cell if the
following criterion is satisfied∣∣ ∫

∂ I−
i

(
ui (x) − uni (x)

)
ds
∣∣

�x
l+1
3
∣∣∂ I−

i

∣∣‖ui (x)‖ > 1 (2.13)

where Ini is the neighbor of Ii on the side of ∂ I−
i . The parameter l = 5 is the degree of

ui (x) which is an approximation of u(x), and ui (x) can be obtained by a sixth-order linear
reconstruction {

1
�x

∫
Ik
ui (x)dx = uk, k = i − 1, i, i + 1,

1
�x

∫
Ikx

ui (x)
x−xkx

�x dx = vkx , kx = i − 1, i, i + 1.
(2.14)
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‖ui (x)‖ is taken to be L∞ norm

‖ui (x)‖ ≈ max{|u+
i− 1

2
|, |u

i− 1
2+

√
5

10
|, |ui |, |ui+ 1

2−
√
5

10
|, |u−

i+ 1
2
|}

where

u+
i− 1

2
= ui (xi− 1

2
), u

i− 1
2+

√
5

10
= ui (xi− 1

2+
√
5

10
), ui = ui (xi ),

u
i+ 1

2−
√
5

10
= ui (xi+ 1

2−
√
5

10
), u−

i+ 1
2

= ui (xi+ 1
2
).

The average of line integral in the formula (2.13) can be expressed explicitly

1

|∂ I−
i |
∣∣∣∣
∫

∂ I−
i

(
ui (x) − uni (x)

)
ds

∣∣∣∣
=
∣∣∣(u+

i−1/2 − u−
i−1/2) ∗ s(−→v i− 1

2
) + (u−

i+1/2 − u+
i+1/2) ∗ s(−−→v i+ 1

2
)

∣∣∣
where

s(x) =
{
1, x > 0,

0, else.
(2.15)

For the one-dimensional scalar case, we take −→v = f ′(u). For the one-dimensional Euler
equations, we set the density ρ as the indicator variable, and −→v = μ is the velocity of the
fluid.

Step 1.2 If the target cell Ii is identified to be a troubled-cell, one would like to identify
Ii−1 and Ii+1 as troubled-cells. Then, we need to modify the first-order moments of all
troubled-cells. Take the first-order moment vi as an example. One could reconstruct two
quadratic polynomials p1(x), p2(x) and a quartic polynomial p3(x), which satisfy{

1
�x

∫
Ik
p1(x)dx = uk, k = i − 1, i,

1
�x

∫
Ii−1

p1(x)
x−xi−1

�x dx = vi−1,
(2.16)

{
1

�x

∫
Ik
p2(x)dx = uk, k = i, i + 1,

1
�x

∫
Ii+1

p2(x)
x−xi+1

�x dx = vi+1,
(2.17)

{
1

�x

∫
Ik
p3(x)dx = uk, k = i − 1, i, i + 1,

1
�x

∫
Ikx

p3(x)
x−xkx

�x dx = vkx , kx = i − 1, i + 1.
(2.18)

We can compute the first-order moment of polynomials pl(x), l = 1, 2, 3 over Ii , and the
results can be given explicitly,⎧⎪⎨

⎪⎩
1

�x

∫
Ii
p1(x)

x−xi
�x dx = − 1

6ui−1 + 1
6ui − vi−1,

1
�x

∫
Ii
p2(x)

x−xi
�x dx = − 1

6ui + 1
6ui+1 − vi+1,

1
�x

∫
Ii
p3(x)

x−xi
�x dx = − 5

76ui−1 + 5
76ui+1 − 11

38vi−1 − 11
38vi+1.

To compute the nonlinear weights, the smoothness indicators of polynomials pk(x) can
be calculated as below

βk =
r∑

α=1

∫
Ii

�x2α−1
(
dα pk(x)

dxα

)2

dx, k = 1, 2, 3, (2.19)
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where r is the degree of the polynomials pk(x). Then we adopt the idea of WENO-Z [3, 4]
and define the quantity τ as the absolute difference between smoothness indicators,

τ =
(∑2

k=1 |β3 − βk |
2

)2

.

The nonlinear weights can be computed

ωk = ωk∑3
l=1 ωl

, ωk = γk

(
1 + τ

βk + ε

)
, k = 1, 2, 3, (2.20)

here ε = 10−6 and γ1 = γ2 = 0.002, γ3 = 0.996 are linear weights which can be any
positive numbers provided that their sum equals one.

Then the first-order moment is modified as

vmod
i ≈ ω3

γ3

(
1

�x

∫
Ii
p3(x)

x − xi
�x

dx −
2∑

k=1

γk
1

�x

∫
Ii
pk(x)

x − xi
�x

dx

)

+
2∑

k=1

ωk
1

�x

∫
Ii
pk(x)

x − xi
�x

dx .

If Ii is not a troubled-cell, we simply set vmod
i = vi .

Step 2 A reconstruction of 1
�x

∫ xi
xi−1/2

u(x)dx and 1
�x

∫ xi+1/2
xi

u(x)dx from {ui−1, ui , ui+1,

vi−1, v
mod
i , vi+1}.

If the target cell Ii is identified to be a troubled-cell, we use the following multi-resolution
HWENO reconstruction. Based on a series of central spatial stencils, we reconstruct a zeroth
degree polynomial q1(x), a quadratic polynomial q2(x), a cubic polynomial q3(x), and a
quintic polynomialq4(x), respectively, and these polynomials satisfy the following conditions

1

�x

∫
Ii
q1(x)dx = ui , (2.21)

1

�x

∫
Ik
q2(x)dx = uk, k = i − 1, i, i + 1, (2.22){

1
�x

∫
Ik
q3(x)dx = uk, k = i − 1, i, i + 1,

1
�x

∫
Ii
q3(x)

x−xi
�x dx = vmod

i ,
(2.23)

⎧⎪⎨
⎪⎩

1
�x

∫
Ik
q4(x)dx = uk, k = i − 1, i, i + 1,

1
�x

∫
Ii
q4(x)

x−xi
�x dx = vmod

i ,
1

�x

∫
Ikx

q4(x)
x−xkx

�x dx = vkx , kx = i − 1, i + 1.

(2.24)

Then, we express the polynomials ql(x), l = 1, 2, 3, 4 as the linear combination of poly-
nomials pk(x), k = 1, 2, 3, 4 as below

q1(x) = p1(x),

q2(x) = γ1,2 p1(x) + γ2,2 p2(x),

q3(x) = γ1,3 p1(x) + γ2,3 p2(x) + γ3,3 p3(x),

q4(x) = γ1,4 p1(x) + γ2,4 p2(x) + γ3,4 p3(x) + γ4,4 p4(x), (2.25)
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where
∑l

k=1 γk,l = 1, γl,l �= 0, l = 2, 3, 4, and γk,l are the linear weights defined as

γk,l = γ k,l∑l
l1=1 γ l1,l

, γ k,l = 10k−1, k = 1, · · · , l; l = 2, 3, 4. (2.26)

The choice of γ k,l is not unique. However, numerical experiments show that the shock jump
near the discontinuity will be sharper if the higher degree polynomial is given a larger linear
weight. According to (2.26), we have

γ 1,2 = γ 1,3 = γ 1,4 = 1, γ 2,2 = γ 2,3 = γ 2,4 = 10, γ 3,3 = γ 3,4 = 100, γ 4,4 = 1000,

and the linear weights are

γ1,2 = 1

11
, γ2,2 = 10

11
, γ1,3 = 1

111
, γ2,3 = 10

111
, γ3,3 = 100

111
,

γ1,4 = 1

1111
, γ2,4 = 10

1111
, γ3,4 = 100

1111
, γ4,4 = 1000

1111
.

The equivalent polynomials pk(x), k = 1, 2, 3, 4 can be computed as follows⎧⎪⎨
⎪⎩
p1(x) = q1(x),

pk(x) = 1
γk,k

qk(x) −
k−1∑
l=1

γl,k
γk,k

pl(x), k = 2, 3, 4.
(2.27)

To compute the nonlinear weights for (2.25), the smoothness indicators of polynomials
pk(x) can be calculated as below

βk =
r∑

α=1

∫
Ii

�x2α−1
(
dα pk(x)

dxα

)2

dx, k = 2, 3, 4, (2.28)

where r = 2, 3, 5 for k = 2, 3, 4, respectively. The only difference is β1. If β1 is defined in
the sameway, it would be zero. Although this does not affect the precision order of the smooth
region, it does cause the shock wave transition near the discontinuities to be somewhat fuzzy,
especially when the problem involves strong shocks or contact discontinuities. Therefore we
would like to scale up β1 from zero to a positive value in the following approach. One can take
two stencils {Ii−1, Ii } and {Ii , Ii+1}, and obtain the corresponding smoothness indicators

β1L = (ui − ui−1)
2, β1R = (ui+1 − ui )

2.

Then, we compute the nonlinear weights of the two stencils

ω1m = ω1m

ω1L + ω1R
, ω1m = γ1m

(
1 + τ1

β1m + ε

)
,m = L, R,

where

γ1L =
{

1
11 , β1L ≥ β1R,
10
11 , β1L < β1R,

γ1R = 1 − γ1L , τ1 = |β1R − β1L |2,

and ε = 10−6. Finally, we define

β1 = (ω1L(ui − ui−1) + ω1R(ui+1 − ui ))
2 .
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With the smoothness indicators and the linearweights defined above, one can nowcompute
the nonlinear weights. Here we adopt the idea of WENO-Z [3, 4] and define the quantity τ4
as the absolute difference between smoothness indicators,

τ4 =
(∑3

k=1 |β4 − βk |
3

)2

.

