THE INVERSE EIGENPROBLEM OF CENTROSYMMETRIC
MATRICES WITH A SUBMATRIX CONSTRAINT AND ITS
APPROXIMATION
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Abstract. In this paper, we first consider the existence of and the general expression for the
solution to the constrained inverse eigenproblem defined as follows: given a set of complex n-vectors
{x;}™, and a set of complex numbers {\;},, and an s-by-s real matrix Co, find an n-by-n real
centrosymmetric matrix C such that the s-by-s leading principal submatrix of C'is Co, and {x;}*,
and {\;}™, are the eigenvectors and eigenvalues of C' respectively. We then concerned with the best
approximation problem for the constrained inverse problem whose solution set is nonempty. That
is, given an arbitrary real n-by-n matrix C, find a matrix C which is the solution to the constrained
inverse problem such that the distance between C and C is minimized in the Frobenius norm. We give
an explicit solution and a numerical algorithm to the best approximation problem. Some illustrative
experiments are also presented.
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1. Introduction. Let F,, be the n-by-n backward identity matrix, i.e, F,, has
1 on the anti-diagonal and zeros elsewhere. An n-by-n real matrix C is said to
be centrosymmetric if C = E,CE,. The centrosymmetric matrices have practical
applications in many areas such as pattern recognition [10], the numerical solution
of certain differential equations [1, 4], Markov processes [22] and various physical
and engineering problems [11, 12]. The symmetric Toeplitz matrices, an important
subclass of the class of symmetric centrosymmetric matrices, appear naturally in
digital signal processing applications and other areas [13].

The inverse eigenproblems play an important role in many applications such as
control theory [23], the design of Hopfield neural networks [8, 16], vibration theory
[20] and structure mechanics and molecular spectroscopy [14]. For the recent progress,
see for instance [7, 25]. The inverse eigenproblem for centrosymmetric matrices has
been discussed by Bai and R. Chan [2]. However, the inverse eigenproblem for cen-
trosymmetric matrices with a submatrix constraint has not been discussed. In this
paper, we will consider two related problems. The first problem is the constrained
inverse eigenproblem for centrosymmetric matrices:

Problem I. Given the eigenpairs X = [x1,X2,...,X;] € C"*™ A =diag(A\1,...,\m) €
C™*™ and a matrix Cy € R**%, find a centrosymmetric matrix C' in R™*" such that
CX = XA and the s-by-s leading principal submatrix of C' is Cj.

The prototype of this problem initially arose in the design of Hopfield neural net-
works [8, 16]. It also occurs in the design of vibration in mechanism, civil engineering
and aviation [5]. The problem has been studied for bisymmetric matrices in [18]. The
second problem we consider in this paper is the problem of best approximation.

Problem II. Let Lg be the solution set of Problem I. Given a matrix C € R™*",
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find C* € Lg such that
e = Cll = Qoin ||C — Cll,
S
where || - || is the Frobenius norm.

The best approximation problem arises frequently in experimental design, see for
instance [17, p.123]. Here the matrix C may be a matrix obtained from experiments,
but it may not satisfy the structural requirement (centrosymmetric or the submatrix
constraint) and/or spectral requirement (having eigenpairs X and A). The best esti-
mate C* is the matrix that satisfies both requirements and is the best approximation
of C'in the Frobenius norm. In addition, because there are fast algorithms for solving
various kinds of centrosymmetric matrices [15], the best approximate C* of C can
also be used as a preconditioner in the preconditioned conjugate gradient method for
solving linear systems with coefficient matrix C, see for instance [3].

We remark that when s = 0, Problem I is reduced to the inverse eigenproblem for
centrosymmetric matrices discussed by Bai and R. Chan [2]. When s = n, C* = C
is the best approximation of the matrix C' to Problem II. In this paper, we consider
the general case when 0 < s < n.

In this paper, we use the following notations. We denote the identity matrix of
order n by I,,. Let rank(A) be the rank of a matrix A. Let AT and A(1 : s) denote the
Moore-Penrose generalized inverse and the leading principal submatrix of a matrix
A respectively. R(A) and N (A) denote the column space and the null space of A
respectively.

The paper is organized as follows. In §2 we first review the structure of cen-
trosymmetric matrices and give some useful lemmas. In §3 we provide the solvability
conditions for and the general solutions of Problem I. In §4 we show the existence
and uniqueness of the solution to Problem II when the solution set of Problem I is
nonempty, and derive a formula for the best approximation of Problem II, and then
propose a numerical algorithm for computing the minimizer. In §5 an experiment is
presented to illustrate our results. Finally, in §6, we give some conclusions.

2. Preliminary Lemmas. In this section, we will recall the properties of cen-
trosymmetric matrices and give some preliminary lemmas.
Let k = [n/2] denote the largest integer number that is not greater than n/2.

