Publications in
Refereed Journals
-
T. Yan, J. Zhu, C.-W. Shu and J. Qiu:
Letter to Editor: Regarding the numerical results in "A novel finite-difference converged ENO
scheme for steady-state simulations of Euler equations", by Tian Liang and Lin Fu,
Journal of Computational Physics, 519 (2024), 113386.
J. Comput. Phys., 522 (2025) 113620.
https://doi.org/10.1016/j.jcp.2024.113620
-
Q. Meng and J. Qiu:
A hybrid HWENO scheme for a multi-class traffic flow model with heterogeneous factors on highroad,
Comm. Appl. Math. Comput. to appear.
-
Z. Tao, Z. Xu and J. Qiu:
Maximum-principle-preserving and positivity-preserving central
WENO schemes on overlapping meshes.
Comm. Comput. Phys., to appear.
- F. Zheng and J. Qiu: High order finite volume method for solving compressible multicomponent flows, Science China-Mathematics, to appear. https://doi.org/10.1007/s11425-023-2268-0
- C. Fan, J. Qiu and Z. Zhao: A moment-based Hermite WENO scheme with unified stencils for hyperbolic conservation laws, J. Sci. Comput., 102(2025),9. https://doi.org/10.1007/s10915-024-02732-w.
-
N. Zheng, X. Cai, J.-M. Qiu and J. Qiu:
Fourth-order conservative non-splitting semi-Lagrangian Hermite WENO schemes for kinetic and fluid simulations.
J. Sci. Comput.,, 99(2024),77. https://doi.org/10.1007/s10915-024-02520-6.
- J. Li, C.-W. Shu and J. Qiu: Derivative-based finite-volume MR-HWENO scheme for steady-state problems, Comm. Comput. Phys., 36(2024), 877-907. https://doi: 10.4208/cicp.OA-2023-0339
-
F. Zheng and J. Qiu:
Dimension by dimension finite volume HWENO method for hyperbolic conservation laws,
Comm. Applied Math. Comput., 6(2024),605-624. https://doi.org/10.1007/s42967-023-00279-5
- F. Zheng and J. Qiu: High-order finite volume method for solving compressible multicomponent flows with Mie-Gruneisen equation of state, Computer & Fluids, 284 (2024) 106424.
-
J. Zhu, C.-W. Shu and J. Qiu:
RKDG methods with multi-resolution WENO limiters for
solving steady-state problems on triangular meshes.
Comm. Applied Math. Comput., 6 (2024),1575-1599. https://doi.org/10.1007/s42967-023-00272-y.
-
Z. Tao, J. Zhang, J. Zhu and J. Qiu:
High-order multi-resolution central Hermite WENO schemes for hyperbolic conservation laws,
J. Sci. Comput.,(2024) 99:40, https://doi.org/10.1007/s10915-024-02499-0.
- D. Luo, S. Li, J. Qiu, J. Zhu and Y. Chen: A compact simple HWENO scheme with ADER time discretization for hyperbolic conservation laws I: structured, J. Comput. Phys., 504 (2024) 112886.
-
Z. Zhao and J. Qiu:
An oscillation-free Hermite WENO scheme for hyperbolic conservation laws.
Science China Mathematics, 67(2024),431-454. https://doi.org/10.1007/s11425-022-2064-1
-
W. Ma, D. Luo, S. Li; J. Qiu, G. Ni and Y. Chen:
High-order adaptive multi-resolution method on curvilinear girds I: finite difference framework,
J. Comput. Phys.,498 (2024) 112654. https://doi.org/10.1016/j.jcp.2023.112654
-
C. Cai, J. Qiu and K. Wu:
Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics,
J. Comput. Phys.,498 (2024) 112669. https://doi.org/10.1016/j.jcp.2023.112669
- J. Zhu, C.-W. Shu and J. Qiu: Development and prospect of high-order WENO schemes , Science China-Mathematica (Chinese),54 (2024), No:2, 121-138. https://doi.org/10.1360/SSM-2023-0236.
- J. Qiu and T. Xiong: A brief survey on WENO methods, J. Xiamen Univ. Nat. Sci.,(Chinese), 62(2023), 979-990. doi:10.6043/j.issn.0438-0479.202305003
-
Y. Ren, Y. Xing and J. Qiu:
High order finite difference Hermite WENO fast sweeping methods for static Hamilton-Jacobi equations, J. Comput. Math., 41 (2023) 1064-1092.. https://doi.org/10.4208/jcm.2112-m2020-0283.