The nonlinear weights can be computed

ωk,4 = ωk,4∑4
l=1 ωl,4

, ωk,4 = γk,4

(
1 + τ4

βk + ε

)
, k = 1, 2, 3, 4, (2.29)

here ε = 10−6. The new final reconstructed polynomial p(x) is given by

p(x) =
4∑

k=1

ωk,4 pk(x).

To compute 1
�x

∫ xi
xi−1/2

u(x)dx , we further compute the half-cell averages of polynomials
pk(x), k = 1, 2, 3, 4 over [xi−1/2, xi ], and the results can be given explicitly,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
�x

∫ xi
xi−1/2

p1(x)dx = 1
2ui ,

1
�x

∫ xi
xi−1/2

p2(x)dx = 11
160ui−1 + 1

2ui − 11
160ui+1,

1
�x

∫ xi
xi−1/2

p3(x)dx = − 119
14080ui−1 + 1

2ui + 119
14080ui+1 − 2997

1760v
mod
i ,

1
�x

∫ xi
xi−1/2

p4(x)dx = − 1431
225280ui−1 + 1

2ui + 1431
225280ui+1 − 1111

51200vi−1

− 453109
281600v

mod
i − 1111

51200vi+1.

Finally, a sixth-order HWENO approximation for 1
�x

∫ xi
xi−1/2

u(x)dx is given as

1

�x

∫ xi

xi−1/2

u(x)dx ≈ 1

�x

∫ xi

xi−1/2

p(x)dx =
4∑

k=1

ωk,4
1

�x

∫ xi

xi−1/2

pk(x)dx . (2.30)

If the cell Ii is not a troubled-cell, 1
�x

∫ xi
xi−1/2

u(x)dx can be approximated by the linear
reconstruction

1

�x

∫ xi

xi−1/2

u(x)dx ≈ 1

�x

∫ xi

xi−1/2

q4(x)dx = − 3

512
ui−1 + 1

2
ui

+ 3

512
ui+1 − 5

256
vi−1 − 205

128
vmod
i − 5

256
vi+1.

The right half-cell average of u over [xi , xi+1/2] can be approximated based on the local
conservation of u in the cell Ii ,

1

�x

∫ xi+1/2

xi
u(x)dx = ui − 1

�x

∫ xi

xi−1/2

u(x)dx .

Step 3 A reconstruction of 1
�x

∫ xi
xi−1/2

u(x)
x−xi−1/2

�x dx and 1
�x

∫ xi+1/2
xi

u(x)
x−xi+1/2

�x dx from

{ui−1, ui , ui+1, vi−1, v
mod
i , vi+1}. If the target cell Ii is identified to be a troubled-cell, the

same stencils as in step 2 are used, together with the same reconstructed polynomials ql(x),
pk(x), l, k = 1, 2, 3, 4 and the nonlinear weights.
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To reconstruct 1
�x

∫ xi
xi−1/2

u(x)
x−xi−1/2

�x dx , we can compute the half-cell first-ordermoment
of polynomials pk(x), k = 1, 2, 3, 4 over [xi−1/2, xi ], and the results can be given explicitly,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
�x

∫ xi
xi−1/2

p1(x)
x−xi−1/2

�x dx = 1
8ui ,

1
�x

∫ xi
xi−1/2

p2(x)
x−xi−1/2

�x dx = 11
1280ui−1 + 251

1920ui − 11
768ui+1,

1
�x

∫ xi
xi−1/2

p3(x)
x−xi−1/2

�x dx = − 639
140800ui−1 + 25

192ui − 283
422400ui+1 − 5217

17600v
mod
i ,

1
�x

∫ xi
xi−1/2

p4(x)
x−xi−1/2

�x dx = − 59033
5632000ui−1 + 71481

512000ui − 11629
2816000ui+1

− 9999
256000vi−1 − 171509

563200v
mod
i + 1111

64000vi+1.

The final reconstruction for 1
�x

∫ xi
xi−1/2

u(x)
x−xi−1/2

�x dx is given as

1

�x

∫ xi

xi−1/2

u(x)
x − xi−1/2

�x
dx ≈

4∑
k=1

ωk,4
1

�x

∫ xi

xi−1/2

pk(x)
x − xi−1/2

�x
dx, (2.31)

with the same nonlinear weights ωk,4, k = 1, 2, 3, 4 as in (2.29).
The similarity goes to 1

�x

∫ xi+1/2
xi

u(x)
x−xi+1/2

�x dx . One can compute the half-cell first-
order moment of polynomials pk(x), k = 1, 2, 3, 4 over [xi , xi+1/2], and the results can be
given explicitly,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
�x

∫ xi+1/2
xi

p1(x)
x−xi+1/2

�x dx = − 1
8ui ,

1
�x

∫ xi+1/2
xi

p2(x)
x−xi+1/2

�x dx = 11
786ui−1 − 251

1920ui − 11
1280ui+1,

1
�x

∫ xi+1/2
xi

p3(x)
x−xi+1/2

�x dx = 283
422400ui−1 − 25

192ui + 639
140800ui+1 − 5217

17600v
mod
i ,

1
�x

∫ xi+1/2
xi

p4(x)
x−xi+1/2

�x dx = 11629
2816000ui−1

71481
512000ui + 59033

5632000ui+1

+ 1111
64000vi−1 − 171509

563200v
mod
i − 9999

256000vi+1.

The final reconstruction for 1
�x

∫ xi+1/2
xi

u(x)
x−xi+1/2

�x dx is given as

1

�x

∫ xi+1/2

xi
u(x)

x − xi+1/2

�x
dx ≈

4∑
k=1

ωk,4
1

�x

∫ xi+1/2

xi
pk(x)

x − xi+1/2

�x
dx . (2.32)

with the same nonlinear weights ωk,4, k = 1, 2, 3, 4 as in (2.29).
If the cell Ii is not a troubled-cell, we use the following linear reconstructions

1

�x

∫ xi

xi−1/2

u(x)
x − xi−1/2

�x
dx ≈ 1

�x

∫ xi

xi−1/2

q4(x)
x − xi−1/2

�x
dx

= − 5

512
ui−1 + 71

512
ui − 1

256
ui+1

− 9

256
vi−1 − 77

256
vmod
i + 1

64
vi+1,

1

�x

∫ xi+1/2

xi
u(x)

x − xi+1/2

�x
dx ≈ 1

�x

∫ xi+1/2

xi
q4(x)

x − xi+1/2

�x
dx

= 1

256
ui−1 − 71

512
ui + 5

512
ui+1

+ 1

64
vi−1 − 77

256
vmod
i − 9

256
vi+1.

Step 4 A reconstruction of u(x∗), x∗ ∈ xG,i from {ui−1, ui , ui+1, vi−1, v
mod
i , vi+1}.
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Fig. 1 The labels of Gauss-Lobatto points in the cells Ii−1/2, Ii+1/2

If the target cell Ii is identified to be a troubled-cell, the same stencils as in step 2 are
used, together with the same reconstructed polynomials ql(x), pk(x), l, k = 1, 2, 3, 4 and
the nonlinear weights.

Take u(xi ) as an example. We can compute the point value of polynomials pk(x), k =
1, 2, 3, 4 at xi , and the results can be given explicitly,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p1(xi ) = ui ,

p2(xi ) = − 11
240ui−1 + 131

120ui − 11
240ui+1,

p3(xi ) = − 1
24ui−1 + 13

12ui − 1
24ui+1,

p4(xi ) = − 45997
384000ui−1 + 237997

192000ui − 45997
384000ui+1 − 29997

64000vi−1 + 29997
64000vi+1.

The final approximation for u(xi ) is defined as

u(xi ) ≈
4∑

k=1

ωk,4 pk(xi ). (2.33)

If the cell Ii is not a troubled-cell, we use the following linear reconstruction

u(xi ) ≈ q4(xi ) = − 43

384
ui−1 + 235

192
ui − 43

384
ui+1 − 27

64
vi−1 + 27

64
vi+1.

The reconstructions of other quadrature points x∗, x∗ ∈ xG,i are similar to the above
procedure. The multi-resolution HWENO reconstructions perform better than the HWENO
reconstructions in [27]. One advantage is that the same linear weights are used for different
reconstructions in multi-resolution HWENO method while the linear weights should be
chosen carefully in the HWENO method [27].
Step 5 A linear interpolation of fx (u(x∗)) from f (u(x∗)), x∗ ∈ xG,i .

The Gauss–Lobatto quadrature points in the cells Ii−1/2, Ii+1/2 are relabeled as
G1, · · · ,G7, namely

G1 = xi−1, G2 = x
i− 1

2−
√
5

10
, G3 = x

i− 1
2+

√
5

10
, G4 = xi ,

G5 = x
i+ 1

2−
√
5

10
, G6 = x

i+ 1
2+

√
5

10
, G7 = xi+1.

Note that the points G1, · · · ,G7 are interior points with respect to the primal mesh, see
Fig. 1.