When n = 2k, we define
1 1, I
K=—
alE )

and when n = 2k 4+ 1, let

L (I 0 L
K=—1|0 Vv2 o0
V2 E. 0 -—E

Clearly, K is orthogonal. Then we have the following splitting of centrosymmetric
matrices into smaller submatrices using K, see for example [9, 2].

LEMMA 2.1. [9] Denote the set of all n-by-n real centrosymmetric matrices by
Cn. Then any C € Cop can be written as

_ A BEk . A+B 0 - ok
C<EkB EkAEk>K< 0 A—B)K’ A,B e R*"%,
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Any C € Cok11 can be written as

A p BE, A+B 2p 0
C = qT Cc qTEk =K \/iqT c 0 KT,
EkB Ekp Ek-AEk 0 0 A-B

where A,B € RF*F p.q € R*, ¢ € R. Moreover, for all n = 2k and 2k + 1, any
C € C, is of the form:

0

c-x(y 1

) KT, F e R-0x(n=k) @ c Rkxk, (2.1)

LEMMA 2.2. Suppose that C € C,, and Co = C(1:s). If s <n —k, then
F1(12$)+F2(128):200, (22)
where Fy and Fy are the same as (2.1), and if s > n —k, then we obtain

011 012 HEn—s
C = 021 022 EQs—nCQlEn—s ) (23)
En—sH En—sol2E2$—n En—sAllEn—s

Cl 1 CV12

where H € RM=)X("=5) qnd Cy = C(1: 5) = <C C
21 C22

and Cas € Cos_p,.
Proof. If s <n —k, we get from Lemma 2.1 that

C(l:s)=A(1:9)

) with Cyy € RI—9)x(n—s)

and
Fil:8)+ F(1:8)=(A+B)(1:s)+(A—-B)(1:s) =2A(1:s).
Thus (2.2) holds.
If s > n— k, then since C(1 : s) = (gi g;z), we can partition C' into the

following form

Ci1 Ci2 Ci3
C=1[Cy Coy Ch |, (24)
C31 Csz Cs3

where Ci; € R(nis)x(nis), Coy € R(2sfn)><(257n)’ Cs3 € R(nfs)x(nfs). By (24)
and comparing the two sides of C = E,CE,, we obtain Ci3 = E,_sC31F,_,
Cr = Eys nC0FBos p, Co3 = Eog nCo1 By, C30 = By ;CioFs,_y and C33 =
E,_ C1E, s Let H=C13E,_,, we get C13 = HE,,_s and C3, = F,,_,H. Substi-
tuting Clg, 023, 031, 032 and 033 into (24) and noticing that 022 = EQS_nCQQEQS_n,
we have (2.3). O

In order to investigate the solvability of Problem I, we need the following lemmas.

LEMMA 2.3. [21, Lemma 1.3] Given X,G € R"*™ with rank(X) = [. Then
Y X = G has a solution Y € R™*™ if and only if GXTX = G. In this case the general
solution is

Y =GXt 4 zZU],
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where Uy € R0 UTU, = I,_;, R(Uy) = N(XT), and Z € R**=D s arbi-
trary.

LEMMA 2.4. [24, Lemma 3.1] Given any E,F € R"*". Then there exists a
unique Y* € R™"™ such that

[Y* = E|? +[[y* = F|? = min {|[Y — E|*+ |}y - F||*}
YeR’an

and

E
Y* = +F.
2

LEMMA 2.5. Given any E,F € R**Y D = diag(dy,...,d,) > 0 and © =
diag(y,...,0,), where 0; = 1/(1 + d?). Then there exists a unique Y* € R**? such
that

V"= E* +|Y*D = FII* = min {||Y = E|*+ YD - F|*}
e uxXv

and

Y* = (E 4+ FD)®.

PT’OOf. Let Y = (yij)vE = (eij),F = (fzj) Since

Y —E|I’ + YD - F|? = Z Z(yij —eij)’ + Z Z(yijdj — fi)?

i=1 j=1 i=1 j=1
= Z Z[y?j(l +d3) = 2yi(es; + fizdy) + € + f3]
i=1 j=1
v eii + fiids e2+ f3 (e + fi;d;)?
_ 1 d?V (s — S8 7 i %2 T a0 (G T i)
ZZ( U v e By TR
i=1 j=1 J J J

Thus there exists Y € R“*? such that ||[Y — E||> 4 ||[Y D — F||?> = min is equivalent to
Yij = (eij + fijdj)/(l + Cl?), ie. Y*=(E+ FD)O. 0O

From Lemma 2.5, we can easily see that Lemma 2.4 is a special case of Lemma
2.5 where u =v=n, D=1,, and © = 1/21,.