-
Y. Ren, K. Wu, J. Qiu and Y. Xing:
On High Order Positivity-Preserving Well-Balanced Finite Volume Methods for the Euler Equations with Gravitation,
J. Comput. Phys. 492 (2023) 112429. https://doi.org/10.1016/j.jcp.2023.112429.
-
M. Ahmat and J. Qiu:
Hybrid HWENO method for nonlinear degenerate parabolic equations,
J. Sci. Comput., 96(2023), 83, https://doi.org/10.1007/s10915-023-02301-7.
-
S. Li, D. Luo, J. Qiu, S. Jiang and Y. Chen:
A one-stage high-order gas-kinetic scheme for multi-component
flows with interface-sharpening technique,
J. Comput. Phys., 490 (2023), 112318.
-
C. Fan, Z. Zhao, T. Xiong and J. Qiu:
A robust fifth order finite difference Hermite WENO scheme for compressible Euler equations,
Comput. Methods Appl. Mech. Engrg., 412 (2023) 116077.
-
W. Huang, R. Li, J. Qiu and M. Zhang:
A well-balanced moving mesh discontinuous Galerkin method for the Ripa model on triangular meshes.
J. Comput. Phys., 487 (2023) 112147. https://arxiv.org/abs/2205.14560
-
J. Zhu and J. Qiu,
New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy,
Comm. Applied Math. Comput., , 5 (2023), 64-96. https://doi.org/10.1007/s42967-021-00122-9.
-
M. Zhang, W. Huang and J. Qiu:
A study on CFL conditions for the DG solution of conservation laws on adaptive moving meshes,
Numerical Mathematics: Theory, Methods and Applications, 16 (2023), 111-139. https://arxiv.org/abs/2106.08504.
-
M. Ahmat and J. Qiu:
Direct WENO scheme for dispersion-type equations ,
Mathematics and Computers in Simulation, 204 (2023) 216–229. https://doi.org/10.1016/j.matcom.2022.08.010.
-
J. Zhu and J. Qiu:
A finite difference mapped WENO scheme with unequal-size stencils for hyperbolic conservation laws, J. Sci. Comput., (2022) 93:72
https://doi.org/10.1007/s10915-022-02034-z.
-
J. Li, C.-W. Shu and J. Qiu:
Moment-based multi-resolution HWENO scheme for hyperbolic conservation
laws, Comm. Comput. Phys., 32(2022), 364-400. https://doi.org/10.4208/cicp.OA-2022-0030.
-
Y. Ren, Y. Xing, D. Wang and J. Qiu:
High order asymptotic preserving Hermite WENO fast sweeping method for the steady-state $S_{N}$ transport equation, J. Sci. Comput., 93:3 (2022). https://doi.org/10.1007/s10915-022-01965-x
-
C. Fan, X. Zhang and J. Qiu:
Positivity-preserving high order finite difference WENO schemes
for compressible Navier-Stokes equations,
J. Comput. Phys., 467 (2022) 111446. https://doi.org/10.1016/j.jcp.2022.111446
-
N. Zheng, X. Cai, J.-M. Qiu and J. Qiu:
A fourth-order conservative semi-Lagrangian finite volume WENO scheme without operator splitting for kinetic and fluid simulations,
Comput. Methods Appl. Mech. Engrg., 395 (2022) 114973. https://doi.org/10.1016/j.cma.2022.114973
-
J. Lin, Y. Ren, R. Abgrall and J. Qiu:
High Order Residual Distribution Conservative Finite Difference HWENO Scheme for Steady State Problems,
J. Comput. Phys., 457 (2022) 111045. https://doi.org/10.1016/j.jcp.2022.111045
-
M. Ahmat and J. Qiu:
SSP IMEX Runge-Kutta WENO scheme for generalized Rosenau-KdV-RLW equation,
J. Math. Study, 55(2022),1-21.
-
D. Luo, S. Li, W. Huang, J. Qiu and Y. Chen:
A quasi-conservative DG-ALE method for multi-component flows using the non-oscillatory kinetic flux,
J. Sci. Comput., 90 (2022) 46. https://doi.org/10.1007/s10915-021-01732-4
-
M. Zhang, W. Huang and J. Qiu:
A well-balanced positivity-preserving quasi-Lagrange moving mesh DG method for the shallow water equations,
Comm. Comput. Phys. 31 (2022), 94-130. https://doi.org/10.4208/cicp.OA-2021-0127.
-
Y. Ren, Y. Xing and J. Qiu:
High order finite difference Hermite WENO fixed-point fast sweeping method for static Hamilton-Jacobi equations, Comm. Comput. Phys., 31 (2022), 154-187, https://doi.org/10.4208/cicp.OA-2021-0079
-
N. Zheng, X. Cai, J.-M. Qiu and J. Qiu:
A conservative semi-Lagrangian hybrid Hermite WENO scheme for linear transport equations and the nonlinear Vlasov-Poisson system,
SIAM J. Sci. Comput., 43(2021), A3580–A3606. https://doi.org/10.1137/20M1363273.
