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A B S T R A C T

In this paper, we propose a new high-order finite volume method for solving the multicomponent fluids
problem with Mie–Grüneisen EOS. Firstly, based on the cell averages of conservative variables, we develop
a procedure to reconstruct the cell averages of the primitive variables in a high-order manner. Secondly,
the high-order reconstructions employed in computing numerical fluxes are implemented in a characteristic-
wise manner to reduce numerical oscillations as much as possible and obtain high-resolution results. Thirdly,
advection equation within the governing system is rewritten in a conservative form with a source term to
enhance the scheme’s performance. We utilize integration by parts and high-order numerical integration tech-
niques to handle the source terms. Finally, all variables are evolved by using Runge–Kutta time discretization.
All steps are carefully designed to maintain the equilibrium of pressure and velocity for the interface-only
problem, which is crucial in designing a high-resolution scheme and adapting to more complex multicomponent
problems. We have performed extensive numerical tests for both one- and two-dimensional problems to verify
our scheme’s high resolution and accuracy.

1. Introduction

Multicomponent flows play an essential role in aerospace, chemical engineering, biomedical engineering, hydraulic engineering, and other
fields. Due to their importance and applicability, we must develop high-accuracy and high-resolution numerical methods to model these flows
numerically.

The interface-capturing method is one of the main approaches for solving multicomponent flows. These methods utilize a system of governing
equations to characterize the flows, replace sharp interfaces with a diffused zone by introducing numerical dissipation, and dynamically capture
the interface. In general, interface-capturing methods can handle large and complex interface deformations, allowing for the dynamic creation
or disappearance of interfaces, such as those found in chemical reactions. These methods can be integrated into a unified governing system.
Therefore, we can pursue a unified numerical method to model the flows. Furthermore, interface-capturing methods are based on the Eulerian
framework, where the grids remain fixed, which facilitates generalization to high-dimensional cases. Due to the advantages mentioned above,
interface-capturing methods are becoming increasingly popular in numerically modeling multicomponent flows.

Interface-capturing methods for solving the multicomponent flows are challenging to design. The main difficulty is that they would produce
nonphysical oscillations near the interface. These oscillations are already present in first-order schemes and are hard to eliminate even using
high-order schemes. Over decades, researchers have proposed many studies based on interface-capturing method frameworks [1–4]. In [5], Abgrall
proposed a quasi-conservative scheme to maintain velocity and pressure equilibrium along the interface, which was a breakthrough in developing
a high-resolution interface-capturing method. Later, Shyue developed wave propagation method for solving more general equations of state (EOS),
such as stiffened gas EOS, van der Waals EOS, and the Mie–Grüneisen equation of states, and extended to second order [6–8]. In [9], Allaire
et al. proposed a five-equation model to simulate the multicomponent flows and applied the model to different types of EOS. In [10], Johnsen and

✩ The research is supported partly by National Key R & D Program of China (Grant Number 2022YFA1004500) , National Natural Science Foundation of China
(Grant Nos. 12101128, 12071392).
∗ Corresponding author.
E-mail addresses: fzbz200808-31@163.com (F. Zheng), jxqiu@xmu.edu.cn (J. Qiu).
https://doi.org/10.1016/j.compfluid.2024.106424
Received 20 May 2024; Received in revised form 1 September 2024; Accepted 4 September 2024
vailable online 7 September 2024 
045-7930/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/compfluid
https://www.elsevier.com/locate/compfluid
mailto:fzbz200808-31@163.com
mailto:jxqiu@xmu.edu.cn
https://doi.org/10.1016/j.compfluid.2024.106424
https://doi.org/10.1016/j.compfluid.2024.106424


F. Zheng and J. Qiu

a

Computers and Fluids 284 (2024) 106424 
Colonius suggested that using the quasi-conservative form coupled with the reconstruction of primitive variables can eliminate spurious oscillations
regardless of whether WENO techniques are implemented in a component-wise or characteristic-wise way. Following this idea, researchers have
designed numerous schemes to solve the problems of multicomponent flows [11–19].

Many interface-capturing methods are based on the finite volume method, such as [10–14]. All of them claim to be high-order methods, but
none can be regarded as genuinely high-order ones. On one hand, the primitive variables used in the reconstructions in these methods are obtained
in a low-order way. On the other hand, the source terms obtained by rewriting the advection equations in the governing system are also handled
with a low order of accuracy. They may not achieve optimal accuracy in smooth regions. Therefore, it is necessary to develop finite volume methods
that can handle multicomponent fluid problems with genuinely high-order accuracy.

In this paper, we propose a new high-order finite volume method for solving the multicomponent fluids problem based on Mie–Grüneisen EOS.
Firstly, based on given conservative variables, we develop a procedure to reconstruct the primitive variables in a high-order manner. Secondly, the
high-order reconstructions employed in computing numerical fluxes are implemented in a characteristic-wise way to reduce numerical oscillations
as much as possible and obtain high-resolution results. Thirdly, the advection equation within the governing system is rewritten in a conservative
form with a source term to enhance the scheme’s performance. We utilize integration by parts and high-order numerical integration techniques to
handle the source terms. Finally, all variables are evolved by using Runge–Kutta time discretization. All steps are carefully designed to maintain
the equilibrium of pressure and velocity for the interface-only problem, which is crucial in designing a high-resolution scheme and adapting to
more complex multicomponent problems. We have performed extensive numerical tests for both one- and two-dimensional problems to verify our
scheme’s high resolution and accuracy.

The rest of this paper is organized as follows. In Section 2, we outline the detailed steps of our scheme in a one-dimensional case. In Section 3,
we present numerical experiments to verify the numerical accuracy and efficiency of the scheme. In Section 4, we give a conclusion of the paper.
In the appendix, we provide detailed proof to demonstrate that our scheme can preserve the equilibrium of the pressure and velocity for the
interface-only problem when using the stiffened gas EOS.

2. The framework for the one-dimensional case

We consider the following system of five equations, which can be used to solve multicomponent problems:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝜌1𝑧1
)

𝑡 +
(

𝜌1𝑧1𝑢
)

𝑥 = 0,
(

𝜌2𝑧2
)

𝑡 +
(

𝜌2𝑧2𝑢
)

𝑥 = 0,

(𝜌𝑢)𝑡 +
(

𝜌𝑢2 + 𝑝
)

𝑥 = 0,

𝐸𝑡 + (𝑢(𝐸 + 𝑝))𝑥 = 0,
(

𝑧1
)

𝑡 + 𝑢
(

𝑧1
)

𝑥 = 0.

(2.1)

Here 𝜌1 and 𝜌2 are the density of the fluid 1 and 2, 𝜌 is the total density, 𝑢 is the velocity, 𝜌𝑢 is the total momentum, 𝐸 is the total energy, 𝑝 is the
pressure, 𝑧1, 𝑧2 ∈ [0, 1] are the volume fractions of fluid 1 and fluid 2, and satisfy 𝑧1 + 𝑧2 = 1. Furthermore, we have the following equation:

𝜌 = 𝜌1𝑧1 + 𝜌2𝑧2, 𝐸 = 1
2
𝜌𝑢2 + 𝑧1𝜌1𝑒1 + 𝑧2𝜌2𝑒2,

where 𝑒1, 𝑒2 are specific internal energy for fluid 1 and fluid 2 respectively. In order to close system (2.1), a mixture equation of state is needed,
nd each fluid is modeled by Mie–Grüneisen EOS:

𝑝𝑘 = 𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘) + 𝛤𝑘(𝜌𝑘)𝜌𝑘
(

𝑒𝑘 − 𝑒𝑟𝑒𝑓 ,𝑘(𝜌𝑘)
)

, 𝑘 = 1, 2,

where 𝑝𝑘 is the pressure for fluid 𝑘, 𝛤𝑘, 𝑝𝑟𝑒𝑓 ,𝑘, and 𝑒𝑟𝑒𝑓 ,𝑘 are the Grüneisen coefficient, reference pressure and reference internal energy for fluid
𝑘. Physically, 𝛤𝑘, 𝑝𝑟𝑒𝑓 ,𝑘 and 𝑒𝑟𝑒𝑓 ,𝑘 are used to describe the property of materials and can be determined from experimental data. In this paper, we
will focus on following different models in the Mie–Grüneisen form [8]:

1. Stiffened gas EOS,

𝛤𝑘(𝜌𝑘) = 𝛾𝑘 − 1,

𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘) = −𝛾𝑘𝐵𝑘,

𝑒𝑟𝑒𝑓 ,𝑘(𝜌𝑘) = 0,

where 𝛾𝑘 and 𝐵𝑘 are the material-dependent quantities.
2. The Jones–Wilkins–Lee (JWL) EOS (for gaseous explosives),

𝛤𝑘(𝜌𝑘) = 𝛤0,𝑘,

𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘) = 𝐴𝑘𝑒𝑥𝑝
(

−
𝑅1,𝑘𝜌0,𝑘

𝜌𝑘

)