3. Solvability Conditions and General Solutions of Problem I. Before
we come to Problem I, we first note the following facts: For a real matrix C' € C,, its
complex eigenvectors and eigenvalues are complex conjugate pairs. If a & bv/—1 and
x &+ /—1y are one of its eigenpairs, then we have Cx = ax — by and Cy = ay + bx,
ie.

Clxyl =By (% V)

Therefore, without loss of generality, we can assume that X € R™"*™ and

A= diag(qjlu \1127 .. ~7\I]lagl7 s >gm72l) € Rnbxma (31)
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where ¥; = < ai b
b a;
THEOREM 3.1. Given X € R™™ and A as in (3.1), and Cy € R**® where

s <n— k. Partition KT'X as

> with a;,b; and g; are real numbers.

KTX = ()§1> , Xy € RF>m, (3.2)
Xo
Define
M, = [15701][]2, My = [18702]V27 (33)

where Uy € R(”*k)x("ik*ll) and V, € ka(k—b) are column orthonormal, R(Us) =
N(XT), R(Vz) = N(XT), I, = rank(X,), o = rank(Xs), and O; € Rs*(n=k=s)
and Oy € R¥*(E=%) qre zero matrices. Suppose that the generalized singular value
decomposition (GSVD) of the matriz pair M and M is

M] =pPx, ST, M =Q%,87, (3.4)

where S is an s-by-s nonsingular matriz, P € RO—k—l)x(n=k=h) ' ¢ Rk—l2)x(k=l2)
are orthogonal, and

r t h—r—t s—h r t h—r—t s—h
I, Oy
= I 0] , Yo = Iy (@)
03 In vy
(3.5)
with h = rank(M) = rank([My, M3]), r = h—rank(M3), t = rank(M;)+rank(Mz)—h,
0, O3 and Oy are zero matrices of size implied by context, and I'y = diag(y1,72,---,V),

Ty = diag(d1,02,...,0;) with 1> > -+ >4 >0,0<6 <--- < 3§, 12+ =1
fori=1,...,t. Let

G =20y — (I, 01| X1 AX{ I, 01) — [I;, 03] Xo A XS I, 05) (3.6)
and partition GS~T into the following form:
r t h—r—t s—h
r G11 Gio G113 G4

GST=1¢ Ga1 Gao Gas Gas |. (3.7)
s—r—t G31 G32 G33 C7'34

Then there exists a matriz C € Cy, such that CX = XA and C(1: s) = Cy if and only
if

XlAXerl = X1A7 XQAX;XQ = XQA and [G{zp G%:l’ Gg:4] =0. (38)
In this case, the general solution is given by
XiAX{ + 2, U7 0
C—K 1 2 KT 3.9
< 0 XQAX;' + Zo Vi (3.9)
with
r t n—k—Ili—r—t
r Gu1 X2 X13
_t Ga1 Xo X23 T
Zl_ s—r—t G31 X32 X33 P ’

n—k—s X41 X42 X43
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k—ly+7—h t h—r—t
r Y1 (G — X120 Gi3

7. t You (Gag — XooT'1)T5 ! Gas QT

2 s—r—t Y31 (G32 — X32F1)F2_1 G33 ’
k—s Y41 Y42 }/43

where X192, X13, Xog, Xo3, X302, X33, Xa1, Xuo, Xu3, Y11, You, Y31, Yu1, Yao and Yy3
are arbitrary matrices.

Proof. By Lemmas 2.1 and 2.2, C' € C, is a solution to Problem I if and only if
there exist Fy € R=F)x(=k) and F, € RF*F such that

C—K<FO1 FO>KT, Fi(1:8)+ Fy(1:s) =20 (3.10)
2
and
0 T+ _
K(O F2>K X = XA. (3.11)

Using (3.2), (3.11) is equivalent to
FiX,=XA and FpX, = XoA. (3.12)
According to Lemma 2.3, equations (3.12) have solutions if and only if
XIAX X, = X1A, XoAXS Xy = XA,

Moreover in this case, the general solution of (3.12) is given by

Fy =X AX{ + 2,U7, (3.13)
Fy = XoAXS + 2oV, (3.14)
where Z; € R(*=F)x(n=k=l) and Z, € R¥*(=L2) are both arbitrary. Putting (3.13)

and (3.14) into Fy (1 : s) + F2(1 : s) = 2Cy, and using the definition of My, My, G and
the GSVD of the matrix pair M{ and MJ it is easy to show that Z; and Z, must
satisfy

[I,,01] 2, P% + [I,,05) Z2Q%9 = GS™T. (3.15)

Partition Z; P and Z>(@) into the following form:

X1 X2 X Yiin. Y2 Yis
Xo1 Xao X3 Yo1 Yo Yo
7P = . 2,0 = 3.16
! X31 X3z Xaz3 2( Y31 Yz Yis (3.16)
Xy Xy Xyz Yy Yo Yy
Substituting (3.5), (3.7) and (3.16) into (3.15) yields
X1 X'y + Y2l Yiz O Gi1 Gi2 Giz Gus
Xor Xool't +Y2oI's Yoz 0| = | Gar Gaz Gaz Gas | . (3.17)
X531 X314+ Y3ls Yzz O Ga1 Gz Gsz3 G

Thus (3.17), and hence (3.15) holds if and only if
[GY4, G34, G34] = 0, (3.18)
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X11=Gn, Xo1=G2, Xz =Gz, Yiz=Gi3, Yaz=Gas, Yiz=Gas,
(3.19)
Yip = (Gia — X12T1))T5 Y, Yoo = (Gog — XooT1)T5 Y, Yao = (G — X3oT')T5 %
(3.20)
Therefore, the solvability conditions for Problem I and the general expression of the
solution of Problem I are obtained by (3.10), (3.12)—(3.14), (3.16), and (3.18)—(3.20).
|
THEOREM 3.2. Given X € R™™ and A as in (3.1), and Cy € R**® where
s >n — k. Partition Cy and X as

X1
Co = Cii Crz . X=X, (3.21)
021 022 X3

where Cpp € R=9)x(n=s) ,, ¢ REs—m)x2s—n) X X, ¢ RO=)Xm gnd X, €
R(Zs=m)xm - et
U=[X1,En_sX3] (3.22)
and
V = [Ep_sX3A — C12E9s_nXo — C11Ep_s X5, X1A — C11 X7 — C12X5). (3.23)
Then Problem I is solvable if and only if
VUTU =V, Cou X1+ CooXo+ Eays O Ey_ X3 = XoA, Oy € Cos_p. (3.24)
In this case, the general solution to Problem I can be expressed as

Cll C’12 HEnfs
C= C21 Caa Eys nCou By |, (3.25)
En—sH En—5012E25—n En—scllEn—s

where H = VU + WQY, where Qy € RM®=)x(n=s=l3) s orthogonal, R(Q2) =
N(UT), I3 = rank(U) and W € RO=9)x(n=s=13) s qrbitrary.

Proof. By Lemma 2.2, there exists C' € C,, such that CX = XA and Cp = C(1: s)
if and only if there exists H € R("=#)*("=5) guch that

Cll Cl2 HEnfs
C= Co Caa Eye nCnbn_s ), CX=XA
En—sH En—sCIQEQs—n En—scllEn—s

Equivalently,
Co1 X1+ CoXo + Eos_nCo1 By s X3 = XoA, Cap € Cos_p

and
HU =V. (3.26)
From Lemma 2.3, (3.26) holds if and only if
VUtU =V, (3.27)

and when (3.27) holds, H can be expressed as
H=VU"+WQ3.

Thus Problem I is solvable if and only if the conditions in (3.24) hold, and the general
solution can be expressed as (3.25). O
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4. The Solution of Problem II. In this section, we solve Problem II over Lg
when Lg is nonempty.

THEOREM 4.1. Given X € R™™ and A as in (3.1), and Cy € R**° where
s < n—k. Suppose the solution set Ls of Problem I be nonempty. Let

~ Ci ém)
KTCK = ( 212 4.1
Co1 O (4-1)
Ein Eip Egs
~ - - FE E E:
Cii — XiAXDU,P = | 21 722 728 | 4.2
(Cu HAXT)U; E31 Ezp Ess (42)
Ey Ei Egs
Fy Fig Fis
~ - - F: F: F
Cos — XoAXVoQ = | 21 722 ~ 3| 4.3
(C22 2AXZ)VoQ F31 I3y F33 (43)
Fy Py Fys

where Xl,XQ are the same as (3.2), the size of matrices C’n and 6’22 are the same as
Fy and Fy in (8.10) respectively, the partition form of (4.2) and (4.3) are the same
as (3.16). Then Problem II has a unique solution and the solution is given by

X AXT + 2,07 0
=K ! ST T 4.4
( 0 XoAXS + 2vE ) (4.4)
where
G X2 Eis Fii (Gi2 — X12F1)F51 Gi3
% ¢ -1
7, = G )522 Eos PT7 Zy = Iy (G22 - )A(ggFl)le G23 QT-
G311 X3z FEss F31 (G3z — X32T'1)T5 " Gss
Ey By Eys Fyy Fyo Fys3