-
M. Ahmat and J. Qiu:
Fourth order ETDRK scheme with Cauchy integral for nonlinear dispersive wave equations,
Comput. Applied Math.,40 (2021) 286.
-
S. Li, D. Luo, J. Qiu and Y. Chen:
A compact and efficient high-order gas-kinetic scheme,
J. Comput. Phys., 447 (2021) 110661. https://doi.org/10.1016/j.jcp.2021.110661.
-
J. Li, C.-W. Shu and J. Qiu:
Multi-resolution HWENO schemes for hyperbolic conservation laws,
J. Comput. Phys., 446 (2021), 110653. https://doi.org/10.1016/j.jcp.2021.110653.
-
C. Fan, X. Zhang and J. Qiu:
A positivity-preserving hybrid Hermite WENO
scheme for the compressible Navier-Stokes equations,
J. Comput. Phys., 445 (2021), 110596, https://doi.org/10.1016/j.jcp.2021.110596.
-
F. Zheng, C.-W. Shu and J. Qiu:
A high order conservative finite difference scheme for compressible two-medium flows,
J. Comput. Phys., 445 (2021), 110597, https://doi.org/10.1016/j.jcp.2021.110597.
-
Z. Zhao, Y. Chen and J. Qiu:
A hybrid WENO method with modified ghost fluid method for compressible two-medium flow problems, Numerical Mathematics: Theory, Methods and Applications, 14(2021). 972-997, https://doi.org/10.4208/nmtma.OA-2020-0190.
- J. Zhu and J. Qiu: A brief survey on WENO limiters for discontinuous Galerkin methods, J. Xiamen Univ. Nat. Sci. 60 (2021), 441-452.
(in Chinese).
-
Z. Zhao, Y.-T. Zhang, Y. Chen and J. Qiu:
A Hermite WENO method with modified ghost fluid method for compressible two-medium flow problems,
Comm. Comput. Phys., 30 (2021), 851-873. doi: 10.4208/cicp.OA-2020-0184.
-
M. Zhang, W. Huang and J. Qiu:
A high-order well-balanced positivity-preserving moving mesh DG method for the shallow water equations with non-flat bottom topography,
J. Sci. Comput., 87 (2021) 88. https://doi.org/10.1007/s10915-021-01490-3. http://arxiv.org/abs/2006.15187.
-
D. Luo, J. Qiu, J. Zhu and Y. Chen:
A quasi-conservative discontinuous Galerkin method for multi-component flows using the non-oscillatory kinetic flux,
J. Sci. Comput.,87 (2021) 96. https://doi.org/10.1007/s10915-021-01494-z.
-
J. Chen, X. Cai, J. Qiu, and J.-M. Qiu:
Adaptive Order WENO Reconstructions for the Semi-Lagrangian Finite Difference
Scheme for advection problem,
Comm. Comput. Phys., 30 (2021), 67-96.
-
J. Zhu, C.-W. Shu and J. Qiu:
High-order Runge-Kutta discontinuous Galerkin
methods with a new type of multi-resolution WENO
limiters on tetrahedral meshes,
Comm. Comput. Phys., 29 (2021), 1030-1058; https://doi: 10.4208/cicp.OA-2020-0096.
-
J. Zhu, C.-W. Shu and J. Qiu:
High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems,
Applied Numer. Math., 165 (2021) 482–499.
-
Z. Zhao, Y.-T. Zhang and J. Qiu:
A modified fifth order finite difference Hermite WENO scheme for hyperbolic conservation laws,
J. Sci. Comput., 85 (2020), 29. https://doi.org/10.1007/s10915-020-01347-1.
-
M. Zhang, W. Huang and J. Qiu:
High-order conservative positivity-preserving DG-interpolation for deforming meshes and application to moving mesh DG simulation of radiative transfer,
SIAM J. Sci. Comput., 42(2020), A3109-A3135. https://arxiv.org/abs/1910.11931.