In the target cell Ii , one will need to get the approximations of fx (u(x∗, t)), x∗ =
G3,G4,G5 based on u(x∗, t), x∗ = G1, · · · ,G7. For the brevity of the presentation, we
write f (u(Gk, t)) = fk, k = 1, · · · , 7.We reconstruct a sixth-degree polynomial Q(x) such
that

Q(x)|Gk = fk, k = 1, · · · , 7.
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The corresponding first derivative of the polynomial Q(x) at x∗ = G3,G4,G5 are given as
follows,

Q′(G3) = 1

44�x

[
2(−9 + 5

√
5) f1 + 4(40 − 21

√
5) f2 − (129 + 13

√
5) f3

+ 44(−1 + 3
√
5) f4 − 11(5 + √

5) f5+
4(21 − 8

√
5) f6 + 2(1 − √

5) f7
]
,

Q′(G4) = 1

44�x

[
−2 f1 + 5(−9 + 5

√
5) f2 − 5(9 + 5

√
5) f3

+ 5(9 + 5
√
5) f5 + 5(9 − 5

√
5) f6 + 2 f7

]
,

Q′(G5) = 1

44�x

[
−2(1 − √

5) f1 − 4(21 − 8
√
5) f2 + 11(5 + √

5) f3

+ 44(1 − 3
√
5) f4 + (129 + 13

√
5) f5−

4(40 − 21
√
5) f6 + 2(9 − 5

√
5) f7

]
.

The final reconstructions for fx (u(x∗, t)) are approximated by

fx (u(x∗)) = Q′(x∗), x∗ = G3,G4,G5. (2.34)

Remark 1 For the system case, such as the Euler equation of gas dynamics, the HWENO
reconstructions in steps 2–4 can be performed on the unknowns component by component or
based on the local characteristic decomposition. The latter is more computationally expen-
sive, but it provides better performance to control the spurious oscillation. Here, the local
characteristic decomposition is applied for the HWENO reconstructions in steps 2–4.

2.2 Two-Dimensional Case

Consider the two-dimensional scalar conservation law{
ut + f (u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).
(2.35)

Let {xi , y j }i j be a uniform partition of the two-dimensional computational domain with
the mesh sizes �x in the x direction, and �y in the y direction. With xi+1/2 = 1

2 (xi +
xi+1), y j+1/2 = 1

2 (y j + y j+1), we denote the primal mesh as Ii j = [xi−1/2, xi+1/2] ×
[y j−1/2, y j+1/2] with its center (xi , y j ), and the dual mesh as Ii+1/2, j+1/2 = [xi , xi+1] ×
[y j , y j+1]with its center (xi+1/2, y j+1/2). The proposed method evolves the numerical solu-
tions in a staggered manner with the two meshes.

The zeroth-order and first-order moments of the solution on primal mesh Ii j are denoted
as {pi j } (p = u, v, w), that is

⎧⎪⎪⎨
⎪⎪⎩
ui j ≈ 1

�x�y

∫
Ii j

u(x, y, t)dxdy,

vi j ≈ 1
�x�y

∫
Ii j

u(x, y, t) x−xi
�x dxdy,

wi j ≈ 1
�x�y

∫
Ii j

u(x, y, t)
y−y j
�y dxdy.
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The moments of the solution on dual mesh Ii+1/2, j+1/2 are denoted as {pi+1/2, j+1/2} (p =
u, v, w)

⎧⎪⎪⎨
⎪⎪⎩
ui+1/2, j+1/2 ≈ 1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, t)dxdy,

vi+1/2, j+1/2 ≈ 1
�x�y

∫
Ii+1/2, j+1/2

u(x, y, t)
x−xi+1/2

�x dxdy,

wi+1/2, j+1/2 ≈ 1
�x�y

∫
Ii+1/2, j+1/2

u(x, y, t)
y−y j+1/2

�y dxdy.

Suppose at t = tn , the approximations for the zeroth-order and first-order moments of the
solution {pni j }i j (p = u, v, w) are available on primal mesh. We multiply the equation (2.35)

by 1
�x�y ,

x−xi+1/2

(�x)2�y
and

y−y j+1/2

�x(�y)2
, respectively, integrate over Ii+1/2, j+1/2 × [tn, tn+1], apply

integration by parts and get

un+1
i+1/2, j+1/2 = uni+1/2, j+1/2 − 1

�x�y

∫ tn+1

tn

∫ y j+1

y j

[
f (u(xi+1, y, t)) − f (u(xi , y, t))

]
dydt

− 1

�x�y

∫ tn+1

tn

∫ xi+1

xi

[
g(u(x, y j+1, t)) − g(u(x, y j , t))

]
dxdt, (2.36)

vn+1
i+1/2, j+1/2 = vni+1/2, j+1/2 + 1

�x2�y

∫ tn+1

tn

∫ xi+1

xi

∫ y j+1

y j
f (u(x, y, t))dxdydt

− 1

2�x�y

∫ tn+1

tn

∫ y j+1

y j

[
f (u(xi+1, y, t)) + f (u(xi , y, t))

]
dydt

− 1

�x�y

∫ tn+1

tn

∫ xi+1

xi

[
g(u(x, y j+1, t)) − g(u(x, y j , t))

] x − xi+1/2

�x
dxdt,

(2.37)

wn+1
i+1/2, j+1/2 =wn

i+1/2, j+1/2 − 1

�x�y

∫ tn+1

tn

∫ y j+1

y j

[
f (u(xi+1, y, t)) − f (u(xi , y, t))

]
y − y j+1/2

�y
dydt

+ 1

�x�y2

∫ tn+1

tn

∫ xi+1

xi

∫ y j+1

y j
g(u(x, y, t))dxdydt

− 1

2�x�y

∫ tn+1

tn

∫ xi+1

xi

[
g(u(x, y j+1, t)) + g(u(x, y j , t))

]
dxdt . (2.38)

Similarly as in one-dimensional case, the spatial integrals in (2.36)–(2.38) can be approxi-
mated by one-dimensional four-point Gauss-Lobatto quadrature, or its tensor-version in two
dimensions. If we choose a small enough time step�t , the temporal integrals in (2.36)–(2.38)
can be approximated by three-point Gauss quadrature according to (2.6). Then, the proposed
central scheme is given as follows.

(b.1) With {pni j }i j (p = u, v, w) being available at t = tn on primal mesh, the zeroth-order

and first-order moments {pn+1
i+1/2, j+1/2}i j (p = u, v, w) of the solution at t = tn+1 on

dual mesh can be computed as follows,
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un+1
i+1/2, j+1/2 = uni+1/2, j+1/2 − �t

�x

3∑
m=1

4∑
l=1

αmωl

[
f (u(xi+1, y

G
l , t)) − f (u(xi , y

G
l , t))

]
|t=tn+θm�t

− �t

�y

3∑
m=1

4∑
l=1

αmωl

[
g(u(xGl , y j+1, t)) − g(u(xGl , y j , t))

]
|t=tn+θm�t , (2.39)

vn+1
i+1/2, j+1/2 = vni+1/2, j+1/2 + �t

�x

3∑
m=1

4∑
l1=1

4∑
l2=1

αmωl1ωl2 f (u(xGl1 , yGl2 , t))
∣∣
t=tn+θm�t

− �t

2�x

3∑
m=1

4∑
l=1

αmωl

[
f (u(xi+1, y

G
l , t)) + f (u(xi , y

G
l , t))

] ∣∣
t=tn+θm�t

− �t

�y

3∑
m=1

4∑
l=1

αmωl

[[
g(u(xGl , y j+1, t)) − g(u(xGl , y j , t))

] xGl − xi+1/2

�x

] ∣∣
t=tn+θm�t ,

(2.40)

wn+1
i+1/2, j+1/2 = wn

i+1/2, j+1/2 − �t

�x

3∑
m=1

4∑
l=1

αmωl

[[
f (u(xi+1, y

G
l , t)) − f (u(xi , y

G
l , t))

] yGl − y j+1/2

�y

] ∣∣
t=tn+θm�t

+ �t

�y

3∑
m=1

4∑
l1=1

4∑
l2=1

αmωl1ωl2 g(u(xGl1 , yGl2 , t))
∣∣
t=tn+θm�t

− �t

2�y

3∑
m=1

4∑
l=1

αmωl

[
g(u(xGl , y j+1, t)) + g(u(xGl , y j , t))

] ∣∣
t=tn+θm�t , (2.41)

where yG1 = y j , yG2 = y
j+ 1

2−
√
5

10
, yG3 = y

j+ 1
2+

√
5

10
and yG4 = y j+1 are the Gauss-

Lobatto quadrature point on the y axis over cell I j+1/2. We define yG = ∪ j yG, j =
∪ j {y j− 1

2+
√
5

10
, y j , y j+ 1

2−
√
5

10
}.

(b.2) With {pn+1
i+1/2, j+1/2}i j (p = u, v, w) being available at t = tn+1 on dual mesh, the

zeroth-order and first-order moments {pn+2
i j }i j (p = u, v, w) at t = tn+2 on primal

mesh can be computed similarly as in (b.1).
(b.3) Set n to be n + 2, and return to (b.1).

In order tofinalize the proposed scheme, certain quantities in (b.1) need to be reconstructed.
According to (2.39)–(2.41), one would need to calculate accurate approximations for the
following quantities

pni+1/2, j+1/2, p = u, v, w, ∀i, j, u(x∗, y∗, tn + θm�t), (x∗, y∗) ∈ (x, y)G

= xG × yG , m = 1, 2, 3.

To obtain the cell average uni+1/2, j+1/2, one would like to approximate four quarter-cell
averages as follows,

1

�x�y

∫ xi+1/2

xi

∫ y j+1/2

y j
u(x, y, tn)dxdy,

1

�x�y

∫ xi+1

xi+1/2

∫ y j+1/2

y j
u(x, y, tn)dxdy,

1

�x�y

∫ xi+1/2

xi

∫ y j+1

y j+1/2

u(x, y, tn)dxdy,
1

�x�y

∫ xi+1

xi+1/2

∫ y j+1

y j+1/2

u(x, y, tn)dxdy.

