Part 1b: Singular value decomposition (SVD)
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1. Singular value decomposition

Theorem 1 (SVD, case m > n)

Every matriz A € C™*™ has a (full, reduced, and rank) singular value
decomposition:

A =UXV*'=0,%,V'=U,X, V= ZFI oV
s, 0] [V
- vl [ g [
3, 0 y .
where X = 0 0 e Rm*" 3, = diag{oy,09, -+ ,0,}, r = rank(A),

UeC™m UU=I, VecC>" V*V=I,
U=[uw w - w|, Us=[up uwio -+ upl,
V, = [Vl vy o Vr] , Ve= [VT+1 Vyy2 oo Vn] s
01209220, >0p41="=0p=0.
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Proof. We use induction on m and n.

e Assume that the SVD exists for (m — 1) x (n — 1) matrices and
prove it for m x n matrices.

Assume A # 0; otherwise we can take 3 = 0 and let U and V be
arbitrary unitary matrices.

e The basic step occurs when n =1 (since m > n).
We write A = U3, V* with Uy = A/||A||,, 31 = ||A||, and
V=1

e For the induction step, choose v so that ||v|2 =1 and
|A]l2 = ||Av|l2 > 0. Such a vector v exists by

|All2 = Hnﬁax |AvV]|2 = ”HﬁaX VVFA*Av.
o=1
Let u = Av/||Av||2, which is a unit vector. Choose U and V so
that U = [u ﬁ} and V = |v {/’] are m X m and n X n unitary
matrices, respectively.

Numerical Linear Algebra Part 1b: SVD September 28, 2018 3/ 14



Now we have
TAV = | 2 A[V \7‘]: WAV WAV
U*Av U*AV
We note that

(Av)*(Av)
WAV = ——r——— = [[Av[s = A2 = o,
AVl

and R R
U*Av = U*u||Av|2 = 0.

We claim u*AV = 0 too because otherwise

1A]l2 = [[U*AV|5

o1 =
= [[[1 0 - 02 U"AV]]2
> |[[1 0 .-+ 0]U*AV|3 = |/[o1 u*AV]|2 > o1,

which is a contradiction.

Numerical Linear Algebra Part 1b: SVD September 28, 2018

4/ 14



Therefore,
~ o1 0
*AV = o~ o~
vav= {7 ol

Apply the induction hypothesis to the (m — 1) x (n — 1) matrix
U*AV to get an SVD:

U'AV = USV*,

It follows from
~ s oo 0 1 1 0]foy 0O][1 0]
UAV_[O UEV*]_[O fJHo z] [0 v] :

_~=[1 0][or 0][1 0] .
A_U[o UHO EHO V]V‘

It is easy to show that this is an SVD of A.

that
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e Full SVD (case m > n) and Reduced SVD: Matlab svd

bood |

Vt

° 01-2 are eigenvalues of AA* or A*A, u; and v; are corresponding

eigenvectors

o singular values {o;}: uniquely determined, invariant under unitary
multiplication

o left singular vectors {u;}, right singular vectors {v;}:
wA=0v, Av,=ou;, i=12,....n

e If A is square and all the o; are distinct, the left and right singular
vectors are uniquely determined up to complex signs (i.e., complex
scalar factors of absolute value 1).




2. Geometric observation

e The image of the unit sphere (in the 2-norm) under any m x n
matrix is a hyperellipse.

For example, 2 x 2 real matrix A

o S
Nt b U
’02/—\ T e e
o2 \\\
o1 T 2U2
e
Vv o1u;

ptember



3. Matrix properties via the SVD

@ 2-norm
[All2 = o1

@ F-norm

|Allp = \/oF + 03+ +02
e range(A): column space of A, spanned by the columns of A
range(A): = {yeC"|3IxeC" st y=Ax}
= span{uj,ug,---,u,}
e null(A): kernel or null space of A

null(A): = {xeC"| Ax=0}

= Span{vr-i-ly Vg2, 7vn}
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Range and null space of A*:

range(A™) = span{vi,va, -, v, } = null(A)*

null(A*) = span{u,; 1, U2, - , U, } = range(A)*

Relations between the four subspaces
range(A™) Lnull(A), range(A*)+ null(A)=C"

range(A) Lnull(A*), range(A)+ null(A*)=C™
o If A is Hermitian, i.e., A = A*
singular values are absolute values of eigenvalues

o Determinant of A € C™*m

det(A)] =[] o
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4. Low-rank approximation
e For any k with 0 < k < r, define

k * *— *—
Ak:ijlajujvj. O=1""+""+--

Theorem 2
If k = min{m,n}, define o1 = 0. For 1 <k < min{m,n}, we have

min [|[A — Bljs = op11 = [|[A — Ag||2,
BeCmXn,
rank(B)<k

and

in |A-B :\/2 ot o2 = [|A = Agllp.
_min A~ Bl = /o2, -+ 02 = |A— Al
rank(B)<k

Discussion: Is the minimizer unique?
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Proof.
e Suppose there is some B with rank(B) < k such that

A =Bll2 < opr1 = [[A = Aglla-

Then there is an (n — k)-dimensional subspace YW C null(B). For
any x € W, we have

[Ax[l2 = [[(A = B)x[]2 < [[A = Bll2[|x[l2 < ops1lx[2.
Let V = span{vy, va,---,Vgs1}. For any x € V, we have

[Ax|l2 = [AVi1yle = [Urr1Zea1yllz = 1Br1ylle > opalx]f2-

Since dimW + dimV > n, there must be a nonzero vector lying in
both, and this is a contradiction.

e The case for || - ||, see Page 213 of Generalized Inverses: Theory
and Applications, Adi Ben-Israel and Thomas N.E. Greville. L]
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5. Application: image compression

e An image can be represented as a matrix. For example, typical
grayscale images consist of a rectangular array of pixels, m in the
vertical direction, n in the horizontal direction. The color of each
of those pixels is denoted by a single number, an integer between 0
(black) and 255 (white). (This gives 2% = 256 different shades of
gray for each pixel. Color images are represented by three such
matrices: one for red, one for green, and one for blue. Thus each
pixel in a typical color image takes (28)3 = 224 shades.)

e The objective of image compression is to reduce irrelevance and
redundancy of the image data in order to be able to store or
transmit data in an efficient form.

e Low-rank SVD approximation is a good candidate. See the Matlab
codes in the website. (Note: jpeg compression algorithm uses
similar idea, on subimages)
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6. Discussion
e A random n x n matrix is “always” nonsingular. Why?
7. Moore-Penrose pseudoinverse
o Let A € C"™*™ have an SVD (rank form) A = U, X, V. The
Moore-Penrose pseudoinverse of A, denoted by AT:

g ro 1o
Al=v,3 Uy = Zj:l o Y
J

o The matrix AT is the unique matrix satisfying the four
Moore-Penrose equations

AXA=A, XAX=X, (AX)*=AX, (XA)"=XA.

For a proof, see Page 122 of Numerical linear algebra (in chinese)
by Zhihao Cao.

o If A is of full column rank, then AT = (A*A)"1A*,
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8. A wonderful reference
@ Zhihua Zhang
The singular value decomposition, applications and beyond

arXiv:1510.08532
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http://ccam.xmu.edu.cn/teacher/kuidu/nla/svdab.pdf