+ 𝐵𝑘𝑒𝑥𝑝
(

−
𝑅2,𝑘𝜌0,𝑘

𝜌𝑘

)

,

𝑒𝑟𝑒𝑓 ,𝑘(𝜌𝑘) =
𝐴𝑘

𝑅1,𝑘𝜌0,𝑘
𝑒𝑥𝑝

(

−
𝑅1,𝑘𝜌0,𝑘

𝜌𝑘

)

+
𝐵𝑘

𝑅2,𝑘𝜌0,𝑘
𝑒𝑥𝑝

(

−
𝑅2,𝑘𝜌0,𝑘

𝜌𝑘

)

− 𝑒0,𝑘,

where 𝛤0,𝑘, 𝐴𝑘, 𝐵𝑘, 𝑅1,𝑘, 𝑅2,𝑘, 𝜌0,𝑘 and 𝑒0,𝑘 are the material-dependent quantities.
3. The Cochran-Chan (CC) EOS (for solid explosives),

𝛤𝑘(𝜌𝑘) = 𝛤0,𝑘,

𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘) = 𝐴𝑘

(𝜌0,𝑘
𝜌𝑘

)−𝜀1,𝑘
− 𝐵𝑘

(𝜌0,𝑘
𝜌𝑘

)−𝜀2,𝑘
,

𝑒𝑟𝑒𝑓 ,𝑘(𝜌𝑘) = −
𝐴𝑘

(1 − 𝜀1,𝑘)𝜌0,𝑘

(

(𝜌0,𝑘
𝜌𝑘

)1−𝜀1,𝑘
− 1

)

+
𝐵𝑘

(1 − 𝜀2,𝑘)𝜌0,𝑘

(

(𝜌0,𝑘
𝜌𝑘

)1−𝜀2,𝑘
− 1

)

− 𝑒0,𝑘,

where 𝛤 ,𝐴 , 𝐵 , 𝜀 , 𝜀 , 𝜌 and 𝑒 are the material-dependent quantities.
0,𝑘 𝑘 𝑘 1,𝑘 2,𝑘 0,𝑘 0,𝑘
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Table 1
Typical material-dependent quantities for different models.

JWL EOS 𝜌0 (kg∕m3) 𝐴 (GPa) 𝐵 (GPa) 𝑅1 𝑅2 𝛤0 𝛼

TNT 1840 854.5 20.5 4.6 1.35 0.25 0
Water 1004 1582 −4.67 8.94 1.45 1.17 0

CC EOS 𝜌0 (kg∕m3) 𝐴 (GPa) 𝐵 (GPa) 𝜀1 𝜀2 𝛤0 𝛼

Copper 8900 145.67 147.75 2.99 1.99 2 0
TNT 1840 12.87 13.42 4.1 3.1 0.93 0

Shock EOS 𝜌0 (kg∕m3) 𝑐0 (m∕s) 𝑠 𝛤0 𝛼 𝑝0 𝑒0
Aluminum 2785 5328 1.338 2.0 1.0 0 0
Copper 8924 3910 1.51 1.96 1.0 0 0
Molybdenum 9961 4770 1.43 2.56 1.0 0 0
Midocean ridge basalt (MORB) 2660 2100 1.68 1.18 1.0 0 0
Water 1000 1483 2.0 2.0 10−4 0 0

4. The shock wave EOS,

𝛤𝑘(𝜌𝑘) = 𝛤0,𝑘

(𝜌0,𝑘
𝜌𝑘

)𝛼𝑘
,

𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘) = 𝑝0,𝑘 +
𝑐20,𝑘

(

1∕𝜌0,𝑘 − 1∕𝜌𝑘
)

(

1∕𝜌0,𝑘 − 𝑠𝑘(1∕𝜌0,𝑘 − 1∕𝜌𝑘)
)2

,

𝑒𝑟𝑒𝑓 ,𝑘(𝜌𝑘) = 𝑒0,𝑘 +
1
2
(

𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘) + 𝑝0,𝑘
)

(1∕𝜌0,𝑘 − 1∕𝜌𝑘),

where 𝛤0,𝑘, 𝑠𝑘, 𝑐0,𝑘, 𝑝0,𝑘, 𝜌0,𝑘, 𝛼𝑘 and 𝑒0,𝑘 are the material-dependent quantities.

These different models can be used to simulate many materials, such as water, copper, TNT, and so on. We list relevant parameters for different
materials in Table 1 [8,20].

We assume that for each fluid the sound speed of sound 𝑐𝑘 is defined by [8]:

𝑐2𝑘 =

(

𝛤𝑘(𝜌𝑘) + 1 + 𝜌𝑘
𝛤 ′
𝑘(𝜌𝑘)

𝛤𝑘(𝜌𝑘)

)

( 𝑝𝑘 − 𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘)
𝜌𝑘

)

+ 𝛤𝑘(𝜌𝑘)
𝑝𝑟𝑒𝑓 ,𝑘(𝜌𝑘)

𝜌𝑘
+ 𝑝′𝑟𝑒𝑓 ,𝑘 − 𝛤𝑘(𝜌𝑘)𝜌𝑘𝑒′𝑟𝑒𝑓 ,𝑘(𝜌𝑘),

here, 𝛤 ′
𝑘, 𝑝

′
𝑟𝑒𝑓 ,𝑘, 𝑒

′
𝑟𝑒𝑓 ,𝑘 are the derivatives of 𝛤𝑘, 𝑝𝑟𝑒𝑓 ,𝑘, 𝑒𝑟𝑒𝑓 ,𝑘 with respect to 𝜌𝑘. Furthermore, we use isobaric closure assumption for mixed cells:

𝑝1 = 𝑝2 = 𝑝,

and thus we define sound speed for mixed cells [9]:

𝜉𝑐2 =
∑

𝑘
𝑦𝑘𝜉𝑘𝑐

2
𝑘 ,

where 𝑐𝑘 is the sound speed for fluid 𝑘, 𝑦𝑘 = 𝑧𝑘𝜌𝑘∕𝜌 is the mass fraction for fluid 𝑘, 𝜉𝑘 =
(

𝜕𝜌𝑘𝑒𝑘
𝜕𝑝𝑘

)

𝜌𝑘
is the partial derivative about the internal

energy with respect to pressure for fluid 𝑘, and 𝜉 = 𝑧1𝜉1 + 𝑧2𝜉2.
For simplicity, the computational domain is divided uniformly. We denote the cell 𝐼𝑗 = [𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
], the cell center 𝑥𝑗 =

(

𝑥𝑗− 1
2
+ 𝑥𝑗+ 1

2

)

∕2 and

its cell size 𝛥𝑥 = 𝑥𝑗+ 1
2
− 𝑥𝑗− 1

2
. By denoting 𝑈 =

(

𝑧1𝜌1, 𝑧2𝜌2, 𝜌𝑢, 𝐸, 𝑧1
)𝑇 , 𝐹 (𝑈 ) =

(

𝑧1𝜌1𝑢, 𝑧2𝜌2𝑢, 𝜌𝑢2 + 𝑝, 𝑢(𝐸 + 𝑝), 𝑢𝑧1
)𝑇 and 𝑆(𝑈 ) =

(

0, 0, 0, 0, 𝑧1
)𝑇 , we

rewrite the system (2.1) into

𝑈𝑡 + 𝐹 (𝑈 )𝑥 = 𝑆(𝑈 )𝑢𝑥, (2.2)

where 𝑢𝑥 refers to the derivative of velocity. We integrate (2.2) over the cell 𝐼𝑗 , employ the integration by part, and then obtain the following
semi-discretization form:

𝜕𝑈𝑗 (𝑡)
𝜕𝑡

+ 1
𝛥𝑥

(

𝐹 (𝑈 (𝑥𝑗+ 1
2
, 𝑡)) − 𝐹 (𝑈 (𝑥𝑗− 1

2
, 𝑡))

)

= 1
𝛥𝑥

⎛

⎜

⎜

⎝

𝑆(𝑈 (𝑥𝑗+ 1
2
, 𝑡))𝑢(𝑥𝑗+ 1

2
, 𝑡) − 𝑆(𝑈 (𝑥𝑗− 1

2
, 𝑡))𝑢(𝑥𝑗− 1

2
, 𝑡) − ∫

𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

𝑆(𝑈 (𝑥, 𝑡))𝑥𝑢(𝑥, 𝑡)dx
⎞

⎟

⎟

⎠

,
(2.3)

where 𝑈𝑗 (𝑡) =
1
𝛥𝑥 ∫

𝑥𝑗+1∕2
𝑥𝑗−1∕2 𝑈 (𝑥, 𝑡)dx. Next, by introducing the numerical fluxes, we approximate Eq. (2.3) by the following formulation:

𝜕𝑈𝑗

𝜕𝑡
+ 1

𝛥𝑥

(

𝐹𝑗+ 1
2
− 𝐹𝑗− 1

2

)