-
Z. Zhao and J. Qiu:
A Hermite WENO scheme with artificial linear weights
for hyperbolic conservation laws,
J. Comput. Phys., 417 (2020), 109583, https://doi.org/10.1016/j.jcp.2020.109583.
-
Y. Ren, T. Xiong and J. Qiu:
A hybrid finite difference WENO-ZQ fast sweeping method for static Hamilton-Jacobi equations,
J. Sci. Comput., 83 (2020), 54. https://doi.org/10.1007/s10915-020-01228-7
-
J. Zhu, C.-W. Shu and J. Qiu:
High-order Runge-Kutta discontinuous Galerkin
methods with a new type of multi-resolution WENO
limiters on triangular meshes,
Applied Numer. Math., 153 (2020), 519-539. https://doi.org/10.1016/j.apnum.2020.03.013
-
J. Zhu,F. Zheng and J. Qiu:
New finite difference Hermite WENO schemes for Hamilton-Jacobi equations,
J. Sci. Comput., 83 (2020), 7. https://doi.org/10.1007/s10915-020-01174-4.
-
M. Zhang, J. Cheng, W. Huang and J. Qiu:
An adaptive moving mesh discontinuous Galerkin method for the radiative transfer equation,
Commun. Comput.
Phys., 27 (2020), 1140-1173. doi: 10.4208/cicp.OA-2018-0317.
- Z. Zhao, Y. Chen and J. Qiu: A hybrid Hermite WENO method
for hyperbolic conservation laws, J. Comput. Phys., 405 (2020), 109175. https://doi.org/10.1016/j.jcp.2019.109175
- J. Zhu, J. Qiu and C.-W. Shu: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters, J. Comput. Phys., 404 (2020),109105. https://doi.org/10.1016/j.jcp.2019.109105
-
H. Zhu J. Qiu and J. Zhu:
A simple, high-order and highly compact WENO limiter for RKDG method
,
Comput. Math. Appl., 79(2020), 317–336.
-
J. Zhu and J. Qiu:
A new type of high-order WENO scheme for
Hamilton-Jacobi equations on triangular meshes,
Commun. Comput.
Phys., 27 (2020), 897-920. doi: 10.4208/cicp.OA-2018-0156.
-
P. Giri and J. Qiu:
A High Order Runge-Kutta Discontinuous Galerkin Method with a Sub-cell Limiter on Adaptive Unstructured Grids for Compressible Inviscid Flows,
Inter. J. Numer. Methods Fluids,91(2019), 367–394. https://doi.org/10.1002/fld.4757.
-
M. Zhang, J. Cheng and J. Qiu:
High order positivity-preserving discontinuous Galerkin schemes for radiative transfer equations on triangular meshes,,
J. Comput. Phys., 397 (2019), 108811.
-
X. Yang, W. Huang and J. Qiu:
Moving Mesh Finite Difference Solution of Non-Equilibrium Radiation Diffusion Equations
,
Numerical Algorithms, 82 (2019),1409–1440.
- D. Luo, W. Huang and J. Qiu: A quasi-Lagrangian moving mesh discontinuous Galerkin method
for hyperbolic conservation laws, J. Comput. Phys., 396(2019), 544–578.
-
F. Zheng, C.-W. Shu and J. Qiu:
High order finite difference Hermite WENO schemes for
the Hamilton-Jacobi equations on unstructured meshes,,
Computer Fluid, 183(2019), 53-65.
-
Z. Zhao, J. Zhu, Y. Chen and J. Qiu:
A new hybrid WENO scheme for hyperbolic
conservation laws, Computer Fluid., 179 (2019), 422–436.
-
J. Lin, R. Abgrall and J. Qiu:
High order residual distribution for steady state problems for hyperbolic conservation laws
,
J. Sci. Comput., 79 (2019),891-913.
-
C. Lu, W. Huang and J. Qiu:
An adaptive moving mesh finite element solution of the Regularized Long Wave equation,
J. Sci. Comput.,74 (2018),122–144.
-
X. Cai, J. Qiu and J.-M. Qiu:
Finite volume HWENO schemes for nonconvex
conservation laws, J. Sci. Comput., 75 (2018),65–82.
-
J. Zhu and J. Qiu:
New finite volume weighted essentially non-oscillatory schemes on triangular meshes
,
SIAM J. Sci. Comput., 40 (2018), A903–A928.
-
J. Zhu, X. Zhong, C.-W. Shu and J.
Qiu: Runge-Kutta
discontinuous Galerkin method with a simple and compact Hermite WENO
limiter on unstructured meshes,
Commun.Comput.
Phys., 21(2017), 623-649.
-
X. Cai, J. Zhu and J. Qiu:
Hermite WENO schemes with
strong stability preserving multi-step temporal discretization methods for
conservation laws, J. Comput. Math., 35 (2017), 52-73.
-
J. Zhu and J. Qiu:
A new fifth order finite difference WENO scheme for
Hamilton-Jacobi equations,
Numer. Method PDEs., 33 (2017), 1095-1113.
-
Z. Tao and J. Qiu:
Dimension-by-dimension moment-based central
Hermite WENO schemes for directly solving Hamilton-Jacobi equations,
Adv. Comput. Math., 43 (2017), 1023–1058.