The first-order moments pni+1/2, j+1/2, p = v,w can be obtained similarly.
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Fig. 2 The labels for
two-dimensional cell Ii j and its
neighboring cells

To approximate the point value u(x∗, y∗, tn + θm�t), (x∗, y∗) ∈ (x, y)G ,m = 1, 2, 3,
similar to one-dimensional case, we will use the fourth-order NCE-RK method to assist an
auxiliary ODE problem (2.10). Here y(t) in (2.10) is the point value u(x∗, y∗, t), and H(y(t))
is the corresponding − fx (u(x∗, y∗, t)) − gy(u(x∗, y∗, t)). Two ingredients are needed to
approximate the point value u(x∗, y∗, tn+θm�t). One part is the calculation of u(x∗, y∗, tn),
which can be obtained by a sixth-order multi-resolution HWENO reconstruction based on
pni j (p = u, v, w). The other is the calculation of − fx (u(x∗, y∗, t)) − gy(u(x∗, y∗, t)). The
values of fx (u(x∗, y∗, t)) and gy(u(x∗, y∗, t)) are approximated using a linear interpolation
based on f (u(x∗, y∗, t)) and g(u(x∗, y∗, t)), respectively.

Details are given in the following steps. The superscript n and the dependence on time
t will be omitted below. For the brevity of the presentation, we relabel the cell Ii j and its
neighboring cells as I1, · · · , I9, see Fig. 2. The cell averages are relabeled as u1, · · · , u9,
namely

u1 = ui−1, j−1, u2 = ui, j−1, u3 = ui+1, j−1,

u4 = ui−1, j , u5 = ui j , u6 = ui+1, j ,

u7 = ui−1, j+1, u8 = ui, j+1, u9 = ui+1, j+1.

The first-order moments are relabeled in a similar way.
Step 1 Identify the troubled-cells and modify the first-order moments.

Step 1.1. We choose the KXRCF troubled-cell indicator to identify the troubled-cells.
Again,we divide the boundary of the cell Ii j into two parts: inflowboundary ∂ I−

i j (
−→v ·−→n < 0,

where −→v is the velocity of flow, −→n is the outer normal vector to ∂ Ii j ) and outflow boundary
∂ I+

i j (
−→v ·−→n > 0). The target cell Ii j is identified as a troubled-cell if the following criterion

is satisfied ∣∣ ∫
∂ I−

i j

(
ui j (x, y) − uni j (x, y)

)
ds
∣∣

h
l+1
3

i j

∣∣∂ I−
i j

∣∣‖ui j (x, y)‖ > 1 (2.42)

where Ini j is the neighbor of Ii j on the side of ∂ I−
i j , hi j is the length of Ii j . The parameter

l = 5 is the degree of ui j (x, y) which is a sixth-order linear approximation of u(x, y), and
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ui j (x, y) satisfies the following conditions⎧⎪⎪⎨
⎪⎪⎩

1
�x�y

∫
Ik
ui j (x, y)dxdy = uk, k = 1, · · · , 9,

1
�x�y

∫
Ikx

ui j (x, y)
x−xkx

�x dxdy = vkx , kx = 1, 3, 4, 5, 6, 7, 9,
1

�x�y

∫
Iky

ui j (x, y)
y−yky
�y dxdy = wky , ky = 1, 2, 3, 5, 7, 8, 9.

(2.43)

The polynomial can be obtained by ensuring that ui j (x, y) has the same average of u(x, y)
in the cell Ii j , and match the other conditions in a least square method.

‖ui j (x, y)‖ is taken to be L∞ norm

‖ui j (x, y)‖ ≈ max

{
|u±

i∓ 1
2 , jl

|, |u∓
il , j± 1

2
|, l = 1, 2, 3, 4; |uil , jm |, l = 2, 3,m = 2, 3

}

where

i1 = i − 1

2
, i2 = i −

√
5

10
, i3 = i +

√
5

10
, i4 = i + 1

2
; j1 = j − 1

2
, j2

= j −
√
5

10
, j3 = j +

√
5

10
, j4 = j + 1

2
,

are the quadrature points.
The average of line integral in the formula (2.42) can be expressed explicitly

1

|∂ I−
i j |
∣∣∣∣
∫

∂ I−
i j

(
ui j (x, y) − uni j (x, y)

)
ds

∣∣∣∣
= 1

|∂ I−
i j |

∣∣∣∣∣
4∑

m=1

�y ωm

[
(u+

i−1/2, jm
− u−

i−1/2, jm
) ∗ s(−→v i− 1

2 , j )

+(u−
i+1/2, jm

− u+
i+1/2, jm

) ∗ s(−−→v i+ 1
2 , j )

]

+
4∑

m=1

�x ωm

[
(u+

im , j−1/2 − u−
im , j−1/2) ∗ s(−→v i, j− 1

2
)

+(u−
im , j+1/2 − u+

im , j+1/2) ∗ s(−−→v i, j+ 1
2
)
]∣∣∣

where ω1 = ω4 = 1
12 and ω2 = ω3 = 5

12 are the quadrature weights, and s(x) is defined in
(2.15).

For the two-dimensional scalar case, we take−→v = f ′(u) in the x direction and−→v = g′(u)

in the y direction. For the two-dimensional Euler equations, we set the density ρ as the
indicator variable, and −→v = μ is the velocity of the fluid in the x direction and −→v = ν is
the velocity of the fluid in the y direction.

Step 1.2 If the target cell Ii j is identified to be a troubled-cell, one would like to identify
the eight neighboring cells of Ii j as troubled-cells and modify the first-order moments vi j
and wi j as below,

• Based on {ui−1, j , ui j , ui+1, j , vi−1, j , vi+1, j }, we apply step 1.2 in Sect. 2.1 along the x
direction to obtain {vmod

i j }.
• Based on {ui, j−1, ui j , ui, j+1, wi, j−1, wi, j+1}, we apply step 1.2 in Sect. 2.1 along the y

direction to obtain {wmod
i j }.

If the cell Ii j is not a troubled-cell, we simply set vmod
i j = vi j , w

mod
i j = wi j .
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Step 2 A reconstruction of quarter-cell averages in the cell Ii j .
If the cell Ii j is identified as a troubled-cell in step 1, we will apply the following multi-

resolution HWENO reconstruction. With a series of central spatial stencils, we reconstruct
a zeroth degree polynomial q1(x, y), a quadratic polynomial q2(x, y), a cubic polynomial
q3(x, y), and a quintic polynomial q4(x, y), respectively, and these polynomials satisfy the
following conditions

1

�x�y

∫
I5
q1(x, y)dxdy = u5, (2.44)

1

�x�y

∫
Ik
q2(x, y)dxdy = uk, k = 1, · · · , 9, (2.45)

⎧⎪⎨
⎪⎩

1
�x�y

∫
Ik
q3(x, y)dxdy = uk, k = 1, · · · , 9,

1
�x�y

∫
I5
q3(x, y)

x−xi
�x dxdy = vmod

5 ,

1
�x�y

∫
I5
q3(x, y)

y−y j
�y dxdy = wmod

5 ,

(2.46)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
�x�y

∫
Ik
q4(x, y)dxdy = uk, k = 1, · · · , 9,

1
�x�y

∫
I5
q4(x, y)

x−xi
�x dxdy = vmod

5 ,

1
�x�y

∫
I5
q4(x, y)

y−y j
�y dxdy = wmod

5 ,

1
�x�y

∫
Ikx

q4(x, y)
x−xkx

�x dxdy = vkx , kx = 1, 3, 4, 6, 7, 9,
1

�x�y

∫
Iky

q4(x, y)
y−yky
�y dxdy = wky , ky = 1, 2, 3, 7, 8, 9.

(2.47)

Note that the number of equations is greater than the number of unknowns for the polynomials
ql(x, y), l = 2, 3, 4. These polynomials must have the same average of u in the cell Ii j , and
we can get them by requiring that they match the other conditions in a least square method.

Then, we express the polynomial q4(x, y) as the linear combination of polynomials
pk(x, y), k = 1, 2, 3, 4 as below

q4(x, y) = γ1,4 p1(x, y) + γ2,4 p2(x, y) + γ3,4 p3(x, y) + γ4,4 p4(x, y). (2.48)

The equivalent polynomials pk(x, y), k = 1, 2, 3, 4 are computed as follows⎧⎪⎨
⎪⎩
p1(x, y) = q1(x, y),

pk(x, y) = 1
γk,k

qk(x, y) −
k−1∑
l=1

γl,k
γk,k

pl(x, y), k = 2, 3, 4,
(2.49)

where the linear weights γl,k, l = 1, · · · , k, k = 2, 3, 4 are defined in (2.26).
To compute the nonlinear weights for (2.48), the smoothness indicators of polynomials

pk(x, y) can be calculated as below

βk =
r∑

|α|=1

∫
Ii j

(�x�y)|α|−1
(

∂ |α|

∂xα1∂ yα2
pk(x, y)

)2

dxdy, k = 2, 3, 4,

where α = (α1, α2), |α| = α1 + α2 and r = 2, 3, 5 for k = 2, 3, 4, respectively. The only
difference is β1. One would like to define a new polynomial qnew1 (x, y). First, we reconstruct
four linear polynomials as follows

1

�x�y

∫
Ik
q11(x, y)dxdy = uk, k = 2, 4, 5,

1

�x�y

∫
Ik
q12(x, y)dxdy = uk, k = 2, 5, 6,
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1

�x�y

∫
Ik
q13(x, y)dxdy = uk, k = 4, 5, 8,

1

�x�y

∫
Ik
q14(x, y)dxdy = uk, k = 5, 6, 8,

and the corresponding smoothness indicators are

β11 = (u5 − u2)
2 + (u5 − u4)

2,

β12 = (u5 − u2)
2 + (u5 − u6)

2,

β13 = (u5 − u8)
2 + (u5 − u4)

2,

β14 = (u5 − u8)
2 + (u5 − u6)

2.