X1 = (G2l 52 + Eg — Fiol'h T 1H0,
X = (GooT1 52 + Egy — Fpol'1 T 1O,
Xzo = (G152 + B3y — FoI' 1510,

o2

@:diag(017...,0t), QZZW

Proof. When Lg is nonempty, it is easy to verify from (3.9) that Lg is a closed
convex set. Since R™*™ is a uniformly convex Banach space under the Frobenius
norm, there exists a unique solution for Problem II [6, p. 22]. Moreover, because the
Frobenius norm is unitary invariant, Problem II is equivalent to

min |[KTCK — KTCK|?. (4.5)
CeLs
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By (3.9) and (4.1)—(4.3), (4.5) is equivalent to

min )||X1AX1++Z1U2T—C~'11H2+ min )||)~(2A)~(2++Z2V2T—C~'22||2.
z

ZIER(n—k)x(n—k—ll zeka(k—LQ
Equivalently,

min ||Z17(C~’117X1AXT_)UQH2+ min ||ZQ*(C’22*X2AX;)V2”2
ZIGR(n—k)X(n—k—ll) ZQERkX(k—Zg)

Clearly, the solution is given by X12, X13, XQQ, X23, X32, X33, )(417)(427 X43 and
Yi1, Ya1, Y31, Yau, Yao, Ya3 such that

||X13 — E13|| = min, ||X23 - E23|| = min, HX33 — E33|| = HliIl, (46)

||X41 — E41|| = min, ||X42 — E42|| = min, HX43 — E43|| = min, (47)

Y11 — Fi1|| = min, ||Y31 — Fo1]| = min, ||Y3; — F31]| = min, (4.8)
[Ya1 — Fy1|| = min, ||Yyo — Fyol| = min, ||Yi3 — Fy3|| = min, (4.9)
[ X12 — Epal|? + [| X121 T3t — (G12T5 't — Fi)||> = min, (4.10)
[ Xoo — Egal|? + || Xo2l'1 T3t — (Gool'yt — Fap)||? = min, (4.11)
| X32 — E32||* + || X32T1T5 " — (G32T'5 ' — F32)||* = min. (4.12)

By (4.6)-(4.9), we get

Xi13=FE13, Xo3=F33, X3z3=2~FE33, Xg =UFE4, Xy =Fp, Xy3=Es3,
(4.13)

Yii=Fu, Yor=1F, Y3 =1Fs, Yiyu=Fu, Yip=Fp, Yio=1Fpy Y;3=1F3.
(4.14)
Applying Lemma 2.5 to (4.10)—(4.12), we obtain

Xi2 = (G2l 152 4 Big — Fiol'h T3 10, Xop = (Gool'1 T3 + Eog — Fol1 1510,
(4.15)

X3p = (G311 152 + B3y — F3oT1 1510, (4.16)

By (3.9) and (4.13)—(4.16), we have the unique solution of Problem II is given by
(4.4). O

THEOREM 4.2. Given X € R™™ and A as in (3.1), and Cy € R**® where
s > n — k. Suppose the solution set Lg of Problem I is nonempty. Let

B Wi Wi Wis
C=|Wy Wi Wss s (417)
W31 Wiy Wiss



10 Z.J. BAI

where W11 € R("’S)X("’S), Wao € R(QS’")X@S*”), Wis € R(n=9)x(n=5) * Then Prob-
lem II has a unique solution and it can be expressed as

Ciy Chz HE,_,
c* = Ca1 X Coo Eos nCor B |, (4.18)
En—sH En—scl2E2s—n En—scllEn—s

where

. A - 1
H= VU+ + Wan W = i(WISEn—S + En—sW31)Q2-

Proof. As in the proof of Theorem 4.1, we can show that Problem II has a unique
solution in Lg. By (3.25) and (4.17), we know that Problem II is equivalent to

min (|HEp_s — Wis|]? + | En_s H — W31 ||?).
HeR(n—s)x(n—s)

Equivalently,

min  ([|H = WisEn—||* + [|1H — EnsWa1|*).
HeR(nfs)X(nfs)

By Lemma 2.4, it is in turn equivalent to

. 1
min HH - 7(W13En—s + En—sW31)||-
HeR(nfs)X(n—s) 2

That is,

) 1
min IVUT + WQE — ~(Wi3E,_, + E,_Ws1)||.
WEeR(n—s)x(n—k—13) 2

Since Q2 is orthogonal and U@y = 0, we have
1
W= §(W13En—s + En_sW31)Qo.

Therefore, the solution of Problem II can be expressed as (4.18). O
Based on the above discussion, we give the following algorithm for solving Problem
II.

ALGORITHM I

Given X = [x1,X2,...,X;m] € R™™ and A asin (3.1), Cy € R¥**, and C e R m,
1. Calculate k = [n/2].
2. If s <n—k, then
(a) Compute X; and X, by (3.2) and then compute X~ and X .
(b) If )N(lAf(lJrf(l = X;A and XQAX;XQ = X,A, then we continue. Other-
wise we stop.
(c) Calculate M7 and Ms as in (3.3).
(d) Construct the GSVD of the matrix pair [M{, MI] by (3.4).
(e) Compute G as in (3.6) and then calculate GS~7.
(f) Partition GS~7 as in (3.7).
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(g) If G4, G4 and G34 are zero matrices, then calculate C* as in (4.4).
Otherwise we stop.
3. else
(a) Partition X and Cy as in (3.21), and calculate U and V as in (3.22) and
(3.23).
(b) If the conditions of (3.24) are satisfied, then compute C* as in (4.18).
Otherwise we stop.

