Publications in Refereed Journals 

  1. T. Yan, J. Zhu, C.-W. Shu and J. Qiu: Letter to Editor: Regarding the numerical results in "A novel finite-difference converged ENO scheme for steady-state simulations of Euler equations", by Tian Liang and Lin Fu, Journal of Computational Physics, 519 (2024), 113386.   J. Comput. Phys., 522 (2025) 113620. https://doi.org/10.1016/j.jcp.2024.113620
  2. Q. Meng and J. Qiu: A hybrid HWENO scheme for a multi-class traffic flow model with heterogeneous factors on highroad,   Comm. Appl. Math. Comput. to appear.
  3. Z. Tao, Z. Xu and J. Qiu: Maximum-principle-preserving and positivity-preserving central WENO schemes on overlapping meshes.   Comm. Comput. Phys., to appear.
  4. F. Zheng and J. Qiu: High order finite volume method for solving compressible multicomponent flows, Science China-Mathematics, to appear. https://doi.org/10.1007/s11425-023-2268-0
  5. C. Fan, J. Qiu and Z. Zhao: A moment-based Hermite WENO scheme with unified stencils for hyperbolic conservation laws, J. Sci. Comput., 102(2025),9. https://doi.org/10.1007/s10915-024-02732-w.
  6. N. Zheng, X. Cai, J.-M. Qiu and J. Qiu: Fourth-order conservative non-splitting semi-Lagrangian Hermite WENO schemes for kinetic and fluid simulations.   J. Sci. Comput.,, 99(2024),77. https://doi.org/10.1007/s10915-024-02520-6.
  7. J. Li, C.-W. Shu and J. Qiu: Derivative-based finite-volume MR-HWENO scheme for steady-state problems, Comm. Comput. Phys., 36(2024), 877-907. https://doi: 10.4208/cicp.OA-2023-0339
  8. F. Zheng and J. Qiu: Dimension by dimension finite volume HWENO method for hyperbolic conservation laws,   Comm. Applied Math. Comput., 6(2024),605-624. https://doi.org/10.1007/s42967-023-00279-5
  9. F. Zheng and J. Qiu: High-order finite volume method for solving compressible multicomponent flows with Mie-Gruneisen equation of state, Computer & Fluids, 284 (2024) 106424.
  10. J. Zhu, C.-W. Shu and J. Qiu: RKDG methods with multi-resolution WENO limiters for solving steady-state problems on triangular meshes.   Comm. Applied Math. Comput., 6 (2024),1575-1599. https://doi.org/10.1007/s42967-023-00272-y.
  11. Z. Tao, J. Zhang, J. Zhu and J. Qiu: High-order multi-resolution central Hermite WENO schemes for hyperbolic conservation laws,   J. Sci. Comput.,(2024) 99:40, https://doi.org/10.1007/s10915-024-02499-0.
  12. D. Luo, S. Li, J. Qiu, J. Zhu and Y. Chen: A compact simple HWENO scheme with ADER time discretization for hyperbolic conservation laws I: structured, J. Comput. Phys., 504 (2024) 112886.
  13. Z. Zhao and J. Qiu: An oscillation-free Hermite WENO scheme for hyperbolic conservation laws.   Science China Mathematics, 67(2024),431-454. https://doi.org/10.1007/s11425-022-2064-1
  14. W. Ma, D. Luo, S. Li; J. Qiu, G. Ni and Y. Chen: High-order adaptive multi-resolution method on curvilinear girds I: finite difference framework,   J. Comput. Phys.,498 (2024) 112654. https://doi.org/10.1016/j.jcp.2023.112654
  15. C. Cai, J. Qiu and K. Wu: Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics,   J. Comput. Phys.,498 (2024) 112669. https://doi.org/10.1016/j.jcp.2023.112669
  16. J. Zhu, C.-W. Shu and J. Qiu: Development and prospect of high-order WENO schemes , Science China-Mathematica (Chinese),54 (2024), No:2, 121-138. https://doi.org/10.1360/SSM-2023-0236.
