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1. Singular value decomposition

Theorem 1 (SVD, case m ≥ n)

Every matrix A ∈ Cm×n has a (full, reduced, and rank) singular value
decomposition:

A = UΣV∗ = UnΣnV
∗ = UrΣrV

∗
r =

∑r

j=1
σjujv

∗
j

=
[
Ur Uc

] [Σr 0
0 0

] [
V∗

r

V∗
c

]
,

where Σ =

[
Σr 0
0 0

]
∈ Rm×n, Σr = diag{σ1, σ2, · · · , σr}, r = rank(A),

U ∈ Cm×m, U∗U = Im, V ∈ Cn×n, V∗V = In,

Ur =
[
u1 u2 · · · ur

]
, Uc =

[
ur+1 ur+2 · · · um

]
,

Vr =
[
v1 v2 · · · vr

]
, Vc =

[
vr+1 vr+2 · · · vn

]
,

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.
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Proof. We use induction on m and n.

Assume that the SVD exists for (m− 1)× (n− 1) matrices and
prove it for m× n matrices.

Assume A ̸= 0; otherwise we can take Σ = 0 and let U and V be
arbitrary unitary matrices.

The basic step occurs when n = 1 (since m ≥ n).

We write A = U1Σ1V
∗ with U1 = A/∥A∥2,Σ1 = ∥A∥2 and

V = 1.

For the induction step, choose v so that ∥v∥2 = 1 and
∥A∥2 = ∥Av∥2 > 0. Such a vector v exists by

∥A∥2 = max
∥v∥2=1

∥Av∥2 = max
∥v∥2=1

√
v∗A∗Av.

Let u = Av/∥Av∥2, which is a unit vector. Choose Û and V̂ so

that Ũ =
[
u Û

]
and Ṽ =

[
v V̂

]
are m×m and n× n unitary

matrices, respectively.
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Now we have

Ũ∗AṼ =

[
u∗

Û∗

]
A

[
v V̂

]
=

[
u∗Av u∗AV̂

Û∗Av Û∗AV̂

]
.

We note that

u∗Av =
(Av)∗(Av)

∥Av∥2
= ∥Av∥2 = ∥A∥2 ≡ σ1,

and
Û∗Av = Û∗u∥Av∥2 = 0.

We claim u∗AV̂ = 0 too because otherwise

σ1 = ∥A∥2 = ∥Ũ∗AṼ∥2
= ∥

[
1 0 · · · 0

]
∥2 · ∥Ũ∗AṼ∥2

≥ ∥
[
1 0 · · · 0

]
Ũ∗AṼ∥2 = ∥[σ1 u∗AV̂]∥2 > σ1,

which is a contradiction.
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Therefore,

Ũ∗AṼ =

[
σ1 0

0 Û∗AV̂

]
.

Apply the induction hypothesis to the (m− 1)× (n− 1) matrix
Û∗AV̂ to get an SVD:

Û∗AV̂ = ǓΣ̌V̌∗.

It follows from

Ũ∗AṼ =

[
σ1 0

0 ǓΣ̌V̌∗

]
=

[
1 0

0 Ǔ

] [
σ1 0

0 Σ̌

] [
1 0

0 V̌

]∗
,

that

A = Ũ

[
1 0

0 Ǔ

] [
σ1 0

0 Σ̌

] [
1 0

0 V̌

]∗
Ṽ∗.

It is easy to show that this is an SVD of A.

Numerical Linear Algebra Part 1b: SVD September 28, 2018 5 / 14



Full SVD (case m ≥ n) and Reduced SVD: Matlab svd

σ2
i are eigenvalues of AA∗ or A∗A, ui and vi are corresponding

eigenvectors
singular values {σi}: uniquely determined, invariant under unitary
multiplication
left singular vectors {ui}, right singular vectors {vi}:

u∗
iA = σiv

∗
i , Avi = σiui, i = 1, 2, . . . , n

If A is square and all the σi are distinct, the left and right singular
vectors are uniquely determined up to complex signs (i.e., complex
scalar factors of absolute value 1).
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2. Geometric observation

The image of the unit sphere (in the 2-norm) under any m× n
matrix is a hyperellipse.