= 1
𝛥𝑥

(

𝑆(𝑈−
𝑗+ 1

2
)𝑢̂𝑗+ 1

2
− 𝑆(𝑈+

𝑗− 1
2

)𝑢̂𝑗− 1
2

)

−
4
∑

𝑘=1
𝑤𝑘𝑆(𝑈 )𝑥𝐺𝑘

𝑢𝐺𝑘
. (2.4)

𝑈𝑗 refers to the numerical approximation to the cell average 𝑈𝑗 (𝑡). 𝐹𝑗+ 1
2

and 𝑢̂𝑗+ 1
2

represents HLLC numerical flux evaluated at the interface
𝑥𝑗+1∕2 [10,11,21]:

𝐹𝑗+ 1
2
=

1 + sgn(𝑠∗)
2

(

𝐹 (𝑈−
𝑗+ 1

2
) + 𝑠−(𝑈∗𝐿 − 𝑈−

𝑗+ 1
2
)
)

+
1 − sgn(𝑠∗)

2

(

𝐹 (𝑈+
𝑗+ 1

2

) + 𝑠+(𝑈∗𝑅 − 𝑈+
𝑗+ 1

2

)
)

,

𝑢̂ 1 =
1 + sgn(𝑠∗)

(

𝑢− 1 + 𝑠−(𝜒∗𝐿 − 1)
)

+
1 − sgn(𝑠∗)

(

𝑢+ 1 + 𝑠+(𝜒∗𝑅 − 1)
)

,
(2.5)
𝑗+ 2 2 𝑗+ 2 2 𝑗+ 2
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where we defined

𝑈∗𝑘 = 𝜒∗𝑘

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌1,𝑘
𝜌2,𝑘
𝜌𝑘𝑠∗

𝐸𝑘 +
(

𝑠∗ − 𝑢𝑘
)

(

𝜌𝑘𝑠∗ +
𝑝𝑘

𝑠𝑘−𝑢𝑘

)

𝑧1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑠∗ =
𝑝𝑅 − 𝑝𝐿 + 𝜌𝐿𝑢𝐿(𝑠𝐿 − 𝑢𝐿) − 𝜌𝑅𝑢𝑅(𝑠𝑅 − 𝑢𝑅)

𝜌𝐿(𝑠𝐿 − 𝑢𝐿) − 𝜌𝑅(𝑠𝑅 − 𝑢𝑅)
,

𝑠− = min(0, 𝑠𝐿), 𝑠+ = max(0, 𝑠𝑅), 𝑠𝐿 = min
(

(𝑢 − 𝑐)𝑅𝑂𝐸 , 𝑢𝐿 − 𝑐𝐿
)

, 𝑠𝑅 = max
(

(𝑢 + 𝑐)𝑅𝑂𝐸 , 𝑢𝑅 + 𝑐𝑅
)

,

and

𝜒∗𝑘 =
𝑠𝑘 − 𝑢𝑘
𝑠𝑘 − 𝑠∗

, 𝑘 = 𝐿,𝑅,

where 𝑞𝐿 = 𝑞−
𝑗+ 1

2

and 𝑞𝑅 = 𝑞+
𝑗+ 1

2

, 𝑞 refers to variables 𝜌1, 𝜌2, 𝜌, 𝑢, 𝑠, 𝑝, 𝑐, 𝐸, 𝑈∗, 𝜒∗ respectively, and (𝑢− 𝑐)𝑅𝑂𝐸 and (𝑢+ 𝑐)𝑅𝑂𝐸 are the velocities obtained
rom an intermediate state based on the Roe average. In Eq. (2.4), 𝑤𝑘, 𝐺𝑘 are Gauss–Lobatto quadrature points and coefficients:

𝐺1 = 𝑥𝑗− 1
2
, 𝐺2 = 𝑥

𝑗−
√

5
10

, 𝐺3 = 𝑥
𝑗+

√

5
10

, 𝐺4 = 𝑥𝑗+ 1
2
,

𝜔1 =
1
12

, 𝜔2 =
5
12

, 𝜔3 =
5
12

, 𝜔4 =
1
12

.
(2.6)

±
𝑗+ 1

2

, 𝑈𝐺𝑘
and 𝑈𝑥𝐺𝑘

are numerical approximation to the solutions and derivatives at the 𝑥𝑗+ 1
2

or 𝐺𝑘 respectively, which are obtained by the WENO
econstruction method described in Section 2.1.

We denote the semi-discrete system (2.4) as U𝑡 = (U), where  denotes the operator of the spatial discretization. Then, we use the third-order
otal variation diminishing (TVD) Runge–Kutta time discretization [22] to solve the semi-discrete form (2.4):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U(1) = U𝑛 + 𝛥𝑡(U𝑛),

U(2) = 3
4
U𝑛 + 1

4
(U(1) + 𝛥𝑡(U(1))),

U𝑛+1 = 1
3
U𝑛 + 2

3
(U(2) + 𝛥𝑡(U(2))).

(2.7)

.1. WENO reconstruction

Now, we list detailed flowchart of the WENO reconstruction method, which is similar to [23–25].
Step 1. Given stencils 𝑆0 = {𝐼𝑖−2, 𝐼𝑖−1, 𝐼𝑖, 𝐼𝑖+1, 𝐼𝑖+2}, 𝑆1 = {𝐼𝑖}, 𝑆2 = {𝐼𝑖−1, 𝐼𝑖, 𝐼𝑖+1}, 𝑆3 = {𝐼𝑖−2, 𝐼𝑖−1, 𝐼𝑖}, and 𝑆4 = {𝐼𝑖, 𝐼𝑖+1, 𝐼𝑖+2}, we need to

onstruct polynomials 𝑃0(𝑥), 𝑃1(𝑥), 𝑃2(𝑥), 𝑃3(𝑥), 𝑃4(𝑥) such that:

1
𝛥𝑥 ∫𝐼𝑖+𝑙

𝑃0(𝑥)𝑑𝑥 = 𝑞𝑖+𝑙 , 𝑙 = − 2,−1, 0, 1, 2,

1
𝛥𝑥 ∫𝐼𝑖+𝑙

𝑃1(𝑥)𝑑𝑥 = 𝑞𝑖+𝑙 , 𝑙 =0,

1
𝛥𝑥 ∫𝐼𝑖+𝑙

𝑃2(𝑥)𝑑𝑥 = 𝑞𝑖+𝑙 , 𝑙 = − 1, 0, 1,

1
𝛥𝑥 ∫𝐼𝑖+𝑙

𝑃3(𝑥)𝑑𝑥 = 𝑞𝑖+𝑙 , 𝑙 = − 2,−1, 0,

1
𝛥𝑥 ∫𝐼𝑖+𝑙

𝑃4(𝑥)𝑑𝑥 = 𝑞𝑖+𝑙 , 𝑙 =0, 1, 2,

(2.8)

here 𝑞𝑖 are the cell average on cell 𝐼𝑗 for 𝑞(𝑥).
Step 2. We compute the smoothness indicators, denoted as 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4 respectively. The smoothness indicators are based on the formula

in [26]:

𝛽𝑚 = 1
𝛥𝑥

𝑟
∑

𝑘=1
∫𝐼𝑖

(

𝛥𝑥𝑘 𝜕𝑘

𝜕𝑥𝑘
𝑃𝑚(𝑥)

)2
𝑑𝑥, 𝑚 = 0, 2, 3, 4,

here 𝑟 = 4 for 𝑃0(𝑥) and 𝑟 = 2 for 𝑃2(𝑥), 𝑃3(𝑥) and 𝑃4(𝑥). As to 𝑃1(𝑥), we magnify smoothness indicators 𝛽1 from zero to a value defined below:

𝛽1 = min
(

(𝑞𝑖+1 − 𝑞𝑖)2, (𝑞𝑖−1 − 𝑞𝑖)2
)

.