  17. J. Qiu and T. Xiong: A brief survey on WENO methods, J. Xiamen Univ. Nat. Sci.,(Chinese), 62(2023), 979-990. doi:10.6043/j.issn.0438-0479.202305003 
  18. Y. Ren, Y. Xing and J. Qiu: High order finite difference Hermite WENO fast sweeping methods for static Hamilton-Jacobi equations,   J. Comput. Math., 41 (2023) 1064-1092.. https://doi.org/10.4208/jcm.2112-m2020-0283.
  19. Y. Ren, K. Wu, J. Qiu and Y. Xing: On High Order Positivity-Preserving Well-Balanced Finite Volume Methods for the Euler Equations with Gravitation,   J. Comput. Phys. 492 (2023) 112429. https://doi.org/10.1016/j.jcp.2023.112429.
  20. M. Ahmat and J. Qiu: Hybrid HWENO method for nonlinear degenerate parabolic equations,   J. Sci. Comput., 96(2023), 83, https://doi.org/10.1007/s10915-023-02301-7.
  21. S. Li, D. Luo, J. Qiu, S. Jiang and Y. Chen: A one-stage high-order gas-kinetic scheme for multi-component flows with interface-sharpening technique,   J. Comput. Phys., 490 (2023), 112318.
  22. C. Fan, Z. Zhao, T. Xiong and J. Qiu: A robust fifth order finite difference Hermite WENO scheme for compressible Euler equations,  Comput. Methods Appl. Mech. Engrg., 412 (2023) 116077.
  23. W. Huang, R. Li, J. Qiu and M. Zhang: A well-balanced moving mesh discontinuous Galerkin method for the Ripa model on triangular meshes.   J. Comput. Phys., 487 (2023) 112147. https://arxiv.org/abs/2205.14560
  24. J. Zhu and J. Qiu, New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy,   Comm. Applied Math. Comput., , 5 (2023), 64-96. https://doi.org/10.1007/s42967-021-00122-9.
  25. M. Zhang, W. Huang and J. Qiu: A study on CFL conditions for the DG solution of conservation laws on adaptive moving meshes,   Numerical Mathematics: Theory, Methods and Applications, 16 (2023), 111-139. https://arxiv.org/abs/2106.08504.
  26. M. Ahmat and J. Qiu: Direct WENO scheme for dispersion-type equations ,   Mathematics and Computers in Simulation, 204 (2023) 216–229. https://doi.org/10.1016/j.matcom.2022.08.010.
  27. J. Zhu and J. Qiu: A finite difference mapped WENO scheme with unequal-size stencils for hyperbolic conservation laws,   J. Sci. Comput., (2022) 93:72 https://doi.org/10.1007/s10915-022-02034-z.
  28. J. Li, C.-W. Shu and J. Qiu: Moment-based multi-resolution HWENO scheme for hyperbolic conservation laws,   Comm. Comput. Phys., 32(2022), 364-400. https://doi.org/10.4208/cicp.OA-2022-0030.
  29. Y. Ren, Y. Xing, D. Wang and J. Qiu: High order asymptotic preserving Hermite WENO fast sweeping method for the steady-state $S_{N}$ transport equation,   J. Sci. Comput., 93:3 (2022). https://doi.org/10.1007/s10915-022-01965-x
  30. C. Fan, X. Zhang and J. Qiu: Positivity-preserving high order finite difference WENO schemes for compressible Navier-Stokes equations,   J. Comput. Phys., 467 (2022) 111446. https://doi.org/10.1016/j.jcp.2022.111446
  31. N. Zheng, X. Cai, J.-M. Qiu and J. Qiu: A fourth-order conservative semi-Lagrangian finite volume WENO scheme without operator splitting for kinetic and fluid simulations,   Comput. Methods Appl. Mech. Engrg., 395 (2022) 114973. https://doi.org/10.1016/j.cma.2022.114973
  32. J. Lin, Y. Ren, R. Abgrall and J. Qiu: High Order Residual Distribution Conservative Finite Difference HWENO Scheme for Steady State Problems,   J. Comput. Phys., 457 (2022) 111045. https://doi.org/10.1016/j.jcp.2022.111045
  33. M. Ahmat and J. Qiu: SSP IMEX Runge-Kutta WENO scheme for generalized Rosenau-KdV-RLW equation,   J. Math. Study, 55(2022),1-21.