We define the quantity τ1 as the absolute difference between smoothness indicators,

τ1 =
(∑

k �=l |β1l − β1k |
6

)2

,

and the nonlinear weights of q1l(x, y), l = 1, 2, 3, 4 can be computed as

ω1l = ω1l∑4
m=1 ω1m

, ω1l = 1

4

(
1 + τ1

β1l + ε

)
, l = 1, 2, 3, 4,

here ε = 10−6. The polynomial qnew1 (x, y) is given by

qnew1 (x, y) =
4∑

l=1

ω1lq1l(x, y),

and the nonlinear weights β1 can be computed as

β1 =
∑
|α|=1

(�x�y)|α|
(

∂ |α|

∂xα1∂ yα2
qnew1 (x, y)

)2

.

Based on the smoothness indicators, the nonlinear weightsωk,4 of pk(x, y), k = 1, 2, 3, 4
can be computed as in (2.29), and the final reconstructed polynomial p(x, y) is given by

p(x, y) =
4∑

k=1

ωk,4 pk(x, y).

Finally, a sixth-order HWENO approximation for a quarter-cell average is given by

1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

u(x, y)dxdy ≈ 1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

p(x, y)dxdy

=
4∑

k=1

ωk,4
1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

pk(x, y)dxdy.

(2.50)

If the cell Ii j is not a troubled-cell, it can be approximated by the linear reconstruction

1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

u(x, y)dxdy ≈ 1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

q4(x, y)dxdy.
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We can obtain the approximations for other quarter-cell averages with similar reconstruc-
tion. Once three quarter-cell averages are computed, one can obtain the fourth one based on
the local conservation of u [26].
Step 3 A reconstruction of quarter-cell first-order moments in the cell Ii j .

If the target cell Ii j is identified to be a troubled-cell, the same stencils as in step 2 are
used, together with the same reconstructed polynomials ql(x, y), pk(x, y), l, k = 1, 2, 3, 4
and the nonlinear weights.

A sixth-order HWENO approximation for a quarter-cell first-order moment is given as

1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

u(x, y)
x − xi−1/2

�x
dxdy

≈ 1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

p(x, y)
x − xi−1/2

�x
dxdy

=
4∑

k=1

ωk,4
1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

pk(x, y)
x − xi−1/2

�x
dxdy.

If the cell Ii j is not a troubled-cell, we use the following linear reconstruction

1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

u(x, y)
x − xi−1/2

�x
dxdy ≈ 1

�x�y

∫ xi

xi−1/2

∫ y j

y j−1/2

q4(x, y)
x − xi−1/2

�x
dxdy.

The similarity goes to the other quarter-cell first-order moments.
Step 4 A reconstruction of u(x∗, y∗), (x∗, y∗) ∈ (x, y)G .

If the target cell Ii j is identified to be a troubled-cell, the same stencils as in step 2 are
used, together with the same reconstructed polynomials ql(x, y), pk(x, y), l, k = 1, 2, 3, 4
and the nonlinear weights.

The final approximation for u(x∗, y∗) is given as

u(x∗, y∗) ≈
4∑

k=1

ωk,4 pk(x∗, y∗).

If the cell Ii j is not a troubled-cell, we use the following linear reconstruction

u(x∗, y∗) ≈ q4(x∗, y∗).

Step 5. Reconstruct fx (u(x∗, y∗)) and gy(u(x∗, y∗)) from u(x∗, y∗), (x∗, y∗) ∈ (x, y)G .
TheGauss-Lobatto quadrature points (x∗, y∗)within cell Ii j are relabeled asG1

i j , · · · ,G9
i j ,

namely

G1
i j = (x

i− 1
2+

√
5

10
, y

j− 1
2+

√
5

10
), G2

i j = (xi , y j− 1
2+

√
5

10
), G3

i j = (x
i+ 1

2−
√
5

10
, y

j− 1
2+

√
5

10
),

G4
i j = (x

i− 1
2+

√
5

10
, y j ), G5

i j = (xi , y j ), G6
i j = (x

i+ 1
2−

√
5

10
, y j ),

G7
i j = (x

i− 1
2+

√
5

10
, y

j+ 1
2−

√
5

10
), G8

i j = (xi , y j+ 1
2−

√
5

10
), G9

i j = (x
i+ 1

2−
√
5

10
, y

j+ 1
2−

√
5

10
).

Note that the points G1
i j , · · · ,G9

i j are interior points with respect to the primal mesh, see
Fig. 3.

According to [27], we apply a dimension-by-dimension approach and adopt the procedure
in step 5 of Sect. 2.1 in each direction. Along the x direction,
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Fig. 3 The labels of
two-dimensional Gauss-Lobatto
points within Ii j

• We reconstruct fx (u(Gk
i j )), k = 1, 2, 3 from

f (u(Q)), Q = G2
i−1, j ,G

3
i−1, j ,G

1
i j ,G

2
i j ,G

3
i j ,G

1
i+1, j ,G

2
i+1, j .

• We reconstruct fx (u(Gk
i j )), k = 4, 5, 6 from

f (u(Q)), Q = G5
i−1, j ,G

6
i−1, j ,G

4
i j ,G

5
i j ,G

6
i j ,G

4
i+1, j ,G

5
i+1, j .

• We reconstruct fx (u(Gk
i j )), k = 7, 8, 9 from

f (u(Q)), Q = G8
i−1, j ,G

9
i−1, j ,G

7
i j ,G

8
i j ,G

9
i j ,G

7
i+1, j ,G

8
i+1, j .

Similarly, along the y direction,

• We reconstruct gy(u(Gk
i j )), k = 1, 4, 7 from

g(u(Q)), Q = G4
i, j−1,G

7
i, j−1,G

1
i j ,G

4
i j ,G

7
i j ,G

1
i, j+1,G

4
i, j+1.

• We reconstruct gy(u(Gk
i j )), k = 2, 5, 8 from

g(u(Q)), Q = G5
i, j−1,G

8
i, j−1,G

2
i j ,G

5
i j ,G

8
i j ,G

2
i, j+1,G

5
i, j+1.

• We reconstruct gy(u(Gk
i j )), k = 3, 6, 9 from

g(u(Q)), Q = G6
i, j−1,G

9
i, j−1,G

3
i j ,G

6
i j ,G

9
i j ,G

3
i, j+1,G

6
i, j+1.

Remark 2 For the system, theHWENO reconstructions in steps 2–4 are performed in the local
characteristic directions to avoid the oscillations near discontinuities. In the two-dimensional
case, we implement the HWENO reconstructions along the two characteristic directions pro-
vided by f (u) and g(u), respectively. Then we take the average of these two reconstructions
as our final approximation. For more details about this procedure, one can refer to [26].

3 Numerical Examples

In this section, we present some typical experiments to test the performance of finite
volume central schemes with the fifth-order HWENO reconstructions and sixth-order multi-
resolutionHWENO reconstructionswhich are termed asC-HWENO5 [27] andC-HWENO6,
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respectively. For the smooth problems, we also show the results of C-HWENO6-M5 which
means the first-order moments of all cells are modified by the fifth-order HWENO method.
The fourth-order NCE-RK method is adopted as time discretization. The CFL number Ccf l

is taken as 0.1 and 0.2 for the smooth and non-smooth problems, respectively. For the smooth
problems, we choose a smaller CFL number to ensure the spatial errors dominate. The time
step �t is taken as

�t = Ccf l�x

max | f ′(u)|
and

�t = Ccf l

max | f ′(u)|/�x + max |g′(u)|/�y

in one- and two-dimensional scalar case, respectively. For the system case, f ′(u) and g′(u)

are replaced by the eigenvalue of the Jacobian of f (u) and g(u), with the largest absolute
value.

3.1 Smooth Problems

Example 3.1 We solve the one-dimensional Burgers’ equation,

ut +
(
u2

2

)
x

= 0. (3.1)

The initial condition is u(x, 0) = 0.5 + sin(πx) with a 2-periodic boundary condition.
When final time is T = 0.5/π , the solution is still smooth, and the corresponding errors and
numerical orders of accuracy by C-HWENO5, C-HWENO6-M5 and C-HWENO6 schemes
are listed inTable 1.Wecanobserve that all schemes achieve their designedorders of accuracy.
Compared with the results of C-HWENO5 scheme proposed in [27], our new scheme C-
HWENO6 has smaller errors and higher orders of accuracy with the same computational
grid.

Example 3.2 We solve the one-dimensional nonlinear system of Euler equations,

Ut + f (U )x = 0, (3.2)

where

U = (ρ, ρμ, E)T , f (U ) = (ρμ, ρμ2 + p, μ(E + p))T .

Here ρ is the density, μ is the velocity, E is the total energy and p is the pressure related to
the total energy by E = p

γ−1 + 1
2ρμ2. We consider a non-physical accuracy test with γ = 3.

The initial conditions are set to be

ρ(x, 0) = 1 + 0.2 sin(x)

2
√
3

, μ(x, 0) = √
3ρ(x, 0), p(x, 0) = ρ3(x, 0),

with a 2π-periodic boundary condition. Under the above conditions, 2
√
3ρ(x, t) can be

proved to be the exact solution of Burgers’ equation,{
ut +

(
u2
2

)
x

= 0,

u(x, 0) = 1 + 0.2 sin(x),
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Table 1 ut +
(
u2
2

)
x

= 0, with u(x, 0) = 0.5 + sin(πx) and a 2-periodic boundary condition.