Step 3. We take the linear weights as

𝑟0 =
1100
1111

, 𝑟1 =
1

1111
, 𝑟2 =

10
1111

,

nd

𝑠0 = 0.97, 𝑠2 = 0.01, 𝑠3 = 0.01, 𝑠4 = 0.01.

hen, we can rewrite 𝑃0(𝑥) as

𝑃0(𝑥) = 𝜃𝑃0(𝑥) + (1 − 𝜃)
(

𝑟0𝑃0(𝑥) + 𝑟1𝑃1(𝑥) + 𝑟2𝑃2(𝑥)
)

. (2.9)

here 𝜃 = 1 −
(

1 − min
(

1, 𝑠 ∕𝑠
)4
)4

.
0 0

4 
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Step 4. We compute the nonlinear weights

𝜔𝑘 =
𝜔𝑘

𝜔0 + 𝜔1 + 𝜔2
, 𝜔𝑘 =

𝑟𝑘
(

𝛽𝑘 + 𝜀
)2

, 𝑘 = 0, 1, 2,

nd

𝜇0 =
𝜇0

𝜇0 + 𝜇2 + 𝜇3 + 𝜇4
, 𝜇𝑘 =

𝑠𝑘
(

𝛽𝑘 + 𝜀
)4

, 𝑘 = 0, 2, 3, 4,

here 𝜀 = 10−12 to avoid dividing by zero. Then, we replace 𝜃, 𝑟0, 𝑟1, 𝑟2 in (2.9) with nonlinear weights:

𝑃 (𝑥) = 𝜃𝑃0(𝑥) + (1 − 𝜃)
(

𝜔0𝑃0(𝑥) + 𝜔1𝑃1(𝑥) + 𝜔2𝑃2(𝑥)
)

, (2.10)

and

𝑃 ′(𝑥) = 𝜃𝑃 ′
0(𝑥) + (1 − 𝜃)

(

𝜔0𝑃
′
0(𝑥) + 𝜔1𝑃

′
1(𝑥) + 𝜔2𝑃

′
2(𝑥)

)

, (2.11)

where 𝜃 = 1 −
(

1 − min
(

1, 𝜇0∕𝑠0
)4
)4

and satisfies 0 < 𝜃 ≤ 1, 𝜃 is close to 0 in discontinuous region and 𝜃 = 1 + (𝛥𝑥4) in smooth region.
Now, we give a brief analysis about Eq. (2.10). The Eq. (2.11) is similar.
When the solution is smooth in the stencil 𝑆0, through the Taylor expansion analysis, we have:

𝜇0 = 𝑠0 + (𝛥𝑥2).

It implies the method can realize the fifth order accuracy:

𝑃 (𝑥) − 𝑞(𝑥) = (1 − 𝜃)
(

𝜔0
(

𝑃0(𝑥) − 𝑞(𝑥)
)

+ 𝜔1
(

𝑃1(𝑥) − 𝑞(𝑥)
)

+ 𝜔2
(

𝑃2(𝑥) − 𝑞(𝑥)
))

+ 𝜃(𝑃0(𝑥) − 𝑞(𝑥))

= (𝛥𝑥8)
(

𝜔1(𝛥𝑥5) + 𝜔1(𝛥𝑥3) + 𝜔2(𝛥𝑥)
)

+
(

1 − (𝛥𝑥8)
)

(𝛥𝑥5)

= (𝛥𝑥5).

When the solution is discontinuous in the stencil 𝑆0, we have 𝛽0 = (1). It means 𝜇0 → 0, and 𝜃 → 0. Therefore, 𝜔0𝑃0(𝑥) + 𝜔1𝑃1(𝑥) + 𝜔2𝑃2(𝑥)
plays the major role. If the solution is smooth in the stencil 𝑆𝑚, then 𝛽𝑚 = (𝛥𝑥2). However, if the solution is discontinuous in the stencil 𝑆𝑚, then
𝛽𝑚 = (1). As to the nonlinear weights 𝜔𝑚, we have 𝜔𝑚 = (𝛥𝑥4) when the solution is discontinuous in the stencil 𝑆𝑚, and 𝜔𝑚 = (1) when the
solution is smooth in the stencil 𝑆𝑚. Therefore, the method maintain the ENO property.

2.2. Primitive variables reconstruction

To maintain the equilibrium of velocity and pressure during reconstruction, it is necessary to reconstruct the primitive variables from the given
conservative variables. These reconstructed primitive variables will then be used to implement the reconstruction process subsequently. Next, we
will describe the reconstruction steps for the primitive variables.

Step 1. Follow the steps described in Section 2.1, we can obtain the polynomials and fraction for each cell 𝐼𝑗 :

𝑃0,𝑚(𝑥), 𝑃1,𝑚(𝑥), 𝑃2,𝑚(𝑥), 𝜃𝑚, 𝑚 = 𝑧1𝜌1, 𝑧2𝜌2, 𝜌𝑢, 𝐸, 𝑧1,

where 𝑃0,𝑚(𝑥), 𝑃1,𝑚(𝑥), 𝑃2,𝑚(𝑥) are the polynomials reconstructed in (2.8) for each variables, and 𝜃𝑚 is the parameter used in (2.10) and (2.11) for
each variables.

Step 2. Compute the minimization of the fraction:

𝜃 = min
𝑚

(

𝜃𝑚
)

, 𝑚 = 𝑧1𝜌1, 𝑧2𝜌2, 𝜌𝑢, 𝐸, 𝑧1.

Step 3. Compute the polynomials for the conservative variables:

𝑃𝑚(𝑥) = 𝜃𝑃0,𝑚(𝑥) + (1 − 𝜃)𝑃2,𝑚(𝑥), 𝑚 = 𝑧1𝜌1, 𝑧2𝜌2, 𝜌𝑢, 𝐸, 𝑧1. (2.12)

Step 4. Compute the values for the primitive variables:

𝑃𝜌1 (𝑥) =
𝑃𝑧1𝜌1 (𝑥)
𝑃𝑧1 (𝑥)

,

𝑃𝜌2 (𝑥) =
𝑃𝑧2𝜌2 (𝑥)

1.0 − 𝑃𝑧1 (𝑥)
,

𝑃𝑢(𝑥) =
𝑃𝜌𝑢(𝑥)
𝑃𝜌(𝑥)

,

𝑃𝑝(𝑥) =

(

𝑃𝐸 (𝑥) −
𝑝2𝜌𝑢(𝑥)

2𝑃𝜌(𝑥)
− 0

)

∕0.

where 𝑃𝜌(𝑥) = 𝑃𝑧1𝜌1 (𝑥) + 𝑃𝑧2𝜌2 (𝑥),(𝜌) = 1∕𝛤 (𝜌), (𝜌) = −𝑝𝑟𝑒𝑓 (𝜌)∕𝛤 (𝜌) + 𝛤 (𝜌)𝑒𝑟𝑒𝑓 (𝜌), 0 = 𝑃𝑧1 (𝑥)(𝑃𝜌1 (𝑥)) +
(

1 − 𝑃𝑧1 (𝑥)
)

(𝑃𝜌2 (𝑥)) and 0 =

𝑃𝑧1 (𝑥)(𝑃𝜌1 (𝑥)) +
(

1 − 𝑃𝑧1 (𝑥)
)

(𝑃𝜌2 (𝑥)).
Step 5. Reconstruct the cell averages of primitive variables for each cell by using numerical integrals:

𝑚𝑗 =
∑

𝜔𝐺𝑃𝑚(𝑥𝐺), 𝑚 = 𝜌1, 𝜌2, 𝑢, 𝑝, 𝑧1.

𝐺

5 
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Table 2
The CPU time (measured in seconds).

HO1 HO2 LO

Example 3 7.34 6.95 9.31
Example 4 0.55 0.53 0.78
Example 5 0.55 0.54 0.82
Example 6 1.38 1.34 2.42
Example 7 0.86 0.84 1.51
Example 8 0.94 0.90 1.42

2.3. The maximum principle preserving limiter

The volume fraction 𝑧1 may obtain an invalid value, such as 𝑧1 < 0 or 𝑧1 > 1. We need a procedure to correct the invalid value. Following the
uggestion in [27], we describe the detailed correction steps:

Case 1: two-components flows:
Assuming 𝑧1𝑗 (𝑥) and 𝑧1𝑗 are the polynomial and cell average on cell 𝐼𝑗 respectively, we define the following new polynomial:

𝑧1𝑗 (𝑥) = 𝜃
(

𝑧1𝑗 (𝑥) − 𝑧1𝑗
)

+ 𝑧1𝑗 , 𝜃 = min

{

|

|

|

|

|

1 − 𝜖 − 𝑧1𝑗
𝑧1𝑗,𝑚𝑎𝑥 − 𝑧1𝑗

|

|

|

|

|

,
|

|

|

|

|

𝜖 − 𝑧1𝑗
𝑧1𝑗,𝑚𝑖𝑛 − 𝑧1𝑗

|

|

|

|

|

, 1

}

,

here 𝑧1𝑗,𝑚𝑖𝑛 = min𝑥∈𝑆 𝑧1𝑗 (𝑥), 𝑧1𝑗,𝑚𝑎𝑥 = max𝑥∈𝑆 𝑧1𝑗 (𝑥) and 𝑆 is the set of Legendre Gauss–Lobatto quadrature points for 𝐼𝑗 .
It is clear that if cell average 𝑧1𝑗 ∈ [𝜖, 1 − 𝜖], then we have 𝑧1𝑗 (𝐺𝑘) ∈ [𝜖, 1 − 𝜖] and 𝑧2𝑗 (𝐺𝑘) = 1 − 𝑧1𝑗 (𝐺𝑘) ∈ [𝜖, 1 − 𝜖], where 𝐺𝑘 ∈ 𝑆. We set

parameter 𝜖 = 10−6.
Case 2: three-components flows:
The procedure for more than two components is a little bit different. We make three-component flows as an example. Assuming 𝑧1𝑗 (𝑥), 𝑧2𝑗 (𝑥)

nd 𝑧3𝑗 (𝑥) are the volume fraction polynomials of the fluid 1,2 and 3 satisfying:

𝑧1𝑗 (𝑥) + 𝑧2𝑗 (𝑥) + 𝑧3𝑗 (𝑥) = 1.

or each fluid 𝑘, we define the parameter 𝜃𝑘:

𝑧𝑘𝑗 (𝑥) = 𝜃𝑘
(

𝑧𝑘𝑗 (𝑥) − 𝑧𝑘𝑗
)

+ 𝑧𝑘𝑗 , 𝜃𝑘 = min

{

|

|

|

|

|

1 − 𝜖 − 𝑧𝑘𝑗
𝑧𝑘𝑗,𝑚𝑎𝑥 − 𝑧𝑘𝑗

|

|

|

|

|

,
|

|

|

|

|

𝜖 − 𝑧𝑘𝑗
𝑧𝑘𝑗,𝑚𝑖𝑛 − 𝑧𝑘𝑗

|

|

|

|

|

, 1

}

, 𝑘 = 1, 2, 3.

e also set parameter 𝜖 = 10−6. Then, we define the modified polynomials as the following:

𝑧𝑘𝑗 (𝑥) = 𝜃
(

𝑧𝑘𝑗 (𝑥) − 𝑧𝑘𝑗
)

+ 𝑧𝑘𝑗 , 𝜃 = min
{

𝜃1, 𝜃2, 𝜃3
}

, 𝑘 = 1, 2, 3.

.4. Algorithm

Now, we list the algorithm of the high-order finite volume method for the multicomponent fluid problem, see Algorithm 1:
Algorithm 1 Algorithm of the scheme
1: Reconstruct the cell average of primitive variables.
2: Obtain the polynomials of primitive variables in characteristic-wise way.
3: Correct the volume fraction.
4: Compute 𝑢̂𝑗± 1

2
, 𝐹𝑗± 1

2
, 𝑆(𝑈∓

𝑗± 1
2

) and 𝑆(𝑈 )𝑥𝐺𝑘
in formula (2.4) and form the scheme.

5: Evolve the scheme by TVD Runge–Kutta method (2.7).

2.5. Property of the schemes

Proposition 1. The high-order finite volume scheme (2.4) with the numerical flux (2.5) preserves the equilibrium of the pressure and velocity for the
interface-only problem with stiffened gas EOS.

We will provide the detailed proof in Appendix.

3. Numerical test

In this section, we will present the numerical results of our high-order finite volume scheme (denoted as ‘HO1’), with the CFL number set to
0.5. We set the time step 𝛥𝑡 = 𝐶𝐹𝐿𝛥𝑥5∕3∕𝛼 for accuracy test and 𝛥𝑡 = 𝐶𝐹𝐿𝛥𝑥∕𝛼 for other numerical experiments. Although the CFL number
does not satisfy the maximum-principle-preserving requirement, it works well for our numerical experiments. For comparison, we also list the
computational results based on [28] (denoted as ‘HO2’), and the computational results based on [11] (denoted as ‘LO’) which utilize the same
characteristic projection as in our paper but omit interface-sharpening technique. The exact solution in the one-dimensional numerical test can be
found in [29,30]. We also list the CPU time of the ‘HO1’, ‘HO2’, and ‘LO’ in Table 2. From the table, we can see that the CPU time of the ‘HO1’

method and ‘HO2’ method are comparable, and are less than that of the ‘LO’ method.
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Table 3
Accuracy test for density in 1D.
Mesh size HO1 LO

𝐿∞ error order 𝐿1 error order 𝐿∞ error order 𝐿1 error order

10 3.88E−02 1.46E−02 2.99E−02 9.35E−03
20 1.86E−02 1.06 2.42E−03 2.59 1.03E−02 1.54 1.55E−03 2.59
40 1.13E−03 4.04 1.25E−04 4.28 2.37E−03 2.11 3.25E−04 2.25
80 9.91E−05 3.52 6.10E−06 4.35 4.51E−04 2.40 7.24E−05 2.17
160 4.42E−06 4.49 2.19E−07 4.80 1.02E−04 2.14 1.75E−05 2.05
320 1.49E−07 4.89 7.07E−09 4.96 2.57E−05 2.00 4.35E−06 2.01

Table 4
Accuracy test for density in 2D.
Mesh size HO1 LO

𝐿∞ error order 𝐿1 error order 𝐿∞ error order 𝐿1 error order

10 × 10 4.46E−02 1.33E−02 2.44E−02 7.27E−03
20 × 20 8.11E−03 2.46 2.36E−03 2.50 6.57E−03 1.89 1.39E−03 2.39
40 × 40 1.25E−03 2.70 1.14E−04 4.37 1.99E−03 1.72 2.11E−04 2.72
80 × 80 8.64E−05 3.85 5.93E−06 4.27 3.67E−04 2.44 4.80E−05 2.14
160 × 160 4.14E−06 4.38 2.16E−07 4.78 7.52E−05 2.29 1.15E−05 2.06
320 × 320 1.47E−07 4.81 7.00E−09 4.95 1.83E−05 2.04 2.87E−06 2.01

Example 1. We consider the artificial accuracy test. In this test, we choose stiffened gas EOS by taking 𝛾 = 3, 𝐵 = 0. Initial conditions are the
following:

𝜌(𝑥, 0) =
1 + 0.2 sin(𝑥)

2
√

𝛾
, 𝜌1(𝑥, 0) = 𝜌(𝑥, 0)𝑧1(𝑥, 0), 𝜌2(𝑥, 0) = 𝜌(𝑥, 0)(1 − 𝑧1(𝑥, 0)),

𝑧1(𝑥, 0) = 0.5 + 0.4 sin(𝑥), 𝑢(𝑥, 0) =
√

𝛾𝜌(𝑥, 0), 𝑝(𝑥, 0) = 𝜌(𝑥, 0)𝛾 .

we set computational domain to be [0, 2𝜋] and employ periodic boundary conditions. By the special choice of the parameter 𝛾, 𝐵, initial conditions
and boundary conditions, we can verify that 2

√

𝛾𝜌(𝑥, 𝑡) is the exact solution of the following Burgers equation:

𝜇𝑡 +
1
2
(𝜇2)𝑥 = 0, 𝜇(𝑥, 0) = 1 + 0.2 sin(𝑥).

The velocity, pressure and 𝑧1 satisfy the following relation:

𝑢(𝑥, 𝑡) =
√

𝛾𝜌(𝑥, 𝑡), 𝑝(𝑥, 𝑡) = 𝜌(𝑥, 𝑡)𝛾 , 𝛾(𝑥, 0) = 3, 𝑝∞(𝑥, 0) = 0.

It is straightforward to demonstrate that the solution of the Burgers equation remains smooth up to time 𝑇 = 5. We set the final time as 𝑇 = 3 and
ist the results in Table 3. From the table, we can see that our scheme can achieve fifth order accuracy as expected, while the LO scheme can only
chieve second-order accuracy.

xample 2. We consider the 2D artificial accuracy test. We also choose stiffened gas EOS and take 𝛾 = 3 and 𝐵 = 0. Then, the system (2.1) becomes
single-component problem. Furthermore, we choose the following special initial conditions:

𝜌(𝑥, 𝑦, 0) =
1 + 0.2 sin( 𝑥+𝑦2 )

√

2𝛾
, 𝑧1(𝑥, 𝑦, 0) = 0.5 + 0.4 sin(

𝑥 + 𝑦
2

), 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) =
√

𝛾
2
𝜌(𝑥, 𝑦, 0),

𝜌1(𝑥, 𝑦, 0) = 𝜌(𝑥, 𝑦, 0)𝑧1(𝑥, 𝑦, 0), 𝜌2(𝑥, 𝑦, 0) = 𝜌(𝑥, 𝑦, 0)(1 − 𝑧1(𝑥, 𝑦, 0)), 𝑝(𝑥, 𝑦, 0) = 𝜌(𝑥, 𝑦, 0)𝛾 .