  34. D. Luo, S. Li, W. Huang, J. Qiu and Y. Chen: A quasi-conservative DG-ALE method for multi-component flows using the non-oscillatory kinetic flux,   J. Sci. Comput., 90 (2022) 46. https://doi.org/10.1007/s10915-021-01732-4
  35. M. Zhang, W. Huang and J. Qiu: A well-balanced positivity-preserving quasi-Lagrange moving mesh DG method for the shallow water equations,   Comm. Comput. Phys. 31 (2022), 94-130. https://doi.org/10.4208/cicp.OA-2021-0127.
  36. Y. Ren, Y. Xing and J. Qiu: High order finite difference Hermite WENO fixed-point fast sweeping method for static Hamilton-Jacobi equations,   Comm. Comput. Phys., 31 (2022), 154-187, https://doi.org/10.4208/cicp.OA-2021-0079
  37. N. Zheng, X. Cai, J.-M. Qiu and J. Qiu: A conservative semi-Lagrangian hybrid Hermite WENO scheme for linear transport equations and the nonlinear Vlasov-Poisson system,   SIAM J. Sci. Comput., 43(2021), A3580–A3606. https://doi.org/10.1137/20M1363273.
  38. M. Ahmat and J. Qiu: Fourth order ETDRK scheme with Cauchy integral for nonlinear dispersive wave equations,   Comput. Applied Math.,40 (2021) 286.
  39. S. Li, D. Luo, J. Qiu and Y. Chen: A compact and efficient high-order gas-kinetic scheme,   J. Comput. Phys., 447 (2021) 110661. https://doi.org/10.1016/j.jcp.2021.110661.
  40. J. Li, C.-W. Shu and J. Qiu: Multi-resolution HWENO schemes for hyperbolic conservation laws, J. Comput. Phys., 446 (2021), 110653. https://doi.org/10.1016/j.jcp.2021.110653.
  41. C. Fan, X. Zhang and J. Qiu: A positivity-preserving hybrid Hermite WENO scheme for the compressible Navier-Stokes equations,   J. Comput. Phys., 445 (2021), 110596, https://doi.org/10.1016/j.jcp.2021.110596.
  42. F. Zheng, C.-W. Shu and J. Qiu: A high order conservative finite difference scheme for compressible two-medium flows, J. Comput. Phys., 445 (2021), 110597, https://doi.org/10.1016/j.jcp.2021.110597.
  43. Z. Zhao, Y. Chen and J. Qiu: A hybrid WENO method with modified ghost fluid method for compressible two-medium flow problems,   Numerical Mathematics: Theory, Methods and Applications, 14(2021). 972-997, https://doi.org/10.4208/nmtma.OA-2020-0190.
  44. J. Zhu and J. Qiu: A brief survey on WENO limiters for discontinuous Galerkin methods, J. Xiamen Univ. Nat. Sci. 60 (2021), 441-452.  (in Chinese).
  45. Z. Zhao, Y.-T. Zhang, Y. Chen and J. Qiu: A Hermite WENO method with modified ghost fluid method for compressible two-medium flow problems,   Comm. Comput. Phys., 30 (2021), 851-873. doi: 10.4208/cicp.OA-2020-0184.
  46. M. Zhang, W. Huang and J. Qiu: A high-order well-balanced positivity-preserving moving mesh DG method for the shallow water equations with non-flat bottom topography,   J. Sci. Comput., 87 (2021) 88. https://doi.org/10.1007/s10915-021-01490-3. http://arxiv.org/abs/2006.15187.
  47. D. Luo, J. Qiu, J. Zhu and Y. Chen: A quasi-conservative discontinuous Galerkin method for multi-component flows using the non-oscillatory kinetic flux,   J. Sci. Comput.,87 (2021) 96. https://doi.org/10.1007/s10915-021-01494-z.
  48. J. Chen, X. Cai, J. Qiu, and J.-M. Qiu: Adaptive Order WENO Reconstructions for the Semi-Lagrangian Finite Difference Scheme for advection problem,   Comm. Comput. Phys., 30 (2021), 67-96.