C-HWENO5 C-HWENO6-M5

N L1 error Order L∞ error Order L1 error Order L∞ error Order

60 1.59e−05 1.47e−04 5.49e−06 6.34e−05

80 4.29e−06 4.55 3.67e−05 4.82 1.48e−06 4.56 1.74e−05 4.49

100 1.57e−06 4.50 1.22e−05 4.94 5.20e−07 4.69 6.22e−06 4.61

120 6.73e−07 4.65 5.18e−06 4.70 2.16e−07 4.82 2.74e−06 4.50

140 3.26e−07 4.70 2.94e−06 3.67 1.03e−07 4.80 1.34e−06 4.64

160 1.74e−07 4.70 1.73e−06 3.97 5.44e−08 4.78 7.06e−07 4.80

180 9.86e−08 4.82 1.03e−06 4.40 3.08e−08 4.83 3.99e−07 4.84

200 5.87e−08 4.92 6.96e−07 3.72 1.84e−08 4.89 2.38e−07 4.90

C-HWENO6

N L1 error Order L∞ error Order

60 2.86e−08 4.84e−07

80 4.72e−09 6.26 7.45e−08 6.50

100 1.10e−09 6.53 1.81e−08 6.34

120 3.29e−10 6.62 5.22e−09 6.82

140 1.16e−10 6.76 1.88e−09 6.62

160 4.86e−11 6.52 7.93e−10 6.46

180 2.22e−11 6.65 3.43e−10 7.12

200 1.12e−11 6.49 1.70e−10 6.66

T = 0.5/π . C-HWENO5, C-HWENO6-M5 and C-HWENO6 schemes. L1 and L∞ errors and orders of
accuracy

and the corresponding velocity μ(x, t) and pressure p(x, t) satisfy

μ(x, t) = √
3ρ(x, t), p(x, t) = ρ3(x, t).

We compute the solution up to T = 3. For C-HWENO5, C-HWENO6-M5 and C-HWENO6
schemes, the L1 and L∞ errors and numerical orders of accuracy of density ρ are listed
in Table 2. All schemes achieve their designed orders of accuracy. Again, the numerical
solutions of C-HWENO6 scheme have smaller errors and higher orders of accuracy than that
of C-HWENO5 scheme on the same computational mesh.

Example 3.3 We solve the two-dimensional Burgers’ equation,

ut +
(
u2

2

)
x

+
(
u2

2

)
y

= 0. (3.3)

The initial condition is u(x, y, 0) = 0.5+ sin(π(x + y)/2) with a 4-periodic boundary con-
dition in each direction.When T = 0.5/π , the solution is still smooth, and the corresponding
errors and numerical orders of accuracy by C-HWENO5, C-HWENO6-M5 and C-HWENO6
schemes are listed in Table 3. The results are similar to one-dimensional case and our new
scheme performs better than C-HWENO5 scheme on the same computational mesh.
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Table 2 Euler equations, with ρ(x, 0) = 1+0.2 sin(x)
2
√
3

, μ(x, 0) = √
3ρ(x, 0), p(x, 0) = ρ3(x, 0), and a

2π -periodic boundary condition.

C-HWENO5 C-HWENO6-M5

N L1 error Order L∞ error Order L1 error Order L∞ error Order

60 1.88e−05 2.52e−04 6.92e−06 1.09e−04

80 3.85e−06 5.51 5.94e−05 5.02 1.93e−06 4.44 3.24e−05 4.22

100 1.09e−06 5.66 1.75e−05 5.48 6.98e−07 4.56 1.31e−05 4.06

120 4.25e−07 5.17 8.00e−06 4.29 2.85e−07 4.91 5.92e−06 4.36

140 2.01e−07 4.86 4.16e−06 4.24 1.41e−07 4.57 2.84e−06 4.77

160 1.07e−07 4.72 2.19e−06 4.80 7.22e−08 5.01 1.51e−06 4.73

180 5.93e−08 5.01 1.23e−06 4.90 4.10e−08 4.80 8.77e−07 4.61

200 3.52e−08 4.95 7.67e−07 4.48 2.42e−08 5.00 5.22e−07 4.92

C-HWENO6

N L1 error Order L∞ error Order

60 7.64e−08 1.66e−06

80 1.57e−08 5.50 2.54e−07 6.53

100 3.36e−09 6.91 8.15e−08 5.09

120 1.05e−09 6.38 2.55e−08 6.37

140 3.72e−10 6.73 8.89e−09 6.84

160 1.53e−10 6.65 3.67e−09 6.63

180 6.85e−11 6.82 1.75e−09 6.29

200 3.34e−11 6.82 8.60e−10 6.74

T = 3. C-HWENO5, C-HWENO6-M5 and C-HWENO6 schemes. L1 and L∞ errors and orders of accuracy
of density ρ

Example 3.4 We solve the two-dimensional nonlinear system of Euler equations,

Ut + f (U )x + g(U )y = 0, (3.4)

where

U = (ρ, ρμ, ρν, E)T , f (U ) = (ρμ, ρμ2 + p, ρμν,μ(E + p))T ,

g(U ) = (ρν, ρμν, ρν2 + p, ν(E + p))T .

Here ρ is the density, (μ, ν)T is the velocity, E is the total energy and p is the pressure related
to the total energy by E = p

γ−1 + 1
2ρ(μ2 + ν2). Here we take γ = 3. The initial conditions

are set to be

ρ(x, y, 0) = 1 + 0.2 sin( x+y
2 )√

6
, μ(x, y, 0) = ν(x, y, 0) =

√
3

2
ρ(x, y, 0),

p(x, y, 0) = ρ3(x, y, 0),
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Table 3 ut +
(
u2
2

)
x

+
(
u2
2

)
y

= 0, with u(x, y, 0) = 0.5 + sin(π(x + y)/2) and a 4-periodic boundary

condition.

C-HWENO5 C-HWENO6-M5

Nx × Ny L1 error Order L∞ error Order L1 error Order L∞ error Order

60×60 3.09e−05 2.77e−04 1.25e−05 1.45e−04

80×80 8.29e−06 4.57 7.48e−05 4.55 3.18e−06 4.76 4.00e−05 4.48

100×100 2.94e−06 4.65 2.56e−05 4.81 1.08e−06 4.84 1.42e−05 4.64

120×120 1.27e−06 4.60 1.04e−05 4.94 4.55e−07 4.74 5.90e−06 4.82

140×140 6.16e−07 4.69 4.82e−06 4.99 2.17e−07 4.80 2.78e−06 4.88

160×160 3.23e−07 4.83 2.64e−06 4.51 1.13e−07 4.89 1.45e−06 4.87

180×180 1.78e−07 5.06 1.55e−06 4.52 6.30e−08 4.96 8.30e−07 4.74

200×200 1.06e−07 4.92 9.57e−07 4.58 3.77e−08 4.87 4.99e−07 4.83

C-HWENO6

Nx × Ny L1 error Order L∞ error Order

60×60 1.51e−06 1.90e−05

80×80 2.56e−07 6.17 3.89e−06 5.51

100×100 5.87e−08 6.60 8.58e−07 6.77

120×120 1.75e−08 6.64 2.93e−07 5.89

140×140 6.29e−09 6.64 1.02e−07 6.85

160×160 2.54e−09 6.79 4.33e−08 6.42

180×180 1.15e−09 6.73 1.95e−08 6.77

200×200 5.58e−10 6.86 9.62e−09 6.71

T = 0.5/π . C-HWENO5, C-HWENO6-M5 and C-HWENO6 schemes. L1 and L∞ errors and orders of
accuracy

with a 4π-periodic boundary condition in each direction. Under the above conditions,√
6ρ(x, y, t) can be proved to be the exact solution of Burgers’ equation,⎧⎨

⎩ut +
(
u2
2

)
x

+
(
u2
2

)
y

= 0,

u(x, y, 0) = 1 + 0.2 sin( x+y
2 ),

and the corresponding velocity μ(x, y, t), ν(x, y, t) and pressure p(x, y, t) satisfy

μ(x, y, t) = ν(x, y, t) =
√
3

2
ρ(x, y, t), p(x, y, t) = ρ3(x, y, t).

The solutions are computed up to T = 3. For C-HWENO5, C-HWENO6-M5 and C-
HWENO6 schemes, the L1 and L∞ error and numerical orders of accuracy of density ρ

are listed in Table 4. Again, The results are similar to one-dimensional case and our new
scheme performs better than C-HWENO5 scheme on the same computational mesh.

We also compare the CPU time of the WENO and HWENO schemes when they are
applied to Examples 3.1–3.4. On the same grid, the HWENO scheme has double the DoFs
in 1D and triple the DoFs in 2D than the WENO scheme. Therefore, we calculate the CPU
time of the HWENO scheme, and the WENO scheme with double mesh elements in 1D and
triple mesh elements in 2D (

√
3 times in each direction), respectively. The WENO-MR and
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Table 4 Euler equations, with ρ(x, y, 0) = (1+0.2 sin( x+y
2 ))/

√
6,μ(x, y, 0) = ν(x, y, 0) =

√
3
2ρ(x, y, 0),

p(x, y, 0) = ρ3(x, y, 0), and a 4π -periodic boundary condition in each direction.