Now we consider the computational complexity of our algorithm. We first consider
the cost of Step 2. For Substep (a), since K has only 2 nonzero entries per row,
it requires O(nm) operations to compute X; and X,. Then using singular value
decomposition (SVD) to compute X; and X requires O(n?m + m?3) operations.
Substep (b) obviously requires O(n?m) operations. For Substep (c), because U and
V can be obtained by SVD of X; and X, in Substep (a) respectively, it requires
no operations to compute M; and Ms. For Substep (d), if we use Paige’s algorithm
[19] to compute the GSVD of the matrix pair [M{, M]], then the cost will be of
O(s?(n—1; —ly—s/3)) operations if n—1l; —ly > s (O((n—11 —12)*(s— (n—11 —12)/3))
operations if n—1I; —ls < s). Substep (e) requires O(n?m+s®) operations. Substep (f)
requires no operations. Finally, because of the sparsity of K again, Step (g) requires
Om2(n—k—11)+n(n—k—11)%+n2(k—lz) +n(k —l2)?) operations. Thus the total
complexity of Step 2 is O(n?(n — Iy —la) + s%(n — l1 — la — 8/3) + 8% + n’m + m?3)
ifn—10 —lo > s (0On%(n—1; — ) +s%(s — (n —l1 — 12)/3) + 2 + n’m +m3) if
n— ll — lz S S)

Next, we consider the cost of Step 3. For Substep (a), since E,, is a backward
identity matrix, it requires O((n—s)?m+(n—s)(2s—n)m) operations to form U and V.
For Substep (b), using SVD to compute U™ requires O((n— s)?m+m?) operations. If
we compute VUTU as [V (U+U)], then the cost will only be of O(m?(n—s)) operations.
Thus the cost for Substep (b) is O((n— s)*m+m? +m?(n—s) + (n—s)?). Therefore,
the total cost of Step 3 is O((n—5)3+ (n—s)?*m+ (n—s)(2s —n)m+m?(n—s) +m?).

From above, we know that the total cost of the algorithm is the cost required by
Step 2 if s <n — k or by Step 3 if s > n — k. We remark that in practice, m < n.

5. Numerical Experiments. In this section, we will demonstrate the algorithm
using Matlab.
Example 1. We consider the following Hopfield neural network system

d

TN (—u+ Of (), (5.1)
dt

where T' = diag(71,...,7n), & = [wi;], and £ = [f1(w1),..., fa(un)]? with f;(u;) are

squashing functions, see [8] for detail.

In this example, we design a neural network such that u* is a stable equilibrium,
with f;(uf) = 1/(1 +e~%) # 0. It is known that u* is an equilibrium only if

u* = Of. (5.2)
It implies that
Q=T0G;' +G;", (5.3)
where C satisfies that

CG ' =T (u* — G'f). (5.4)
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Here, G4 = diag( fl)(uf), cey ,(Ll)(u:)), where (-)(*) denotes the 1th derivatives.

For any given T', the design problem is reduced to finding a stable matrix C' that
maps G 'f to T~ (u* — G 'f). Moreover, we know that if 7! (u* — G;'f) = \G'f
for some real negative number A, then there exists a stable matrix C' such that (5.4)
holds, see [8, Theorem 4.1].

In practice, we may be interested in that the matrix C'is a centrosymmetric matrix
and its s-by-s leading principal submatrix is the given matrix Cy. Moreover, we can
obtain an experimental matrix C' which may not satisfy the structural requirement
(centrosymmetric or the submatrix constraint) and/or spectral requirement (having
eigenpairs G 'f and \). We want to find such structural stable matrix C* which maps
G7'f to T~ (u* — G7'f) = A\G7'f (A < 0) and is the best approximation of C' in
Frobenius norm. Therefore the design problem turn into Problems I and II proposed
in this paper.

For demonstration purpose, we let n = 8, m = 1, s = 5. Given u* = 0. Then
we have f;(uf) = 1/2 and fi(l)(uf) =1/4 for i = 1,...,n. Thus G4 = 1/4I, and
f = 1/2e where e denotes the n-vector of all ones. Therefore, the given eigenvector
Gglf = 2e. For this example, we chose T" = 0.49381,, so that one eigenvalue of C is
A=-1/0.4938 = —2.0251.