  49. J. Zhu, C.-W. Shu and J. Qiu: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on tetrahedral meshes,   Comm. Comput. Phys., 29 (2021), 1030-1058; https://doi: 10.4208/cicp.OA-2020-0096.
  50. J. Zhu, C.-W. Shu and J. Qiu: High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems,   Applied Numer. Math., 165 (2021) 482–499.
  51. Z. Zhao, Y.-T. Zhang and J. Qiu: A modified fifth order finite difference Hermite WENO scheme for hyperbolic conservation laws,   J. Sci. Comput., 85 (2020), 29. https://doi.org/10.1007/s10915-020-01347-1.
  52. M. Zhang, W. Huang and J. Qiu: High-order conservative positivity-preserving DG-interpolation for deforming meshes and application to moving mesh DG simulation of radiative transfer,   SIAM J. Sci. Comput., 42(2020), A3109-A3135. https://arxiv.org/abs/1910.11931.
  53. Z. Zhao and J. Qiu: A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws,   J. Comput. Phys., 417 (2020), 109583, https://doi.org/10.1016/j.jcp.2020.109583.
  54. Y. Ren, T. Xiong and J. Qiu: A hybrid finite difference WENO-ZQ fast sweeping method for static Hamilton-Jacobi equations,   J. Sci. Comput., 83 (2020), 54. https://doi.org/10.1007/s10915-020-01228-7
  55. J. Zhu, C.-W. Shu and J. Qiu: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes,   Applied Numer. Math., 153 (2020), 519-539. https://doi.org/10.1016/j.apnum.2020.03.013
  56. J. Zhu,F. Zheng and J. Qiu: New finite difference Hermite WENO schemes for Hamilton-Jacobi equations,   J. Sci. Comput., 83 (2020), 7. https://doi.org/10.1007/s10915-020-01174-4.
  57. M. Zhang, J. Cheng, W. Huang and J. Qiu: An adaptive moving mesh discontinuous Galerkin method for the radiative transfer equation,   Commun. Comput. Phys., 27 (2020), 1140-1173. doi: 10.4208/cicp.OA-2018-0317.
  58. Z. Zhao, Y. Chen and J. Qiu: A hybrid Hermite WENO method for hyperbolic conservation laws, J. Comput. Phys., 405 (2020), 109175. https://doi.org/10.1016/j.jcp.2019.109175
  59. J. Zhu, J. Qiu and C.-W. Shu: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters, J. Comput. Phys., 404 (2020),109105. https://doi.org/10.1016/j.jcp.2019.109105
  60. H. Zhu J. Qiu and J. Zhu: A simple, high-order and highly compact WENO limiter for RKDG method ,   Comput. Math.  Appl., 79(2020), 317–336.
  61. J. Zhu and J. Qiu: A new type of high-order WENO scheme for Hamilton-Jacobi equations on triangular meshes,   Commun. Comput. Phys., 27 (2020), 897-920. doi: 10.4208/cicp.OA-2018-0156.
  62. P. Giri and J. Qiu: A High Order Runge-Kutta Discontinuous Galerkin Method with a Sub-cell Limiter on Adaptive Unstructured Grids for Compressible Inviscid Flows,   Inter. J. Numer. Methods Fluids,91(2019), 367–394. https://doi.org/10.1002/fld.4757.
  63. M. Zhang, J. Cheng and J. Qiu: High order positivity-preserving discontinuous Galerkin schemes for radiative transfer equations on triangular meshes,,   J. Comput. Phys., 397 (2019), 108811.
  64. X. Yang, W. Huang and J. Qiu: Moving Mesh Finite Difference Solution of Non-Equilibrium Radiation Diffusion Equations ,   Numerical Algorithms, 82 (2019),1409–1440.
  65. D. Luo, W. Huang and J. Qiu: A quasi-Lagrangian moving mesh discontinuous Galerkin method for hyperbolic conservation laws, J. Comput. Phys., 396(2019), 544–578.