C-HWENO5 C-HWENO6-M5

Nx × Ny L1 error Order L∞ error Order L1 error Order L∞ error Order

60×60 4.92e−05 6.74e−04 2.58e−05 3.32e−04

80×80 1.19e−05 4.63 1.74e−04 4.71 7.32e−06 4.38 1.21e−04 3.51

100×100 3.56e−06 5.41 6.03e−05 4.75 2.60e−06 4.64 4.98e−05 3.98

120×120 1.36e−06 5.28 2.58e−05 4.66 1.11e−06 4.67 2.12e−05 4.68

140×140 6.61e−07 4.68 1.26e−05 4.65 5.23e−07 4.88 1.09e−05 4.32

160×160 3.40e−07 4.98 7.09e−06 4.30 2.76e−07 4.79 5.89e−06 4.61

180×180 1.93e−07 4.81 4.15e−06 4.55 1.52e−07 5.06 3.28e−06 4.97

200×200 1.14e−07 5.00 2.47e−06 4.92 9.13e−08 4.84 1.95e−06 4.94

C-HWENO6

Nx × Ny L1 error Order L∞ error Order

60×60 5.15e−06 5.73e−05

80×80 1.01e−06 5.66 1.91e−05 3.82

100×100 2.79e−07 5.77 5.60e−06 5.50

120×120 8.35e−08 6.62 1.79e−06 6.26

140×140 3.25e−08 6.12 7.87e−07 5.33

160×160 1.29e−08 6.92 3.33e−07 6.44

180×180 6.10e−09 6.36 1.45e−07 7.06

200×200 2.95e−09 6.90 7.74e−08 5.96

T = 3. C-HWENO5, C-HWENO6-M5 and C-HWENO6 schemes. L1 and L∞ errors and orders of accuracy
of density ρ

HWENO-MR reconstructions are applied in our comparison. The results are presented in
Tables 5, 6, 7, 8. We can observe that CPU time of the HWENO schemes is less than that
of WENO schemes with the same DoFs, and the central schemes are more efficient than the
upwind schemes.

In addition, we also show the plots of numerical errors vs. CPU time by the WENO
and HWENO schemes in Figs. 4, 5, 6, 7. One can observe from the results that the HWENO
schemes have higher efficiency than theWENO schemes, and the central schemes outperform
the upwind schemes. In summary, our central HWENO scheme is more effective.

3.2 Non-smooth Problems

We now test the resolution and non-oscillatory property of the proposed methods when
solving non-smooth problems which contain shock, rarefaction or contact discontinuity.

Example 3.5 We consider the same one-dimensional nonlinear Burgers’ Eq. (3.1), with the
same initial and boundary conditions in example 3.1. We compute the solution up to T =
1.5/π after a shock forms. The solutions of C-HWENO5 and C-HWENO6 schemes with
N = 80 mesh elements, as well as the exact solution are shown in Fig. 8. We can observe
that both solutions are non-oscillatory near the shock.
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Table 5 CPU time (in seconds) of the Up-WENO5, C-WENO5, Up-HWENO6 and C-HWENO6 schemes for
Example 3.1

N Up-WENO5 C-WENO5 N Up-HWENO6 C-HWENO6

120 0.13 0.05 60 0.08 0.04

160 0.24 0.09 80 0.17 0.07

200 0.41 0.15 100 0.31 0.12

240 0.60 0.22 120 0.53 0.19

280 0.85 0.35 140 0.87 0.28

320 1.14 0.50 160 1.13 0.38

360 1.54 0.61 180 1.30 0.52

400 2.15 0.82 200 1.69 0.68

Table 6 CPU time (in seconds) of the Up-WENO5, C-WENO5, Up-HWENO6 and C-HWENO6 schemes for
Example 3.2

N Up-WENO5 C-WENO5 N Up-HWENO6 C-HWENO6

120 0.95 0.23 60 0.30 0.12

160 1.87 0.42 80 0.56 0.21

200 2.78 0.68 100 0.99 0.36

240 4.08 0.98 120 1.47 0.57

280 5.68 1.37 140 2.17 0.78

320 7.80 1.85 160 3.08 1.09

360 9.96 2.37 180 4.03 1.46

400 12.25 2.92 200 4.88 1.88

Table 7 CPU time (in seconds) of the Up-WENO5, C-WENO5, Up-HWENO6 and C-HWENO6 schemes for
Example 3.3

N Up-WENO5 C-WENO5 N Up-HWENO6 C-HWENO6

60
√
3 × 60

√
3 10.77 6.03 60×60 6.00 2.26

80
√
3 × 80

√
3 26.69 14.14 80×80 15.28 5.26

100
√
3 × 100

√
3 61.45 28.98 100×100 32.72 11.28

120
√
3 × 120

√
3 120.97 52.59 120×120 81.77 21.21

140
√
3 × 140

√
3 192.00 98.54 140×140 115.97 39.41

160
√
3 × 160

√
3 308.05 163.35 160×160 180.75 67.49

180
√
3 × 180

√
3 448.29 219.21 180×180 282.43 102.00

200
√
3 × 200

√
3 650.23 308.36 200×200 389.47 146.61

Example 3.6 Weconsider the one-dimensional nonlinear non-convex scalarBuckley-Leverett
problem

ut +
(

4u2

4u2 + (1 − u)2

)
x

= 0,
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Table 8 CPU time (in seconds) of the Up-WENO5, C-WENO5, Up-HWENO6 and C-HWENO6 schemes for
Example 3.4

N Up-WENO5 C-WENO5 N Up-HWENO6 C-HWENO6

60
√
3 × 60

√
3 87.74 36.70 60×60 62.17 22.45

80
√
3 × 80

√
3 241.78 94.04 80×80 169.00 59.83

100
√
3 × 100

√
3 537.52 205.46 100×100 370.72 129.43

120
√
3 × 120

√
3 972.42 401.89 120×120 713.43 227.21

140
√
3 × 140

√
3 1653.34 666.14 140×140 1226.73 402.95

160
√
3 × 160

√
3 2695.56 1056.65 160×160 2169.54 606.44

180
√
3 × 180

√
3 3876.92 1555.10 180×180 3402.54 928.92

200
√
3 × 200

√
3 5631.28 2264.86 200×200 4951.52 1342.99

Fig. 4 Numerical errors vs. CPU time of the WENO and HWENO schemes for Example 3.1

Fig. 5 Numerical errors vs. CPU time of the WENO and HWENO schemes for Example 3.2

with the initial condition: u = 1 when − 1
2 ≤ x ≤ 0, and u = 0 elsewhere, and constant

boundary conditions. The computational domain is [−1, 1], and the final time is T = 0.4.
The exact solution includes rarefaction, shock wave and contact discontinuity. Note that we
can not obtain the correct entropy solution of this problem with some high-order methods.
In Fig. 9, we show the solutions of C-HWENO5 and C-HWENO6 schemes with a N = 80
mesh, together with the exact solution. One can see that both schemes can capture the major
features of the entropy solution well with comparable resolution.
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Fig. 6 Numerical errors vs. CPU time of the WENO and HWENO schemes for Example 3.3

Fig. 7 Numerical errors vs. CPU time of the WENO and HWENO schemes for Example 3.4

Fig. 8 Burgers’ equation in one dimension. T = 1.5/π and N = 80
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Fig. 9 The Buckley-Leverett
problem. T = 0.4 and N = 80

Fig. 10 The Lax problem. T = 0.16 and N = 200. Density ρ (left), density zoomed in (middle), time history
of the troubled-cells in C-HWENO6 (right)

Example 3.7 We solve the one-dimensional Euler equations (3.2) with a Riemann initial
condition for the Lax problem

(ρ, μ, p) = (0.445, 0.698, 3.528), x ≤ 0,

(ρ, μ, p) = (0.5, 0, 0.571), x > 0.

The inflow/outflow boundary conditions are applied to the left/right ends. The computational
domain is [−0.5, 0.5], with the final time T = 0.16. In Fig. 10, we plot the numerical
density ρ by C-HWENO5 and C-HWENO6 schemes on a N = 200 mesh, together with
the exact solution. We further show the zoom-in picture of the density and the time history
of the troubled-cells in C-HWENO6 scheme. One can see that our new scheme gives better
resolution near the discontinuities than C-HWENO5 scheme. There are some oscillations
around x = 0.25, this may due to the modification of the first-order moments which can
not control oscillation very well. We will further study the strategy of modification in future
research and expect a better method.

Example 3.8 We solve the shock density wave interaction problem, also known as Shu-Osher
problem, which describes the interaction between shock and entropy waves. This example
is modeled by the one-dimensional Euler equations (3.2) with a moving Mach-3 shock
interacting with sine waves in density, and the initial condition is set to be

(ρ, μ, p) = (3.857143, 2.629369, 10.333333), x < −4,
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Fig. 11 The shock density wave interaction problem. T = 1.8 and N = 400. Density ρ (left), density zoomed
in (middle), time history of the troubled-cells in C-HWENO6 (right)

(ρ, μ, p) = (1 + τ sin 5x, 0, 1), x ≥ −4,

where τ = 0.2, and the boundary conditions are taken to be the same as the initial data.
The computational domain is [−5, 5], with the final time T = 1.8. In Fig. 11, we plot the
numerical density ρ by C-HWENO5 and C-HWENO6 schemes on a N = 400 mesh, as
well as a reference solution obtained by the fifth-order finite difference WENO scheme [7]
with 16000 grid points. The solution contains both shocks and complex smooth structures,
therefore we further show the zoom-in picture of the oscillatory region of the density and the
time history of the troubled-cells in C-HWENO6 scheme. We can observe that both schemes
have non-oscillatory property to capture discontinuities and C-HWENO6 scheme has better
resolution to resolve smooth features especially when x is between 0.5 and 1.4.