We take the computational domain as [0, 4𝜋] × [0, 4𝜋]. Periodic boundary conditions are used in this test. By the special choice of parameter 𝛾, 𝐵,
initial conditions and boundary conditions, we can verify that

√

2𝛾𝜌(𝑥, 𝑦, 𝑡) is the exact solution of the following Burgers equation:

𝜇𝑡 +
1
2
(𝜇2)𝑥 +

1
2
(𝜇2)𝑦 = 0, 𝜇(𝑥, 𝑦, 0) = 1 + 0.2 sin(

𝑥 + 𝑦
2

).

he velocity and pressure satisfy the relation: 𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) =
√

𝛾
2 𝜌(𝑥, 𝑦, 𝑡), 𝑝(𝑥, 𝑦, 𝑡) = 𝜌(𝑥, 𝑦, 𝑡)𝛾 . It is easy to verify that the solution of the

urgers equation above is smooth up to time 𝑇 = 5. We set the final time 𝑇 = 3. At this time, the solution remains smooth. We list the error and
umerical accuracy order in Table 4. We can see that our method can achieve the designed fifth order accuracy, while the LO scheme can only
each second-order accuracy.

xample 3. We solve a Riemann problem consisting of a single contact discontinuity in gas dynamics with stiffened gas EOS. The initial condition
nd parameters required are as follows:

(𝜌1, 𝜌2, 𝑢, 𝑝, 𝑧1, 𝛾, 𝐵) =
{

(1, 0.125, 1, 1, 1 − 10−6, 1.4, 0), 𝑥 < 0.5,
(1, 0.125, 1, 1, 10−6, 4, 1), 𝑥 ≥ 0.5.

We set the computational domain as [0, 1], periodic condition, the final time 𝑇 = 1 and 𝑁 = 200. We show our results without using the maximum
principle preserving limiter in Fig. 1. The base velocity and pressure have been subtracted. From the figures, we can see that all of the three
methods match the exact solution well. The errors in velocity and pressure of our method are a little bit smaller than the ones obtained by the LO
scheme.
7 
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Fig. 1. Numerical results for Example 3. From left top to right bottom: figures of density, velocity, pressure, volume fraction of fluid 1. The base 𝑢0 = 1 and 𝑝0 = 1..

Example 4. We solve Riemann problem with the following initial condition and parameters required:

(𝜌1, 𝜌2, 𝑢, 𝑝, 𝑧1, 𝑒0) =
{

(1700, 1000, 0, 1012, 1 − 10−6, 0), 𝑥 < 0.5,
(1700, 1000, 0, 5 × 1010, 10−6, 0), 𝑥 ≥ 0.5.

We set the computational domain as [0, 1], the final time 𝑇 = 12 μs and 𝑁 = 200. The problem simulates the interaction of the product gases of the
explosive TNT. In this test, we choose the JWL EOS to model the explosive TNT. The relevant material-dependent quantities are given in Table 1.
Fig. 2 shows the result. From the figures, we can see that all schemes can give good resolutions to the exact solution. Slight overshoots around
𝑥 = 0.4 are observed in the velocity plot. However, these can be mitigated by refining the mesh size.

Example 5. We solve following Riemann problem:

(𝜌1, 𝜌2, 𝑢, 𝑝, 𝑧1, 𝑒0) =
{

(4000, 2785, 0, 7.93 × 109, 1 − 10−6, 0), 𝑥 < 0.5,
(4000, 2785, −2000, 0, 10−6, 0), 𝑥 ≥ 0.5.

which is used to model an aluminum slab on the left is hit by a traveling aluminum slab with speed 𝑢 = −2000 m∕s on the right. We set the
computational domain as [0, 1], the final time 𝑇 = 50 μs and 𝑁 = 200. The aluminum is modeled by the shock wave EOS. The relevant material-
dependent quantities are given in Table 1. Fig. 3 shows the result. From the figures, we can observe that the oscillations appear along 𝑥 = 0.7 in
the plots of density, velocity, and pressure with the HO2 method. Both the HO1 method and the LO method can obtain better results and match
the exact solution well.

Example 6. We solve following Riemann problem:

(𝜌1, 𝜌2, 𝑢, 𝑝, 𝑧1, 𝑒0) =
{

(8900, 1840, 1500, 101325, 1 − 10−6, 117900), 𝑥 < 0.5,
(8900, 1840, 0, 101325, 10−6, 326100), 𝑥 ≥ 0.5.

which is used to model a rightward traveling copper plate with speed 𝑢 = 1500 m∕s interacts with a solid explosive. We set the computational
domain as [0, 1], with final time 𝑇 = 85 μs and 𝑁 = 200. We use the same CC EOS to model both copper and solid explosives. The relevant
material-dependent quantities are given in Table 1. Fig. 4 shows the result. From the figures, we can see that all of the three methods can obtain

good performance.

8 
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Fig. 2. Numerical results for Example 4. From left top to right bottom: figures of density, velocity, pressure, and volume fraction of fluid 1.

xample 7. We solve following Riemann problem:

(𝜌1, 𝜌2, 𝑢, 𝑝, 𝑧1, 𝑒0) =
{

(2485.37, 8900, 0, 3 × 1010, 1 − 10−6, 8149.158 × 103), 𝑥 < 0.5,
(2485.37, 8900, 0, 105, 10−6, 117.9 × 103), 𝑥 ≥ 0.5.

hich is used to model the interaction between gaseous detonation products and a copper plate. We set the computational domain as [0, 1], with
final time 𝑇 = 73 μs and 𝑁 = 200. In this test, we use CC EOS to model copper, and JWL EOS to model gaseous explosive. The relevant material-
dependent quantities are given in Table 1. Fig. 5 shows the result. From the figures, we can see that the HO1 scheme captures the solution well.
As to the LO scheme, there are slight deviations in the velocity and pressure plot, although they do not affect the resolution too much.

Example 8. We solve following Riemann problem:

(𝜌1, 𝜌2, 𝑢, 𝑝, 𝑧1, 𝑒0) =

⎧

⎪

⎨

⎪

⎩

(11042, 2260, 543, 3 × 1010, 1 − 10−6, 0), 𝑥 < 0.4,
(9961, 2260, 0, 0, 1 − 10−6, 0), 0.4 ≤ 𝑥 < 0.6,
(9961, 2260, 0, 0, 10−6, 0), 𝑥 ≥ 0.6,

hich is used to model a rightward traveling Mach 1.163 shock wave in molybdenum interacts with MORB. We set the computational domain as
0, 1], the final time 𝑇 = 85 μs and 𝑁 = 200. We use the same shock wave EOS to model molybdenum and MORB. The relevant material-dependent
uantities are given in Table 1. Fig. 6 shows the result. From the figures, we can see that all schemes can capture the exact solution well.

xample 9. We consider a test in which a right-moving planar shock wave 𝑀𝑎𝑐ℎ = 1.163 in molybdenum initially located at 𝑥 = 0.3 is interacting
ith a region [0.4, 0.7] × [0, 0.5] of MORB liquid in a square domain [0, 1] × [0, 1]. This problem has been studied in [8,11,31]. The schematic for
this problem is given in Fig. 7. In this problem, we use the shock wave EOS to model the MORB and molybdenum. The typical set of material

9 
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Fig. 3. Numerical results for Example 5. From left top to right bottom: figures of density, velocity, pressure, and volume fraction of fluid 1.

uantities for the MORB and molybdenum is shown in Table 1. The initial conditions and parameters required are:

(𝜌1, 𝜌2, 𝑢, 𝑣, 𝑝, 𝑧1, 𝑒0) =

⎧

⎪

⎨

⎪

⎩

(11042, 2260, 543, 0, 3 × 1010, 1 − 10−6, 0), Post-Shock Molybdenum,
(9961, 2260, 0, 0, 0, 1 − 10−6, 0), Pre-Shock Molybdenum,
(9961, 2260, 0, 0, 0, 10−6, 0), MORB.

The non-reflecting boundary conditions are used. Fig. 8 shows high-resolution results for schlieren-type images of the density and pressure at time
50 μs and 100 μs using 400 × 400 cells. From the figures, we can see that the diffraction of a shock wave by MORB liquid is well captured with
our method.

Example 10. We consider a test in which a left-moving copper plate located at 𝑥 ≥ 0.6 interacts with a region [0, 0.6]×[0, 0.5] of water and a region
[0, 0.6] × [0.5, 1] of inert explosive in a square domain [0, 1] × [0, 1]. This problem has been studied in [8]. The schematic for this problem is given
in Fig. 9. In this problem, we use the CC EOS to model the copper and explosive, and the JWL EOS to model the water. The typical set of material
quantities is shown in Table 1.

The initial conditions and parameters required are:

(𝜌1, 𝜌2, 𝜌3, 𝑢, 𝑣, 𝑝, 𝑧1, 𝑧3, 𝑒0) =

⎧

⎪

⎨

⎪

⎩

(1840, 1004, 8900, 0, 0, 101325, 1 − 2 × 10−6, 10−6, 326100), TNT,
(1840, 1004, 8900, 0, 0, 101325, 10−6, 10−6, 25150), Water,
(1840, 1004, 8900, −1500, 0, 101325, 10−6, 1 − 2 × 10−6, 117900), Copper.