  66. F. Zheng, C.-W. Shu and J. Qiu: High order finite difference Hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes,,   Computer Fluid, 183(2019), 53-65.
  67. Z. Zhao, J. Zhu, Y. Chen and J. Qiu: A new hybrid WENO scheme for hyperbolic conservation laws,  Computer Fluid., 179 (2019), 422–436.
  68. J. Lin, R. Abgrall and J. Qiu: High order residual distribution for steady state problems for hyperbolic conservation laws , J. Sci. Comput., 79 (2019),891-913.
  69. C. Lu, W. Huang and J. Qiu: An adaptive moving mesh finite element solution of the Regularized Long Wave equation,   J. Sci. Comput.,74 (2018),122–144.
  70. X. Cai, J. Qiu and J.-M. Qiu: Finite volume HWENO schemes for nonconvex conservation laws,   J. Sci. Comput., 75 (2018),65–82.
  71. J. Zhu and J. Qiu: New finite volume weighted essentially non-oscillatory schemes on triangular meshes ,   SIAM J. Sci. Comput., 40 (2018), A903–A928.
  72. J. Zhu, X. Zhong, C.-W. Shu and J. QiuRunge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes, Commun.Comput. Phys., 21(2017), 623-649.
  73. X. Cai, J. Zhu and J. Qiu: Hermite WENO schemes with strong stability preserving multi-step temporal discretization methods for conservation laws, J. Comput. Math., 35 (2017), 52-73.
  74. J. Zhu and J. Qiu: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations,   Numer. Method PDEs., 33 (2017), 1095-1113.
  75. Z. Tao and J. Qiu: Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations, Adv. Comput. Math., 43 (2017), 1023–1058.
  76. J. Zhu and J. Qiu: A new type of modified WENO schemes for solving hyperbolic conservation laws , SIAM. J. Sci. Comput., 39(2017), A1089–A1113.
  77. F. Zheng, C.-W. Shu and J. Qiu: Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations, J. Comput. Phys., 337(2017), 27-41.
  78. H. Zhu, J. Qiu and J.-M. Qiu: An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model,,   J. Sci. Comput., 73 (2017), 1316-1337.
  79. B. Huang and J. Qiu: Hybrid WENO schemes with Lax-Wendroff type time discretization ,   J. Math. Study, 50 (2017), 242-267.
  80. J. Zhu and J. Qiu: A new type of finite volume WENO schemes for hyperbolic conservation laws,   J. Sci. Comput., 73 (2017), 1338-1359.
  81. J. Zhu and J. Qiu: A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes ,   J. Comput. Phys., 349 (2017), 220–232.
  82. F. Zheng and J. Qiu: Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes, J. Comput. Phys., 307 (2016) 423-445.
  83. H. Liu and J. Qiu: Finite Difference Hermite WENO schemes for conservation laws, II:  an Alternative Approach, J. Sci. Comput., 66 (2016), 598-624.
  84. J. Liu, J. Qiu, M. Goman, X. Li and M. Liu: Positivity-preserving Runge-Kutta discontinuous Galerkin method on adaptive Cartesian grid for strong moving shock, Numer. Math.: Theory, Methods  Appl., 9(2016),  87-110.
  85. J. Zhu, X. Zhong, C.-W. Shu and J. Qiu: Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter, Commun.Comput. Phys., 19(2016), 944-969.
  86. X. Cai. X. Zhang and J. Qiu: Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations, J. Sci. Comput., 68(2016), 464-483.
  87. D. Luo, W. Huang and J. Qiu: A hybrid LDG-HWENO scheme for KdV-type equations, J. Comput. Phys., 313 (2016), 754-774.
  88. Z. Tao, F. Li and J. Qiu: High-order central Hermite WENO schemes: dimension-by-dimension moment-based reconstructions, J. Comput. Phys.,318 (2016), 222-251.
  89. J. Zhu and J. Qiu: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys., 318 (2016), 110-121.
  90. H. Zhu, J. Qiu and J.-M. Qiu: An h-adaptive RKDG method for the Vlasov-Poisson system, J. Sci. Comput., 69 (2016), 1346-1365.