For example, 2× 2 real matrix A

The SVD of a matrix cannot be emphasized too much!
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3. Matrix properties via the SVD

2-norm
∥A∥2 = σ1

F-norm

∥A∥F =
√
σ2
1 + σ2

2 + · · ·+ σ2
r

range(A): column space of A, spanned by the columns of A

range(A) : = {y ∈ Cm | ∃x ∈ Cn s.t. y = Ax}
= span{u1,u2, · · · ,ur}

null(A): kernel or null space of A

null(A) : = {x ∈ Cn | Ax = 0}
= span{vr+1,vr+2, · · · ,vn}
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Range and null space of A∗:

range(A∗) = span{v1,v2, · · · ,vr} = null(A)⊥

null(A∗) = span{ur+1,ur+2, · · · ,um} = range(A)⊥

Relations between the four subspaces

range(A∗)⊥null(A), range(A∗) + null(A) = Cn

range(A)⊥null(A∗), range(A) + null(A∗) = Cm

If A is Hermitian, i.e., A = A∗

singular values are absolute values of eigenvalues

Determinant of A ∈ Cm×m

|det(A)| =
∏m

i=1
σi
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4. Low-rank approximation

For any k with 0 ≤ k ≤ r, define

Ak =
∑k

j=1
σjujv

∗
j . □ = |•ϖ + |•ϖ + · · ·

Theorem 2

If k = min{m,n}, define σk+1 = 0. For 1 ≤ k ≤ min{m,n}, we have

min
B∈Cm×n,
rank(B)≤k

∥A−B∥2 = σk+1 = ∥A−Ak∥2,

and
min

B∈Cm×n,
rank(B)≤k

∥A−B∥F =
√

σ2
k+1 + · · ·+ σ2

r = ∥A−Ak∥F.

Discussion: Is the minimizer unique?

Numerical Linear Algebra Part 1b: SVD September 28, 2018 10 / 14



Proof.

Suppose there is some B with rank(B) ≤ k such that

∥A−B∥2 < σk+1 = ∥A−Ak∥2.

Then there is an (n− k)-dimensional subspace W ⊆ null(B). For
any x ∈ W, we have

∥Ax∥2 = ∥(A−B)x∥2 ≤ ∥A−B∥2∥x∥2 < σk+1∥x∥2.

Let V = span{v1,v2, · · · ,vk+1}. For any x ∈ V, we have

∥Ax∥2 = ∥AVk+1y∥2 = ∥Uk+1Σk+1y∥2 = ∥Σk+1y∥2 ≥ σk+1∥x∥2.

Since dimW + dimV > n, there must be a nonzero vector lying in
both, and this is a contradiction.

The case for ∥ · ∥F, see Page 213 of Generalized Inverses: Theory
and Applications, Adi Ben-Israel and Thomas N.E. Greville.
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5. Application: image compression

An image can be represented as a matrix. For example, typical
grayscale images consist of a rectangular array of pixels, m in the
vertical direction, n in the horizontal direction. The color of each
of those pixels is denoted by a single number, an integer between 0
(black) and 255 (white). (This gives 28 = 256 different shades of
gray for each pixel. Color images are represented by three such
matrices: one for red, one for green, and one for blue. Thus each
pixel in a typical color image takes (28)3 = 224 shades.)

The objective of image compression is to reduce irrelevance and
redundancy of the image data in order to be able to store or
transmit data in an efficient form.

Low-rank SVD approximation is a good candidate. See the Matlab
codes in the website. (Note: jpeg compression algorithm uses
similar idea, on subimages)
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6. Discussion

A random n× n matrix is “always” nonsingular. Why?

7. Moore-Penrose pseudoinverse

Let A ∈ Cm×n have an SVD (rank form) A = UrΣrV
∗
r . The

Moore-Penrose pseudoinverse of A, denoted by A†:

A† = VrΣ
−1
r U∗

r =
∑r

j=1

1

σj
vju

∗
j .

The matrix A† is the unique matrix satisfying the four
Moore-Penrose equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

For a proof, see Page 122 of Numerical linear algebra (in chinese)
by Zhihao Cao.

If A is of full column rank, then A† = (A∗A)−1A∗.
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8. A wonderful reference

Zhihua Zhang

The singular value decomposition, applications and beyond

arXiv:1510.08532
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http://ccam.xmu.edu.cn/teacher/kuidu/nla/svdab.pdf