-
J. Zhu and J. Qiu:
A new type of modified WENO schemes for solving hyperbolic conservation laws
,
SIAM. J. Sci. Comput., 39(2017), A1089–A1113.
-
F. Zheng, C.-W. Shu and J. Qiu:
Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations,
J. Comput. Phys., 337(2017), 27-41.
-
H. Zhu, J. Qiu and J.-M. Qiu:
An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model,, J. Sci. Comput., 73 (2017), 1316-1337.
-
B. Huang and J. Qiu:
Hybrid WENO schemes with Lax-Wendroff type time discretization
,
J. Math. Study, 50 (2017), 242-267.
-
J. Zhu and J. Qiu:
A new type of finite volume WENO schemes for hyperbolic conservation laws,
J. Sci. Comput., 73 (2017), 1338-1359.
-
J. Zhu and J. Qiu:
A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes
,
J. Comput. Phys., 349 (2017), 220–232.
- F. Zheng and J. Qiu: Directly solving the
Hamilton-Jacobi equations by Hermite WENO Schemes, J. Comput.
Phys., 307 (2016) 423-445.
- H. Liu and J. Qiu: Finite Difference Hermite WENO
schemes for conservation laws, II: an Alternative Approach,
J. Sci. Comput., 66 (2016), 598-624.
- J. Liu, J. Qiu, M. Goman, X. Li and
M. Liu: Positivity-preserving
Runge-Kutta discontinuous Galerkin method on adaptive Cartesian grid for
strong moving shock, Numer. Math.: Theory, Methods Appl.,
9(2016), 87-110.
- J. Zhu, X. Zhong, C.-W. Shu and J.
Qiu: Runge-Kutta
discontinuous Galerkin method with a simple and compact Hermite WENO
limiter, Commun.Comput. Phys., 19(2016), 944-969.
- X. Cai. X. Zhang and J. Qiu: Positivity-preserving high
order finite volume HWENO schemes for compressible Euler equations,
J. Sci. Comput., 68(2016), 464-483.
- D. Luo, W. Huang and J. Qiu: A hybrid LDG-HWENO scheme for KdV-type
equations, J. Comput. Phys., 313 (2016), 754-774.
- Z. Tao, F. Li and J. Qiu:
High-order central Hermite WENO schemes:
dimension-by-dimension moment-based reconstructions, J. Comput. Phys.,318
(2016), 222-251.
-
J. Zhu and J. Qiu:
A new fifth order finite difference WENO scheme for solving hyperbolic
conservation laws,
J. Comput. Phys.,
318 (2016), 110-121.
-
H. Zhu, J. Qiu and J.-M. Qiu:
An h-adaptive RKDG method for the Vlasov-Poisson
system, J. Sci. Comput., 69 (2016), 1346-1365.
-
X. Cai, J. Qiu and J.-M. Qiu:
A conservative semi-Lagrangian
HWENO method for the Vlasov equation, J.
Comput. Phys., 323 (2016), 95–114.
- Z. Tao, F. Li and J. Qiu: High-order central Hermite WENO schemes
on staggered meshes for hyperbolic conservation laws, J. Comput.
Phys., 281(2015), 148-176.
- H. Liu and J. Qiu: Finite Difference Hermite WENO
schemes for conservation laws, J. Sci. Comput., 63 (2015),
548-572.
- X. Yang, W. Huang and J. Qiu: A moving mesh finite difference
method for equilibrium radiation diffusion equations, J. Comput.
Phys., 298(2015), 661-677.
- W. Guo, J.-M. Qiu and J. Qiu: A New Lax-Wendroff Discontinuous
Galerkin Method with Superconvergence, J. Sci. Comput., 65(2015),
299-326.
- J. Zhu and J. Qiu: Finite volume Hermite WENO schemes
for solving the Hamilton-Jacobi equation, Commun.Comput.
Phys., 15
(2014), 959-980.
- G. Li and J. Qiu: Hybrid WENO schemes with different
indicators on curvilinear grid, Adv. Comput. Math., 40
(2014), 747-772.
- C. Lu, W. Huang and J. Qiu: Maximum principle in
linear finite element approximations of anisotropic
diffusion-convection-reaction problems, Numer.
Math., 127 (2014), 515-537.
- J. Zhu and J. Qiu: Finite volume Hermite WENO schemes
for solving the Hamilton-Jacobi equations II: unstructured meshes,
Computers Math. Appl., 68 (2014), 1137-1150.
- J. Zhu and J. Qiu: Adaptive Runge-Kutta
discontinuous Galerkin methods with the modified ghost fluid method for
solving the compressible two-medium flow, J. Math. Study,
47(2014), 250-273.