Example 3.9 We solve the interaction of blast waves, which is modeled by the one-
dimensional Euler equations (3.2) with the initial condition,

(ρ, μ, p) = (1, 0, 1000), 0 ≤ x < 0.1,

(ρ, μ, p) = (1, 0, 0.01), 0.1 ≤ x < 0.9,

(ρ, μ, p) = (1, 0, 100), 0.9 ≤ x ≤ 1,

and reflecting boundary conditions applied to both ends. The computational domain is [0, 1],
with the final time T = 0.038. In Fig. 12, we report the numerical density ρ by C-HWENO5
and C-HWENO6 schemes on a N = 800 mesh, as well as a reference solution obtained by
the fifth-order finite difference WENO scheme [7] with 16000 grid points. We further show
the zoom-in picture of the density and the time history of the troubled-cells in C-HWENO6
scheme. One can see that both schemes give good resolution to resolve the complicated
structure of this problem.

There is a zeroth degree polynomial in the reconstruction procedure. For the problems with
peak, the nonlinear weights of zeroth degree polynomial is relatively high, and high degree
polynomials are hardly used. Therefore, the reconstructed polynomials tends to the lowdegree
polynomials, and the scheme has less amplitude near peak for the Shu-Osher problem and
the blast waves interaction problem.

Example 3.10 We solve the same two-dimensional Burgers’ equation (3.3) with the same
initial and boundary conditions in example 3.3. We compute up to T = 1.5/π after a shock
forms. In Fig. 13, we show a slice of the numerical solutions at x = y by C-HWENO5 and
C-HWENO6 schemeswith 80×80mesh elements, as well as the exact solution. The surfaces
of solutions are also given. For this problem, both schemes give equally good non-oscillatory
shock transitions.
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Fig. 12 The interaction of blast waves problem. T = 0.038 and N = 800. Density ρ (left), density zoomed
in (middle), time history of the troubled-cells in C-HWENO6 (right)

Fig. 13 Burgers’ equation in two dimensions. T = 1.5/π and Nx × Ny = 80 × 80. A slice of the solutions
at x = y (left), the surfaces of solutions computed by C-HWENO5 (middle) and C-HWENO6 (right)

Example 3.11 We solve the example of double Mach reflection, which is modeled by the
two-dimensional Euler equations (3.4). The computational domain is [0, 4] × [0, 1] with a
reflecting wall lying at the bottom, starting from x = 1

6 . Initially a right-moving Mach-10
shock is positioned at x = 1

6 , y = 0, and makes a 60◦ angle with x-axis. For the bottom
boundary, the exact post-shock condition is used for the part from x = 0 to x = 1

6 , and the
reflective boundary condition is imposed for the rest. For the top boundary, the flow values
are set to describe the exact motion of the Mach-10 shock. Post-shock/pre-shock conditions
are applied to the left/right boundaries. The solutions are computed up to T = 0.2. The
density contour plots in the region [0, 3]× [0, 1] by C-HWENO5 and C-HWENO6 schemes
with 1920 × 480 mesh elements are presented in Fig. 14. Each contour plot has 30 contour
lines with density ranging from 1.5 to 22.7. We further show the locations of the troubled-
cells at the final time in C-HWENO6 scheme. One can see that our new scheme gives better
resolution to capture the fine local structures than C-HWENO5 scheme.

Example 3.12 We solve the problem for a Mach-3 wind tunnel with a step, which is modeled
by the two-dimensional Euler equations (3.4). The length of the wind tunnel is 3 units and the
width is 1 unit, i.e. the computational domain is [0, 3] × [0, 1]. The height of the step is 0.2
units, and is located 0.6 length units from the left end of the tunnel. The problem is initialized
by a right-going Mach-3 flow. Reflective boundary conditions are applied along the walls
of the tunnel, and inflow/outflow boundary conditions are applied at the entrance/exit. The
corner of the step is a singular point and is treated in the same way as in [28] based on the
assumption of a nearly steady flow in the region around the corner. The schemes are run
up to T = 4. The density contour plots by C-HWENO5 and C-HWENO6 schemes with
960 × 320 mesh elements are shown in Fig. 15. Each contour plot has 30 contour lines with
density ranging from 0.32 to 6.15. We further show the locations of the troubled-cells at the
final time in C-HWENO6 scheme. One can see that our new scheme gives better resolution
to capture the fine local structures than C-HWENO5 scheme for this problem.
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Fig. 14 Double Mach reflection problem. T = 0.2 and Nx × Ny = 1920 × 480. C-HWENO5 (top), C-
HWENO6 (middle), the locations of the troubled-cells at the final time in C-HWENO6 (bottom). 30 equally
spaced density contours from 1.5 to 22.7

Finally, we would like to compare the performance of the WENO and HWENO schemes
in the simulations of the double Mach reflection problem and forward step problem. The
WENO-MR, WENO-Z and HWENO-MR reconstructions are applied in our comparison.
In order to maintain the same degree of freedom, we show the CPU time and contour plots
by the HWENO schemes and the WENO schemes with triple mesh elements (

√
3 times in

each direction). For the WENO methods, we use 1920× 480 and 960× 320 mesh elements
for the double Mach reflection problem and forward step problem, respectively. For the
HWENO methods, we use 1108 × 277 and 555 × 185 mesh elements for the double Mach
reflection problem and forward step problem, respectively. For the sake of fairness, all the
methods are implemented without the troubled-cell indicator, and the LF flux is used in all
upwindmethods.We apply the fourth-order RKmethod andNCE-RKmethod for the upwind
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Fig. 15 Forward step problem. T = 4 and Nx × Ny = 960×320. C-HWENO5 (top), C-HWENO6 (middle),
the locations of the troubled-cells at the final time in C-HWENO6 (bottom). 30 equally spaced density contours
from 0.32 to 6.15

and central scheme, respectively. For the upwind HWENO scheme, we use the HWENO
procedure at page 4 in [32] to modify the first-order moments.

The CPU time of theWENO and HWENO schemes are presented in Table 9, and the CFL
number for the central and upwind schemes is 0.2 and 0.6, respectively. Although the CFL
number for the upwind scheme is three times of that for the central scheme, the CPU time of
the central WENO scheme is only slightly bigger than that of the upwind WENO scheme.
This means that each single step of the central WENO scheme is much cheaper than the
upwind WENO scheme in CPU time. For the HWENO scheme, the central scheme even has
less CPU time than the upwind scheme due to the fact that less characteristic decompositions
are used in the central scheme.

The contour plots are shown in Figs. 16, 17, 18, 19. We can observe that the WENO
schemes (with more mesh elements) have better resolution than the HWENO schemes. For
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Fig. 16 Double Mach reflection problem. 1108 × 277 and 1920 × 480 mesh elements for the HWENO and
WENO schemes, respectively. T = 0.2. From top to bottom: Up-HWENO6, Up-WENO5-MR, Up-WENO5-
Z. 30 equally spaced density contours from 1.5 to 22.7

the double Mach reflection problem, the WENO-Z schemes can capture more fine local
structures. For the forward step problem, the results of the WENO-MR schemes are better.
However, the HWENO schemes are more efficient in CPU time. The CPU time of the central
HWENO scheme is about 30% of that by the central WENO scheme, and the CPU time of
the upwind HWENO scheme is about 60% of that by the upwind WENO scheme.

4 Concluding Remarks

In this paper, a class of new high-order central Hermite WENO schemes is designed to solve
the hyperbolic conservation laws in one and two dimensions. The multi-resolution HWENO
reconstructions [13, 14] based on the zeroth-order and first-order moments of the solution
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Fig. 17 Double Mach reflection problem. 1108 × 277 and 1920 × 480 mesh elements for the HWENO and
WENO schemes, respectively. T = 0.2. From top to bottom: C-HWENO6, C-WENO5-MR, C-WENO5-Z.
30 equally spaced density contours from 1.5 to 22.7

Table 9 CPU time (in hours). WENO and HWENO schemes

CPU time Double mach reflection problem Forward step problem

C-HWENO6 25.4466 25.4794

Up-HWENO6 46.3500 47.0914

C-WENO5-MR 87.9331 90.3750

Up-WENO5-MR 76.7532 77.1261

C-WENO5-Z 87.1033 87.9883

Up-WENO5-Z 76.6949 76.8953
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Fig. 18 Forward step problem. 555×185 and 960×320mesh elements for the HWENO andWENO schemes,
respectively. T = 4. From top to bottom: Up-HWENO6, Up-WENO5-MR, Up-WENO5-Z. 30 equally spaced
density contours from 0.32 to 6.15

are used for the spatial discretization and the natural continuous extension of Runge–Kutta
method is used as the time discretization, in a central finite volume framework on staggered
meshes. our new schemes require neither numerical fluxes nor flux splitting.

The compact reconstructions exploit a series of hierarchical central spatial stencils, and
this leads to better accuracy and resolution than the HWENO reconstructions in [27] with
the same size of the stencils. In such new reconstructions, one can artificially set the positive
linear weights as long as their sum equals one to avoid the splitting treatment for the negative
weights. Meanwhile, the truly two-dimensional HWENO reconstructions are used, and the
mixed-type first-order moment vwn

i j (which is included for the two-dimensional reconstruc-
tions with a dimension-by-dimension procedure in [27]) is not needed. For the troubled-cells,
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Fig. 19 Forward step problem. 555×185 and 960×320mesh elements for the HWENO andWENO schemes,
respectively. T = 4. From top to bottom: C-HWENO6, C-WENO5-MR, C-WENO5-Z. 30 equally spaced
density contours from 0.32 to 6.15

we modify the first-order moments and use the HWENO reconstructions. For the cells which
are not troubled-cells, we simply use the linear approximations.
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