Given X = G;'f =2e, A = A = —2.0251 and

1.0134 —-0.6262 —0.6091 0.2024 0.8464

0.3118 0.1653 1.1857 0.8940 0.0265
Co =] 0.1912 0.6515  —0.9667 1.0504  —0.5886
—-0.7399 04515 —-0.6165 —0.5674 —0.9952
—0.0169 —0.8830 —0.2698 —0.9952 —0.5674

Assume that from the experiment, we get the following matrix C' ¢ Cs:

3.6448 —1.5739  0.5661 1.2763 0.5473 0.5312 0.2992  —1.2917
1.5866 0.1344 0.4095 1.1794  —0.9925 0.8905 0.5602  —1.1477
0.7641 0.6437  —2.0927  1.5228 0.0533 0.8970 0.1428 0.5543
—1.0982 1.4538 —2.1948 —-1.4674 -—0.7619 0.1669 0.1910  —1.4562
0.7249 —1.8998 —0.1476 —0.7729 0.5174 —2.3614 —0.3332 —0.3404
0.1476 0.8403 —0.3028 —0.4868  0.8683 0.4873  —0.0583  1.8999
2.2642 1.8592 1.4312 0.6824 0.5707 1.9692 1.3696 —0.6353
—0.0637 —0.4936  1.9980 1.9972 —0.1334 0.8525 —3.0381 0.5415

O
Il

We can show that Problem I is solvable. Then following the steps in the algorithm in
84, we obtain the required matrix C* € Lg as follows:

1.0134 —-0.6262 —0.6091 0.2024 0.8464 0.1507 —1.2111 —-1.7916
0.3118 0.1653 1.1857 0.8940 0.0265 —1.3515 —1.3027 —1.9541
0.1912 0.6515 —0.9667 1.0504 —0.5886 —0.8704 —0.6760 —0.8166
—-0.7399 04515 —0.6165 —0.5674 —0.9952 —0.2698 —0.8830 —0.0169
—-0.0169 —0.8830 —0.2698 —0.9952 —0.5674 —0.6165 0.4515 —0.7399
—0.8166 —0.6760 —0.8704 —0.5886 1.0504 —0.9667 0.6515 0.1912
—1.9541 -1.3027 —-1.3515 0.0265 0.8940 1.1857 0.1653 0.3118
-1.7916 —-1.2111  0.1507 0.8464 0.2024 —0.6091 —-0.6262 1.0134

which satisfies [|C* —C| = mincezg [|C—C||. Finally, the following matrix Q* = TC*G;* +
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G;l can be calculated:
6.0016 —1.2368 —1.2031 0.3997 1.6719 0.2976  —2.3922 —3.5388
0.6158 4.3265 2.3420 1.7659 0.0523 —2.6695 —2.5731 —3.8598
0.3776 1.2868 2.0907 2.0748 —1.1625 —1.7192 —-1.3352 —1.6129

O — —1.4615 0.8918 —1.2176 2.8793 —1.9657 —0.5329 —1.7441 —0.0333
—0.0333 —1.7441 —-0.5329 —1.9657 2.8793 —1.2176 0.8918 —1.4615
—-1.6129 —1.3352 —1.7192 —1.1625 2.0748 2.0907 1.2868 0.3776
—3.8598 —2.5731 —2.6695 0.0523 1.7659 2.3420 4.3265 0.6158
—3.5388 —2.3922  0.2976 1.6719 0.3997 —1.2031 —1.2368 6.0016

Example 2. In this example, we demonstrate our algorithm in another way. For

simplicity , we consider n = 10, m = 3, s = 6. We first choose a random matrix C € Cio:

1.6405 —0.1078 —0.8875 0.3703 —0.2894 —0.6384 0.7080 0.2080 0.3988
—0.4574 —0.8891 —0.1455 —0.0858 —0.2658 —1.3510 0.7036 —0.3054 0.4304
0.1118 —0.1969 0.1812 —0.2555 1.1810 0.5378 0.4137 0.8233 —1.2063
—0.7977 —0.0109 0.3346 —0.3387 0.3376 0.2088 —0.0052 0.0533 0.8645

o= 0.1512 —0.5887 —0.3039 —0.0137 0.4058 0.1813 0.5433 —0.1110 0.4449
~ | —0.0643 0.4449 —0.1110 0.5433 0.1813 0.4058 —0.0137 —0.3039 —0.5887
—0.2588 0.8645 0.0533 —0.0052 0.2088 0.3376 —0.3387 0.3346 —0.0109
1.3373 —1.2063 0.8233 0.4137 0.5378 1.1810 —0.2555 0.1812 —0.1969

1.4557 0.4304 —0.3054 0.7036 —1.3510 —0.2658 —0.0858 —0.1455 —0.8891

0.8062 0.3988 0.2080 0.7080 —0.6384 —0.2894 0.3703 —0.8875 —0.1078

Then we compute its eigenpairs: Three of the eigenvalues of C are 2.1176, 1.0359 +
1.1570+/—1. Let x1, X2 + v/—1x3 be the corresponding eigenvectors. We now take