- J. Zhu and J. Qiu: WENO
schemes and their application as limiters for RKDG methods based on
trigonometric approximation spaces, J. Sci. Comput., 55 (2013),
606-644.
- H. Yang, F. Li and J. Qiu: Dispersion and dissipation errors
of two fully discrete discontinuous Galerkin methods, J.
Sci. Comput., 55(2013), 552-574.
- H. Zhu and J. Qiu: An h-adaptive RKDG
method with troubled-cell indicator for two-dimensional hyperbolic
conservation laws, Adv. Comput. Math., 39(2013), 445-463.
- Y. Cheng, F. Li, J. Qiu and L.
Xu: Positivity-preserving DG and
central DG methods for ideal MHD equations, J. Comput. Phys. 238
(2013), 255-280.
- H. Zhu, Y. Cheng and J. Qiu: A Comparison of the Performance of
Limiters for Runge-Kutta Discontinuous Galerkin Methods, Adv.
Appl. Math. Mech., 5 (2013), 365-390.
- H. Zhu and J. Qiu: An h-adaptive Runge-Kutta
discontinuous Galerkin method for Hamilton-Jacobi equations,
Numer. Math.: Theory, Methods Appl., 6 (2013), 617-636.
- J. Zhu, X. Zhong, C.-W. Shu and J.
Qiu: Runge-Kutta discontinuous
Galerkin method using a new type of WENO limiters on unstructured mesh,
J. Comput. Phys., 248 (2013), 200-220.
- J. Zhu and J. Qiu: Hermite WENO schemes for
Hamilton-Jacobi equations on unstructured meshes, J. Comput.
Phys., 254 (2013), 76-92.
- J. Liu, J. Qiu, O. Hu, N. Zhao, M.
Goman and X. Li: Adaptive
Runge_CKutta discontinuous Galerkin method for complex geometry problems
on Cartesian grid, Inter. J. Numer. Methods Fluids, 73
(2013), 847-868.
- J. Zhu
and J. Qiu: Runge-Kutta
discontinuous Galerkin method using WENO type limiters: Three dimensional
unstructured meshes, Commun.Comput. Phys., 11
(2012), 985-1005.
- G. Li, C. Lu and J. Qiu: Hybrid well-balanced WENO schemes with different indicators for
shallow water equations, J. Sci. Comput., 51 (2012),
527-559.
- C.-S. Huang, T. Arbogast and J. Qiu: An
Eulerian-Lagrangian WENO finite volume scheme for advection problems,
J. Comput. Phys., 231(2012), 4028-4052.
- J. Zhu, T. G. Liu, J. Qiu and B. C.
Khoo: RKDG methods
with WENO limiters for unsteady cavitating flow, Computers &
Fluids, 57(2012), 52-65.
- X. Yang, W. Huang and J. Qiu: A moving mesh WENO method for
one-dimensional conservation laws, SIAM J. Sci. Comput..34 (2012),
A2317-A2343.
- J. Zhu and J. Qiu: Local DG method using WENO type
limiters for convection-diffusion
problems, J. Comput. Phys., 230 (2011), 4353-4375.
- W. Guo, F. Li and J. Qiu: Local-structure-preserving
discontinuous Galerkin methods with Lax-Wendroff type time discretizations
for Hamilton-Jacobi equations, J. Sci. Comput., 47 (2011),
239-257.
- C. Lu and J. Qiu: Simulations of shallow water
equations with Finite Difference Lax-Wendroff Weighted Essential
Non-oscillatory Schemes, J. Sci. Comput., 47 (2011),
281-302.
- J. Zhu, J. Qiu, T. G. Liu and B. C.
Khoo: RKDG methods with WENO type
limiters and conservative interfacial procedure for one-dimensional
compressible multi-medium flow simulations Appl. Numer. Math., 61(2011), 554-580.
- R.
Abgrall and J. Qiu: Preface
to the special issue High order methods for CFD problems,
J. Comput.
Phys., 230 (2011), 4101-4102.
- C. Lu, J. Qiu and R. Wang: A numerical study for the
performance of the WENO schemes based on different numerical fluxes for
the shallow water equations, J. Comp. Math., 28 (2010),
807-825.
- J. Zhu and J. Qiu: Trigonometric WENO schemes for
hyperbolic conservation laws and highly oscillatory problems,
Commun.Comput. Phys., 8 (2010), 1242-1263.
- G. Li and J. Qiu: Hybrid weighted essentially
non-oscillatory schemes with different indicators, J.
Comput. Phys., 229 (2010) 8105-8129.
- C. Lu, J. Qiu and R. Wang: Weighted Essential
Non-oscillatory Schemes for Tidal Bore on Unstructured Meshes,
International Journal for Numerical Methods in Fluids, 59 (2009),
611-630.