The non-reflecting boundary conditions are used. Fig. 10 shows high-resolution results for schlieren-type images of the density and pressure at time
50 μs and 100 μs using 200 × 200 cells. From the figure, we can see the transmitted and reflected shock waves due to the impacting of the copper
to the water and explosive. Moreover, a reflected circular wave is observed from the corner of the three materials.
10 
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Fig. 4. Numerical results for Example 6. From left top to right bottom: figures of density, velocity, pressure, and volume fraction of fluid 1.

xample 11. Finally, we are interested in an impact problem involving the interaction of underwater, aluminum, and copper within a square
omain [0, 1] × [0, 1]. This problem has been studied in [8]. The schematic for this problem is given in Fig. 11. On the left half of the domain, the
aterial is copper, while on the right half, the water on the top and aluminum on the bottom are separated by a horizontal interface 𝑦 = 0.4. In

his problem, all materials are modeled by shock wave EOS. The typical set of material quantities is shown in Table 1. The initial conditions and
arameters required are:

(𝜌1, 𝜌2, 𝜌3, 𝑢, 𝑣, 𝑝, 𝑧1, 𝑧3, 𝑒0) =

⎧

⎪

⎨

⎪

⎩

(2785, 1000, 8924, −1500, 0, 0, 1 − 2 × 10−6, 10−6, 0), Aluminum,
(2785, 1000, 8924, 0, 0, 0, 10−6, 10−6, 0), Water,
(2785, 1000, 8924, 0, 0, 0, 10−6, 1 − 2 × 10−6, 0), Copper.

he non-reflecting boundary conditions are used. Fig. 12 shows high-resolution results for schlieren-type images of the density and pressure at
imes 50 μs, 100 μs and 150 μs using 400 × 400 cells. Due to the impact of aluminum on copper, the transmitted and reflected shock waves are

generated, and a circular shock wave propagates to the water. Moreover, a mushroom-like shape is produced at the corner of the three materials,
and becomes larger as the process evolves. From the figures, we can see that our schemes can obtain high-resolution solutions.

4. Conclusion

In this paper, a high-order finite volume method with Mie–Grüneisen EOS is constructed for solving multicomponent fluid problems. Our scheme
can maintain the equilibrium of the pressure and velocity for the interface-only problem. Furthermore, our scheme achieves high-order accuracy
in the smooth region and high resolution when discontinuities appear. Extensive numerical tests have been performed to verify the scheme’s high

resolution and high accuracy.

11 
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Fig. 5. Numerical results for Example 7. From left top to right bottom: figures of density, velocity, pressure, and volume fraction of fluid 1.
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ppendix. Proof of the proposition

roof. We assume the conservative variables 𝑈𝑗 = (𝑧1𝜌1𝑗 , 𝑧2𝜌2𝑗 , 𝑚𝑗 , 𝐸𝑗 , 𝑧1𝑗 ) maintains the equilibrium of the pressure and velocity. Then, we have
the following equality:

𝑚 = 𝜌 𝑢, 𝐸 = 1𝜌 𝑢2 + 𝑝 +  ,
𝑗 𝑗 𝑗 2 𝑗 0𝑗 0𝑗

12 



F. Zheng and J. Qiu Computers and Fluids 284 (2024) 106424 
Fig. 6. Numerical results for Example 8. From left top to right bottom: figures of density, velocity, pressure, and volume fraction of fluid 1.

Fig. 7. Schematic for Example 9.
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Fig. 8. Numerical schlieren images for Example 9. Left, numerical schlieren images for density; Right, numerical schlieren images for pressure; From top to bottom: t = 50 μs and
100 μs.

Fig. 9. Schematic for Example 10.
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Fig. 10. Numerical schlieren images for Example 10. Left, numerical schlieren images for density; Right, numerical schlieren images for pressure; From top to bottom: t = 50 μs
and 100 μs.

Fig. 11. Schematic for Example 11.
15 
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Fig. 12. Numerical schlieren images for Example 11. Left, numerical schlieren images for density; Right, numerical schlieren images for pressure; From top to bottom: t = 50 μs,
100 μs, and 150 μs.

where the 𝑢 and 𝑝 above denote the equilibrium values of the velocity and pressure. 0 = 𝑧1
1

𝛾1−1
+
(

1 − 𝑧1
) 1

𝛾2−1
and 0 = 𝑧1

𝛾1𝐵1
𝛾1−1

+
(

1 − 𝑧1
)

𝛾2𝐵2
𝛾2−1

.
Now, we begin to prove the proposition.
Firstly, we demonstrate that the primitive variables reconstruction procedure from given conservative variables do not destroy the equilibrium

property.
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From Eq. (2.12), we can see that on cell 𝐼𝑗 we have

𝑃𝑚(𝑥) = 𝑣𝑃0,𝑚(𝑥) + (1 − 𝑣)𝑃2,𝑚(𝑥), 𝑥 ∈ [𝑥𝑗− 1
2
, 𝑥𝑗+ 1

2
], 𝑚 = 𝑧1𝜌1, 𝑧2𝜌2, 𝜌𝑢, 𝐸, 𝑧1.

Here, we can write out the explicit expression of 𝑝0,𝑚(𝑥):

𝑃0,𝑚(𝜉) = (3∕640 − 5∕48𝜉 − 1∕16𝜉2 + 1∕12𝜉3 + 1∕24𝜉4)𝑚𝑗+2

+ (−29∕480 + 17∕24𝜉 + 3∕4𝜉2 − 1∕6𝜉3 − 1∕6𝜉4)𝑚𝑗+1

+ (1067∕960 − 11∕8𝜉2 + 1∕4𝜉4)𝑚𝑗

+ (−29∕480 − 17∕24𝜉 + 3∕4𝜉2 + 1∕6𝜉3 − 1∕6𝜉4)𝑚𝑗−1

+ (3∕640 + 5∕48𝜉 − 1∕16𝜉2 − 1∕12𝜉3 + 1∕24𝜉4)𝑚𝑗−2,

where 𝜉 = 𝑥−𝑥𝑗
𝛥𝑥 . we can see that the 𝑝0,𝑚(𝑥) is the linear expression of 𝑚𝑗−2, 𝑚𝑗−1, 𝑚𝑗 , 𝑚𝑗+1, 𝑚𝑗+2 and satisfies linearity:

𝑃0,𝐶1𝑚(1)+𝐶2𝑚(2) (𝑥) = 𝐶1𝑃0,𝑚(1) (𝑥) + 𝐶2𝑃0,𝑚(2) (𝑥).

Therefore, we have

𝑃𝑢(𝑥) =
𝑃𝜌𝑢(𝑥)

𝑃𝑧1𝜌1 (𝑥) + 𝑃𝑧2𝜌2 (𝑥)
=

𝑢𝑃𝑧1𝜌1+𝑧2𝜌2 (𝑥)
𝑃𝑧1𝜌1 (𝑥) + 𝑃𝑧2𝜌2 (𝑥)

= 𝑢,

𝑃𝑝(𝑥) =
𝑃𝐸 (𝑥) −

𝑃 2
𝜌𝑢(𝑥)

2𝑃𝜌(𝑥)
− 0

0
=

1
2 𝑢

2𝑃𝜌(𝑥) +0𝑝 + 0 −
1
2 𝑢

2𝑃𝜌(𝑥) − 0

0
= 𝑝,

(A.1)

where 0 = 𝑃𝑧1 (𝑥)
1

𝛾1−1
+
(

1 − 𝑃𝑧1 (𝑥)
)

1
𝛾2−1

and 0 = 𝑃𝑧1 (𝑥)
𝛾1𝐵1
𝛾1−1

+
(

1 − 𝑃𝑧1 (𝑥)
)

𝛾2𝐵2
𝛾2−1

.
Then, we demonstrate that the implementation of the WENO method in characteristic-wise way with the primitive variables do not destroy the

quilibrium.
We assume the primitive variables 𝑊𝑗 = (𝜌1𝑗 , 𝜌2𝑗 , 𝑢, 𝑝, 𝑧1𝑗 )𝑇 maintains the equilibrium of the pressure and velocity, where the 𝑢 and 𝑝 above

enote the equilibrium values of the velocity and pressure.
We compute the right and left eigenvector matrices at interface 𝑥 = 𝑥𝑗+ 1

2
of the cells:

𝑅 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌1
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0 0 1 𝜌1
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

𝜌2
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0 1 0 𝜌2
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

1
(𝑧1𝜌1+𝑧2𝜌2)𝑐

0 0 0 − 1
(𝑧1𝜌1+𝑧2𝜌2)𝑐

1 0 0 0 1

0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐿 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 (𝑧1𝜌1+𝑧2𝜌2)𝑐
2

1
2 0

0 0 0 0 1

0 1 0 − 𝜌2
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0

1 0 0 − 𝜌1
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0

0 0 − (𝑧1𝜌1+𝑧2𝜌2)𝑐
2

1
2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where we take 𝑐 = {𝑐}𝑗+1∕2, 𝑧1 = {𝑧1}𝑗+1∕2, 𝜌1 = {𝑧1𝜌1}𝑗+1∕2, 𝜌2 = {𝑧2𝜌2}𝑗+1∕2, 𝑧1𝜌1 = 𝑧1𝜌1, 𝑧2𝜌2 =
(