—0.0659 —0.2562 —0.5799
0.0678 0.0191 —0.2116
—0.6079 0 —0.2835
0.0422 0.0986 0.1571
X = s, x3,%1] = 0.0959 —0.1867 0.1181
i 0.0959 —0.1867 0.1181
0.0422 0.0986 0.1571
—0.6079  0.0000 —0.2835
0.0678 0.0191 —0.2116
—0.0659 —0.2562 —0.5799
and
1.0359  1.1570 0
A=|-1.1570 1.0359 0
0 0 2.1176
Given such X, A, and
1.6405 —0.1078 —0.8875 0.3703 —0.2894 —0.6384
—0.4574 —0.8891 —0.1455 —0.0858 —0.2658 —1.3510
Co = 0.1118 —0.1969 0.1812 —0.2555 1.1810 0.5378
—0.7977 —0.0109 0.3346 —0.3387 0.3376 0.2088 ’
0.1512  —0.5887 —0.3039 —0.0137 0.4058 0.1813
—0.0643 0.4449 —0.1110 0.5433 0.1813 0.4058

we can verify that Problem I is solvable. Hence Lg is nonempty. We now perturb C by a

0.8062
1.4557
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random matrix to obtain a matrix C & Cio:

1.6510 —0.0907 —0.8789 0.3653 —0.2906 —0.6402 0.7090 0.2027 0.4049
—0.4538 —0.8976 —0.1401 —0.0693 —0.2665 —1.3369 0.6919 —0.3034 0.4402
0.1097 —0.1948 0.1928 —0.2422 1.1870 0.5320 0.4281 0.8313 —1.2258
—0.7985 —0.0205 0.3434 —0.3477 0.3422 0.2029 0.0032 0.0747 0.8667

G = 0.1457 —0.5941 —0.2902 —0.0137 0.4016 0.1786 0.5295 —0.1168 0.4491
| —0.0578 0.4532 —0.1160 0.5324 0.1973 0.4021 —0.0297 —0.3002 —0.5844
—0.2607 0.8667 0.0397 —0.0128 0.1987 0.3351 —0.3423 0.3373 —0.0018
1.3200 —1.2080 0.8347 0.4064 0.5380 1.1847 —0.2747 0.1803 —0.1985
1.4712 0.4299 —0.2972 0.7098 —1.3340 —-0.2750 —0.0797 —0.1331 —0.9039
0.8031 0.3804 0.2401 0.7207 —0.6404 —0.2924 0.3609 —0.8630 —0.1050

Using the proposed algorithm in §4, we can obtain C* € Lg such that [|C* — C| =
mingerg ||C — C||. Moreover, the solution C* is given by:

1.6405 —0.1078 —0.8875 0.3703 —0.2894 —0.6384 0.7141 0.2080 0.3972

—0.4574 —0.8891 —0.1455 —0.0858 —0.2658 —1.3510 0.7013 —0.3054 0.4310

0.1118  —0.1969 0.1812 —0.2555 1.1810 0.5378 0.4160 0.8233 —1.2068

—0.7977 —0.0109 0.3346 —0.3387 0.3376 0.2088 —0.0054 0.0533 0.8646

o = 0.1512 —0.5887 —0.3039 —0.0137 0.4058 0.1813 0.5433 —0.1110 0.4449
— | —0.0643 0.4449 —0.1110 0.5433 0.1813 0.4058 —0.0137 —0.3039 —0.5887
—0.2588 0.8646 0.0533 —0.0054 0.2088 0.3376 —0.3387 0.3346 —0.0109

1.3381 —1.2068 0.8233 0.4160 0.5378 1.1810 —0.2555 0.1812 —0.1969

1.4549 0.4310 —0.3054 0.7013 —1.3510 —0.2658 —0.0858 —0.1455 —0.8891

0.8084 0.3972 0.2080 0.7141 —0.6384 —0.2894 0.3703 —0.8875 —0.1078

In addition, we note that if in Problem I, we also assume that the required matrix C' is
symmetric, i.e. C is bisymmetric, then Problem I is reduced to the inverse problem for sub-
matrix constrained bisymmetric matrices discussed in [18]. For the corresponding solvability
conditions, the algorithm for finding the best approximation solution to the corresponding
best approximation problem and the numerical examples, we can refer to [18].

These examples and many other numerical experiments with the algorithm proposed in
84 confirm our theoretical results in this paper.

6. Conclusions. In this paper, we discussed the inverse eigenproblem for the sub-
matrix constrained centrosymmetric matrices. We also considered the best approximation
solution in the corresponding solution set for the constrained inverse problem to a given ma-
trix in Frobenius norm. The solvability conditions and the explicit formula for the solution
are provided. We proposed an algorithm for finding the best approximation solution. Some
tests are also given to illustrate our results.
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