- J. Zhu and J. Qiu: Hermite WENO schemes and their
application as limiters for Runge-Kutta discontinuous Galerkin method III:
Unstructured meshes, J. Sci. Comput., 39
(2009),293-321.
- T. Sun and J. Qiu: LWDG method for a
multi-class traffic flow model on an inhomogeneous highway, Adv.
Appl. Math. Mech., 1 (2009), 438-450.
- F. Gao J. Qiu and Q. Zhang: Local Discontinuous Galerkin
Finite Element Method and Error Estimates for One Class of Sobolev
Equation, J. Sci. Comput., 41 (2009), 436-460.
- H. Zhu and J. Qiu: Adaptive Runge-Kutta discontinuous Galerkin
methods using different indicators: One-dimensional case, J.
Comput. Phys., 228 (2009) , 6957-6976.
- J. Qiu, T. G. Liu and B. C. Khoo: Simulations of compressible
two-medium flow by Runge-Kutta discontinuous Galerkin methods with the
ghost fluid method, Commun. Comput. Phys., 3 (2008),
479-504.
- J. Zhu, J. Qiu, C.-W. Shu and M.
Dumbser: Runge-Kutta discontinuous Galerkin
method using WENO limiters II: Unstructured meshes , J.
Comput. Phys., 227 (2008) 4330-4353.
- J. Qiu: Development and comparison of numerical fluxes for LWDG
methods, Numerical Mathematics: Theory,Methods and Applications, 1
(2008), 435-459.
- J. Zhu and J. Qiu: A Class of Forth order
Finite Volume Hermite Weighted Essentially Non-oscillatory Schemes,
Science in China, Series A--Mathematics, 51 (2008), 1549-1560.
- H. Dou, H.M. Tsai, B.C. Khoo and J.
Qiu: Simulations of
detonation wave propagation in rectangular ducts using a three-dimensional
WENO scheme, Combustion and Flame 154 (2008) 644-659
- J. Qiu: WENO schemes with Lax-Wendroff
type time discretizations for Hamilton-Jacobi equations, J. Comput.
Appl. Math., 200(2007), 591-605.
- J. Qiu: Hermite WENO Schemes with
Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi equations,
J. Comp. Math., 25(2007), 131-144.
- J. Qiu: A Numerical comparison of the Lax-Wendroff
Discontinuous Galerkin Method Based on Different Numerical Fluxes,
J. Sci. Comput., 30(2007), 345-367.
- J. Qiu, T. G. Liu and B. C. Khoo:
Runge-Kutta
discontinuous Galerkin methods for compressible two-medium flow
simulations: One-dimensional case, J. Comput. Phys.,
222(2007), 353-373.
- J. Qiu, B.C. Khoo and C.-W. Shu: A numerical study for the
performance of the Runge-Kutta discontinuous Galerkin method based on
different numerical fluxes , J. Comput. Phys., 212
(2006), 540-565.
- J. Qiu and C.-W. Shu: Hermite WENO schemes and their
application as limiters for Runge-Kutta discontinuous Galerkin method
II: Two dimensional case, Computers & Fluids , 34 (2005)
642-663.
- J. Qiu, M. Dumbser and C.-W. Shu: The discontinuous Galerkin method with
Lax-Wendroff
type time discretizations,
Comput. Methods Appl. Mech. Engrg., 194 (2005),4528-4543.
- J. Qiu and C.-W. Shu: Hermite WENO schemes for Hamilton-Jacobi
equations. J. Comput.
Phys., 204(2005), 82-99.
- J. Qiu and C.-W. Shu: Runge-Kutta discontinuous Galerkin
method using WENO limiters, SIAM J. Sci. Comput. , 26(2005),907-929.
- J. Qiu and C.-W. Shu: A comparison of trouble cell
indicators for Runge-Kutta discontinuous Galerkin method using WENO
limiters , SIAM J. Sci. Comput. 27 (2005), 995-1013.
- J. Qiu and
C.-W. Shu: Hermite WENO schemes and their
application as limiters for Runge-Kutta discontinuous Galerkin method:
one-dimensional case, J. Comput. Phys., 193 (2004)
115-135.
- J. Qiu and C.-W. Shu: Finite difference WENO schemes with Lax-Wendroff
type time discretizations. SIAM J. Sci. Comput. 24 (2003) 2185-2198.
- J. Qiu and
C.-W. Shu: On the Construction, Comparison, and
Local Characteristic Decomposition for High-Order Central WENO Schemes. J. Comput. Phys.,
183 (2002) 187-209.