  91. X. Cai, J. Qiu and J.-M. Qiu: A conservative semi-Lagrangian HWENO method for the Vlasov equation,   J. Comput. Phys., 323 (2016), 95–114.
  92. Z. Tao, F. Li and J. Qiu: High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws, J. Comput. Phys., 281(2015), 148-176.
  93. H. Liu and J. Qiu: Finite Difference Hermite WENO schemes for conservation laws,  J. Sci. Comput., 63 (2015), 548-572.
  94. X. Yang, W. Huang and J. Qiu: A moving mesh finite difference method for equilibrium radiation diffusion equations, J. Comput. Phys., 298(2015), 661-677.
  95. W. Guo, J.-M. Qiu and J. Qiu: A New Lax-Wendroff Discontinuous Galerkin Method with Superconvergence, J. Sci. Comput., 65(2015), 299-326.
  96. J. Zhu and J. Qiu: Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equation, Commun.Comput. Phys., 15 (2014), 959-980.
  97. G. Li and J. Qiu: Hybrid WENO schemes with different indicators on curvilinear grid, Adv. Comput. Math.,  40 (2014),  747-772.
  98. C. Lu, W. Huang and J. Qiu: Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems, Numer. Math., 127 (2014), 515-537.
  99. J. Zhu and J. Qiu: Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: unstructured meshes, Computers Math.  Appl.,  68 (2014), 1137-1150.
  100. J. Zhu and J. Qiu: Adaptive Runge-Kutta discontinuous Galerkin methods with the modified ghost fluid method for solving the compressible two-medium flow, J. Math. Study,  47(2014), 250-273.
  101. J. Zhu and J. Qiu:  WENO schemes and their application as limiters for RKDG methods based on trigonometric approximation spaces, J. Sci. Comput., 55 (2013), 606-644.
  102. H. Yang, F. Li and J. Qiu: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methodsJ. Sci. Comput., 55(2013), 552-574.
  103. H. Zhu and J. Qiu: An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws, Adv. Comput. Math., 39(2013), 445-463.
  104.  Y. Cheng, F. Li, J. Qiu and L. Xu: Positivity-preserving DG and central DG methods for ideal MHD equations, J. Comput. Phys. 238 (2013), 255-280.
  105. H. Zhu, Y. Cheng and J. Qiu: A Comparison of the Performance of Limiters for Runge-Kutta Discontinuous Galerkin Methods, Adv. Appl. Math. Mech., 5 (2013), 365-390.
  106. H. Zhu and J. Qiu: An h-adaptive Runge-Kutta discontinuous Galerkin method for Hamilton-Jacobi equations, Numer. Math.: Theory, Methods  Appl.,  6 (2013),  617-636.
  107. J. Zhu, X. Zhong, C.-W. Shu and J. Qiu: Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured mesh, J. Comput. Phys., 248 (2013), 200-220.
  108. J. Zhu and J. Qiu: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes,  J. Comput. Phys., 254 (2013), 76-92.
  109. J. Liu, J. Qiu, O. Hu, N. Zhao, M. Goman and X. Li: Adaptive Runge_CKutta discontinuous Galerkin method for complex geometry problems on Cartesian grid, Inter. J. Numer. Methods Fluids,  73 (2013), 847-868.
  110. J. Zhu and J. Qiu: Runge-Kutta discontinuous Galerkin method using WENO type limiters: Three dimensional unstructured meshes, Commun.Comput. Phys., 11 (2012), 985-1005.
  111. G. Li, C. Lu  and J. Qiu: Hybrid well-balanced WENO schemes with different indicators for shallow water equations,  J. Sci. Comput., 51 (2012), 527-559.
  112. C.-S. Huang, T. Arbogast and  J. Qiu:  An Eulerian-Lagrangian WENO finite volume scheme for advection problems, J. Comput. Phys., 231(2012), 4028-4052.
  113. J. Zhu, T. G. Liu, J. Qiu and B. C. Khoo: RKDG methods with WENO limiters for unsteady cavitating flow, Computers & Fluids, 57(2012), 52-65.
