**Kui Du**

Associate Professor, School of Mathematical Sciences, Xiamen University. Email: kuidu@xmu.edu.cn Tel: 0592-2580672

## Contents

## Teaching

## Research interests

- Fast algorithms for electromagnetic scattering
- Numerical linear algebra problems and algorithms in data science

## Seclected publications

- Kui Du, Jurjen Duintjer Tebbens, and Gerard Meurant, Any admissible harmonic Ritz value set is possible for GMRES, To appear in Electronic Transactions on Numerical Analysis.
- Kui Du, On well-conditioned spectral collocation and spectral methods by the integral reformulation, SIAM Journal on Scientific Computing, Vol. 38(5), pp.A3247-A3263, 2016.
- Kui Du, Buyang Li, and Weiwei Sun, A numerical study on the stability of a class of Helmholtz problems, Journal of Computational Physics, Vol.287, pp.46-59, 2015.
- Kui Du, Weiwei Sun, and Xiaoping Zhang, Arbitrary high-order C^0 tensor product Galerkin finite element methods for the electromagnetic scattering from a large cavity, Journal of Computational Physics, Vol.242, pp.181-195, 2013.
- Kui Du and Olavi Nevanlinna, A note on R-linear GMRES for solving a class of R-linear systems, Numerical Linear Algebra with Applications, Vol.19(5), pp.880-884, 2012.
- Kui Du, A composite preconditioner for the electromagnetic scattering from a large cavity, Journal of Computational Physics, Vol.230(22), pp.8089-8108, 2011.
- Kui Du, GMRES with adaptively deflated restarting and its performance on an electromagnetic cavity problem, Applied Numerical Mathematics, Vol.61(9), pp.977-988, 2011.
- Kui Du, Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities, Journal of Computational Physics, Vol.230(15), pp.5822-5835, 2011.
- Kui Du, A simple numerical method for complex geometrical optics solutions to the conductivity equation, SIAM Journal on Scientific Computing, Vol.33(1), pp.328-341, 2011.
- Kui Du, Graeme Fairweather, Que N. Nguyen, and Weiwei Sun, Matrix decomposition algorithms for the C^0-quadratic finite element Galerkin method, BIT Numerical Mathematics, Vol.49(3), pp.509-526, 2009.