- Z.Xu, R. Liu and J. Qiu: Advances in weighted essentially non-oscillatory
schemes for hyperbolic conservation laws,
Advances of Mechanics, 34(2004) pp. 9-22, (in Chinese).
- Z. Xu, J. Qiu and R. Liu: Some optimal methods for WENO scheme in
hyperbolic conservation laws, J. of Univ. Sci. Tech. China,
23 (2004), 29-37, (in Chinese).
- R. Wang, J. Qiu, J. Dai and N. Zhao:
A high resolution Gauss scheme with
staggered grid for shallow water equation,
Advances in Water Science, 13 (2002),403-408, (in Chinese).
- J. Qiu, J. Dai, N. Zhao and R. Wang:
A Class of Gauss schemes with staggered grids, Mathematica
Applicata, 14-2 (2001) , 1-5, (in Chinese).
- C. Wang, J. Qiu and J. Dai: Construction and numerical simulation of high accuracy weighted ENO schemes,
Chinese J. Comput. Phys., 18 (2001), 381-384, (in Chinese).
- J. Qiu and J. Dai: A Class of Gauss schemes with staggered grids in
two dimensions, Chinese J. of Comput. Phys., 18 (2001), 241-246,
(in Chinese).
- J. Qiu and J. Dai: A class of difference schemes with staggered
grids for Hamilton-Jacobi equations, J. Nanjing Univ. Aero.
Astro., 32 (2000), 573-578, (in Chinese).
- J. Qiu and K. You: A class of generalization Lax-Friedrichs schemes,
J. Jimei Univ., No. 3, (1998), (in Chinese).
- J. Qiu and K. You: Gauss scheme for numerical Ordinary differential
equation, J. Jimei Univ., No. 4,
(1997), (in Chinese).
- J. Qiu: A class of large tine step TVD schemes ,
J. Xiamen Fisheries College, Vol 17,No. 1, (1995), 62-66. (in Chinese).
- J. Qiu: 二阶大时间步长的广义EO格式的收敛性 , J. Xiamen Fisheries College, Vol 16, No. 2, (1994), 72-78. (in Chinese).
- J. Qiu: A class generalization
large time step up-wind scheme , J. Xiamen Fisheries College, Vol 14, No. 1, (1992)
(in Chinese).
Publications in Conference Proceedings and books
- J. Qiu and Q. Zhang:
Stability, error estimate and limiters of Discontinuous
Galerkin Methods, Handbook of Numerical Methods for Hyperbolic Problems: Part A, edited by R. Abgrall and C.-W. Shu, Elsevier. 2016, pp. 147-171.
- J. Qiu: Weighted Non-Oscillatory Limiters for
Runge-Kutta Discontinuous Galerkin Methods, ADAPTIVE HIGH-ORDER
METHODS IN COMPUTATIONAL FLUID DYNAMICS, edited by Z J Wang, World
Scientific press, 2011.
- J. Qiu and J. Zhu: RKDG with WENO type limiter,
ADIGMA - A European Initiative on the Development of Adaptive Higher-Order
Variational Methods for Aerospace Applications, Notes on Numerical Fluid
Mechanics and Multidisciplinary Design, Volume 113, Springer, 2010
- J. Qiu and C.-W. Shu: RKDG methods with WENO type
limiter for conservation laws, Proc. of the Sixth World
Congress on Computational Mechanics, pp. 203. 2004,Beijing, P.R. China. @2004
Tsinghua University Press & Springer-Verlag.
- J. Qiu, Ning Zhao, Jiazun Dai and Ruyun Wang: A
class of large time-step MUSCL schemes, Proc. of the 4th Asian
Computational Fluid Dynamics Conference, pp. 536-540,2000, Sichuan, P.R.
China.
- J. Dai and J. Qiu: Numerical methods for
differential equations, Southeastern University Press, 2002.
Preprints:
- X. Yang, Q. Yang and J. Qiu: Inverse Lax-Wendroff method for numerical boundary conditions of
conservation laws based on finite volume methods, submitted to Mathematica Numerica Sinica (Chinese).
- C. Cai, J. Qiu and K. Wu: Provably convergent Newton–Raphson method for recovering primitive variables in relativistic MHD equations, submitted to SIAM J. Numer. Anal.
-
N. Zheng, X. Cai, J.-M. Qiu and J. Qiu:
Non-Splitting Eulerian-Lagrangian WENO Schemes for Two-Dimensional Nonlinear Convection-Diffusion Equations.
submitted to J. Comput. Phys.. http://arxiv.org/abs/2406.01479
-
Z. Zhao and J. Qiu:
High-order finite volume Hermite WENO schemes for hyperbolic conservation laws on triangular meshes.
submitted to J. Comput. Phys..