  114. X. Yang, W. Huang and J. Qiu: A moving mesh WENO method for one-dimensional conservation laws, SIAM J. Sci. Comput..34 (2012), A2317-A2343.
  115. J. Zhu and J. Qiu: Local DG method using WENO type limiters for convection-diffusion problems, J. Comput. Phys., 230 (2011), 4353-4375.
  116. W. Guo, F. Li and J. Qiu: Local-structure-preserving discontinuous Galerkin methods with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Sci. Comput., 47 (2011), 239-257.
  117. C. Lu and J. Qiu: Simulations of shallow water equations with Finite Difference Lax-Wendroff Weighted Essential Non-oscillatory Schemes J. Sci. Comput., 47 (2011), 281-302.
  118. J. Zhu, J. Qiu, T. G. Liu and B. C. Khoo:  RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations  Appl. Numer. Math.,  61(2011), 554-580.
  119. R. Abgrall and J. Qiu: Preface to the special issue High order methods for CFD problems, J. Comput. Phys., 230 (2011), 4101-4102.
  120. C. Lu, J. Qiu and R. Wang: A numerical study for the performance of the WENO schemes based on different numerical fluxes for the shallow water equations,  J. Comp. Math., 28 (2010), 807-825.
  121. J. Zhu and J. Qiu: Trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems,  Commun.Comput. Phys., 8 (2010), 1242-1263.
  122. G. Li  and J. Qiu:  Hybrid weighted essentially non-oscillatory schemes with different indicators,   J. Comput. Phys., 229 (2010) 8105-8129.
  123. C. Lu, J. Qiu and R. Wang:  Weighted Essential Non-oscillatory Schemes for Tidal Bore on Unstructured Meshes, International Journal for Numerical Methods in Fluids,  59 (2009), 611-630.
  124. J. Zhu and J. Qiu: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: Unstructured meshes,  J. Sci. Comput.,  39 (2009),293-321.
  125. T. Sun and J. Qiu:  LWDG method for a multi-class traffic flow model on an inhomogeneous highway, Adv. Appl. Math. Mech., 1 (2009), 438-450.
  126. F. Gao J. Qiu and Q. Zhang: Local Discontinuous Galerkin Finite Element Method and Error Estimates for One Class of Sobolev Equation, J. Sci. Comput., 41 (2009), 436-460.
  127. H. Zhu and J. Qiu:  Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: One-dimensional case,  J. Comput. Phys.,  228 (2009) , 6957-6976.
  128. J. Qiu, T. G. Liu and B. C. Khoo: Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method,  Commun.  Comput. Phys., 3 (2008), 479-504.
  129. J. Zhu, J. Qiu, C.-W. Shu and M. Dumbser: Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes , J. Comput. Phys., 227 (2008) 4330-4353.
  130. J. Qiu: Development and comparison of numerical fluxes for LWDG methods, Numerical Mathematics: Theory,Methods and Applications, 1 (2008),  435-459.
  131. J. Zhu and J. Qiu: A Class of Forth order Finite Volume Hermite Weighted Essentially Non-oscillatory Schemes,   Science in China, Series A--Mathematics,  51 (2008), 1549-1560. 
  132. H. Dou, H.M. Tsai, B.C. Khoo and J. Qiu: Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme, Combustion and Flame 154 (2008) 644-659
  133. J. Qiu: WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Comput. Appl. Math.,  200(2007), 591-605.
  134. J. Qiu: Hermite WENO Schemes with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi equations, J. Comp. Math.,  25(2007), 131-144.
  135. J. Qiu: A Numerical comparison of the Lax-Wendroff Discontinuous Galerkin Method Based on Different Numerical Fluxes,  J. Sci. Comput., 30(2007), 345-367.
  136. J. Qiu, T. G. Liu and B. C. Khoo: Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: One-dimensional case, J. Comput.  Phys., 222(2007),  353-373.
  137. J. Qiu, B.C. Khoo and C.-W. Shu: A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes ,  J. Comput. Phys., 212 (2006), 540-565.
  138. J. Qiu and C.-W. Shu: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case,  Computers & Fluids , 34 (2005) 642-663.