1 − 𝑧1
)

𝜌2. Here, we choose {𝑞}𝑗+1∕2 =
(

𝑞𝑗 + 𝑞𝑗+1
)

∕2. We project primitive variables 𝑉𝑗 = (𝜌1𝑗 , 𝜌2𝑗 , 𝑢, 𝑝, 𝑧1𝑗 )𝑇 into the characteristic space:

𝑊𝑗 = 𝐿𝑈𝑗 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 (𝑧1𝜌1+𝑧2𝜌2)𝑐
2

1
2 0

0 0 0 0 1

0 1 0 − 𝜌2
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0

1 0 0 − 𝜌1
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0

0 0 − (𝑧1𝜌1+𝑧2𝜌2)𝑐
2

1
2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌1𝑗
𝜌2𝑗
𝑢

𝑝

𝑧1𝑗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2 𝑢

(

𝑧1𝜌1 + 𝑧2𝜌2
)

𝑐 + 𝑝
2

𝑧1𝑗

𝜌2𝑗 −
𝜌2𝑝

(𝑧1𝜌1+𝑧2𝜌2)𝑐2

𝜌1𝑗 −
𝜌1𝑝

(𝑧1𝜌1+𝑧2𝜌2)𝑐2

− 1
2 𝑢

(

𝑧1𝜌1 + 𝑧2𝜌2
)

𝑐 + 𝑝
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

which means the first and the last component in 𝑊𝑗 are the constants during the characteristic projection. After the WENO reconstruction, we
enote the obtained variables as

𝑊 ±
𝑗+ 1

2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2 𝑢

(

𝑧1𝜌1 + 𝑧2𝜌2
)

𝑐 + 𝑝
2

𝑤2

𝑤3

𝑤4

− 1 𝑢
(

𝑧1𝜌1 + 𝑧2𝜌2
)

𝑐 + 𝑝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

±

1

.

2 2 𝑗+ 2

17 



F. Zheng and J. Qiu

v

a

T

w

Computers and Fluids 284 (2024) 106424 
Then, we project the obtained variables back into the physical space. We have

𝑉 ±
𝑗+ 1

2

= 𝑅𝑊 ±
𝑗+ 1

2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌1
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0 0 1 𝜌1
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

𝜌2
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

0 1 0 𝜌2
(𝑧1𝜌1+𝑧2𝜌2)𝑐2

1
(𝑧1𝜌1+𝑧2𝜌2)𝑐

0 0 0 − 1
(𝑧1𝜌1+𝑧2𝜌2)𝑐

1 0 0 0 1

0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2 𝑢

(

𝑧1𝜌1 + 𝑧2𝜌2
)

𝑐 + 𝑝
2

𝑤2

𝑤3

𝑤4

− 1
2 𝑢

(

𝑧1𝜌1 + 𝑧2𝜌2
)

𝑐 + 𝑝
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

±

𝑗+ 1
2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑤4 +
𝜌1𝑝

(𝑧1𝜌1+𝑧2𝜌2)𝑐2

𝑤3 +
𝜌2𝑝

(𝑧1𝜌1+𝑧2𝜌2)𝑐2

𝑢

𝑝

𝑤2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

±

𝑗+ 1
2

,

which means we can maintain the equilibrium during the reconstruction.
Finally, we demonstrate that the scheme in (2.4) maintains the equilibrium of velocity and pressure.
The variables 𝑉 ±

𝑗+ 1
2

obtained in characteristic projection are used to compute the HLLC flux 𝐹𝑗+ 1
2
. Due to the equilibrium of the pressure and

elocity, we have 𝑢𝐿 = 𝑢𝑅 = 𝑢, 𝑝𝐿 = 𝑝𝑅 = 𝑝, 𝑢̂𝑗± 1
2
= 𝑢. Therefore, we have

𝑠∗ = 𝑢, 𝑈∗𝑘 = 𝑈𝑘,

nd

𝐹𝑗+ 1
2
=

1 + sgn(𝑠∗)
2

𝐹𝐿 +
1 − sgn(𝑠∗)

2
𝐹𝑅 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑧1𝜌1𝑢

𝑧2𝜌2𝑢

𝜌𝑢2 + 𝑝

𝑢
(

1
2𝜌𝑢

2 +0𝑝 + 0 + 𝑝
)

𝑢𝑧1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝑞 = 1+sgn(𝑠∗)
2 𝑞𝐿 + 1−sgn(𝑠∗)

2 𝑞𝑅, 𝑞 = 𝑧1𝜌1, 𝑧2𝜌2, 𝜌, 𝑧1, 0 = 𝑧1
1

𝛾1−1
+
(

1 − 𝑧1
) 1

𝛾2−1
and 0 = 𝑧1

𝛾1𝐵1
𝛾1−1

+
(

1 − 𝑧1
) 𝛾2𝐵2

𝛾2−1
.

As to the source term in (2.4), due to the equilibrium of the velocity and the fact that the four point Gauss–Lobatto quadrature rule is exact for
the polynomial degree up to five, we have

(

𝑆(𝑈−
𝑗+ 1

2
)𝑢̂𝑗+ 1

2
− 𝑆(𝑈+

𝑗− 1
2

)𝑢̂𝑗− 1
2
− 𝛥𝑥

∑

𝑘
𝑤𝑘𝑆(𝑈 )𝑥𝐺𝑘

𝑢𝐺𝑘

)

=

(

𝑆(𝑈−
𝑗+ 1

2
)𝑢 − 𝑆(𝑈+

𝑗− 1
2

)𝑢 − 𝛥𝑥𝑢
∑

𝑘
𝑤𝑘𝑆(𝑈 )𝑥𝐺𝑘

)

=
⎛

⎜

⎜

⎝

𝑆(𝑈−
𝑗+ 1

2
)𝑢 − 𝑆(𝑈+

𝑗− 1
2

)𝑢 − 𝑢∫

𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

𝑆(𝑈 )𝑥dx
⎞

⎟

⎟

⎠

=
(

(𝑆(𝑈−
𝑗+ 1

2
)𝑢 − 𝑆(𝑈+

𝑗− 1
2

)𝑢) − 𝑢(𝑆(𝑈−
𝑗+ 1

2
) − 𝑆(𝑈+

𝑗− 1
2

))
)

=0,

(A.2)

hen, we obtain the following formula:

𝜕
𝜕𝑡

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑧1𝜌1
𝑧2𝜌2
𝜌𝑢
𝐸
𝑧1

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝑗

= − 1
𝛥𝑥

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑧1𝜌1𝑢

𝑧2𝜌2𝑢

𝜌𝑢2 + 𝑝

𝑢
(

1
2𝜌𝑢

2 +0𝑝 + 0 + 𝑝
)

𝑢𝑧1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑗+ 1
2

−

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑧1𝜌1𝑢

𝑧2𝜌2𝑢

𝜌𝑢2 + 𝑝

𝑢
(

1
2𝜌𝑢

2 +0𝑝 + 0 + 𝑝
)

𝑢𝑧1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑗− 1
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From the equation for density of fluid 1 and 2 equations, we have
𝜕𝜌𝑗
𝜕𝑡

= − 1
𝛥𝑥

(

(

𝜌𝑢
)

𝑗+ 1
2
−
(

𝜌𝑢
)

𝑗− 1
2

)

,

Then, we have
𝜕(𝜌𝑢)𝑗
𝜕𝑡

= − 1
𝛥𝑥

(

(

𝜌𝑢2
)

𝑗+ 1
2

−
(

𝜌𝑢2
)

𝑗− 1
2

)

= − 𝑢
𝛥𝑥

(

(

𝜌𝑢
)

𝑗+ 1
2
−
(

𝜌𝑢
)

𝑗− 1
2

)

= 𝑢
𝜕𝜌𝑗
𝜕𝑡

,

hich means the velocity will maintain equilibrium when the solution evolves.
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Now, we consider the equilibrium of pressure. Due to the equilibrium of velocity, we have

𝜕(𝜌𝑢2)𝑗
𝜕𝑡

= 𝑢2
𝜕𝜌𝑗
𝜕𝑡

= − 𝑢2

𝛥𝑥

(

(

𝜌𝑢
)

𝑗+ 1
2
−
(

𝜌𝑢
)

𝑗− 1
2

)

.

By comparing energy equation with above equations, we have
𝜕(0𝑝 + 0)𝑗

𝜕𝑡
= − 1

𝛥𝑥

(

(𝑝0𝑗+ 1
2
𝑢 + 0𝑗+ 1

2
𝑢) − (𝑝0𝑗+ 1

2
𝑢 + 0𝑗+ 1

2
𝑢)
)

.

By resorting to the volume fraction equation, we can further simplify the above equation and obtain
𝜕(𝑧1𝑝)𝑗

𝜕𝑡
= 𝑝

𝜕𝑧1𝑗
𝜕𝑡

,

hich means the pressure will also maintain equilibrium when the solution evolves. □
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