  139. J. Qiu, M. Dumbser and C.-W. Shu: The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput. Methods Appl. Mech. Engrg., 194 (2005),4528-4543.
  140. J. Qiu and C.-W. Shu: Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput. Phys., 204(2005), 82-99.
  141. J. Qiu and C.-W. Shu: Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput. , 26(2005),907-929.
  142. J. Qiu and C.-W. Shu: A comparison of trouble cell indicators for Runge-Kutta discontinuous Galerkin method using WENO limiters ,  SIAM J. Sci. Comput. 27 (2005), 995-1013. 
  143. J. Qiu and C.-W. Shu: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193 (2004) 115-135.
  144. J. Qiu and C.-W. Shu: Finite difference WENO schemes with Lax-Wendroff type time discretizations. SIAM J. Sci.  Comput. 24 (2003)  2185-2198.
  145.  J. Qiu and C.-W. Shu: On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. J. Comput. Phys., 183 (2002) 187-209.
  146. Z.Xu, R. Liu and J. Qiu: Advances in weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advances of Mechanics, 34(2004) pp. 9-22, (in Chinese). 
  147. Z. Xu, J. Qiu and R. Liu: Some optimal methods for WENO scheme in hyperbolic conservation laws,  J. of Univ. Sci. Tech. China, 23 (2004), 29-37, (in Chinese). 
  148. R. Wang, J. Qiu, J. Dai and N. Zhao: A high resolution Gauss scheme with staggered grid for shallow water equation, Advances in Water Science, 13 (2002),403-408, (in Chinese). 
  149. J. Qiu, J. Dai, N. Zhao and R. Wang: A Class of Gauss schemes with staggered grids, Mathematica Applicata, 14-2 (2001) , 1-5, (in Chinese).  
  150. C. Wang, J. Qiu and J. Dai: Construction and numerical simulation of high accuracy weighted ENO schemes, Chinese J.  Comput. Phys., 18 (2001), 381-384, (in Chinese).
  151. J. Qiu and J. Dai: A Class of Gauss schemes with staggered grids in two dimensions, Chinese J. of Comput. Phys., 18 (2001), 241-246, (in Chinese). 
  152. J. Qiu and J. Dai: A class of difference schemes with staggered grids for Hamilton-Jacobi equations, J. Nanjing Univ. Aero.  Astro., 32 (2000), 573-578, (in Chinese).
  153. J.  Qiu and K. You:  A class of generalization Lax-Friedrichs schemes, J. Jimei Univ., No. 3, (1998), (in Chinese).
  154. J. Qiu and K. You: Gauss scheme for numerical Ordinary differential equation, J. Jimei Univ., No. 4, (1997), (in Chinese). 
  155. J. Qiu:  A class of large tine step TVD schemes , J. Xiamen Fisheries College, Vol 17,No. 1, (1995), 62-66. (in Chinese). 
  156. J. Qiu:  二阶大时间步长的广义EO格式的收敛性 , J. Xiamen Fisheries College, Vol 16, No. 2, (1994), 72-78. (in Chinese). 
  157. J. Qiu: A class generalization large time step up-wind scheme , J. Xiamen Fisheries College, Vol 14, No. 1, (1992)  (in Chinese).

Publications in Conference Proceedings and books

 


Preprints:

  1. X. Yang, Q. Yang and J. Qiu: Inverse Lax-Wendroff method for numerical boundary conditions of conservation laws based on finite volume methods, submitted to Mathematica Numerica Sinica (Chinese).
  2. C. Cai, J. Qiu and K. Wu: Provably convergent Newton–Raphson method for recovering primitive variables in relativistic MHD equations, submitted to SIAM J. Numer. Anal.
  3. N. Zheng, X. Cai, J.-M. Qiu and J. Qiu: Non-Splitting Eulerian-Lagrangian WENO Schemes for Two-Dimensional Nonlinear Convection-Diffusion Equations.   submitted to J. Comput. Phys.. http://arxiv.org/abs/2406.01479
  4. Z. Zhao and J. Qiu: High-order finite volume Hermite WENO schemes for hyperbolic conservation laws on triangular meshes.   submitted to J. Comput. Phys..