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Abstract. In this paper, we first consider the existence of and the general expression for the
solution to the constrained inverse eigenproblem defined as follows: given a set of complex n-vectors
{xi}m

i=1 and a set of complex numbers {λi}m
i=1, and an s-by-s real matrix C0, find an n-by-n real

centrosymmetric matrix C such that the s-by-s leading principal submatrix of C is C0, and {xi}m
i=1

and {λi}m
i=1 are the eigenvectors and eigenvalues of C respectively. We then concerned with the best

approximation problem for the constrained inverse problem whose solution set is nonempty. That
is, given an arbitrary real n-by-n matrix C̃, find a matrix C which is the solution to the constrained
inverse problem such that the distance between C and C̃ is minimized in the Frobenius norm. We give
an explicit solution and a numerical algorithm to the best approximation problem. Some illustrative
experiments are also presented.
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1. Introduction. Let En be the n-by-n backward identity matrix, i.e, En has
1 on the anti-diagonal and zeros elsewhere. An n-by-n real matrix C is said to
be centrosymmetric if C = EnCEn. The centrosymmetric matrices have practical
applications in many areas such as pattern recognition [10], the numerical solution
of certain differential equations [1, 4], Markov processes [22] and various physical
and engineering problems [11, 12]. The symmetric Toeplitz matrices, an important
subclass of the class of symmetric centrosymmetric matrices, appear naturally in
digital signal processing applications and other areas [13].

The inverse eigenproblems play an important role in many applications such as
control theory [23], the design of Hopfield neural networks [8, 16], vibration theory
[20] and structure mechanics and molecular spectroscopy [14]. For the recent progress,
see for instance [7, 25]. The inverse eigenproblem for centrosymmetric matrices has
been discussed by Bai and R. Chan [2]. However, the inverse eigenproblem for cen-
trosymmetric matrices with a submatrix constraint has not been discussed. In this
paper, we will consider two related problems. The first problem is the constrained
inverse eigenproblem for centrosymmetric matrices:

Problem I. Given the eigenpairs X = [x1,x2, . . . ,xm] ∈ Cn×m, Λ = diag(λ1, . . . , λm) ∈
Cm×m, and a matrix C0 ∈ Rs×s, find a centrosymmetric matrix C in Rn×n such that
CX = XΛ and the s-by-s leading principal submatrix of C is C0.

The prototype of this problem initially arose in the design of Hopfield neural net-
works [8, 16]. It also occurs in the design of vibration in mechanism, civil engineering
and aviation [5]. The problem has been studied for bisymmetric matrices in [18]. The
second problem we consider in this paper is the problem of best approximation.

Problem II. Let LS be the solution set of Problem I. Given a matrix C̃ ∈ Rn×n,
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find C∗ ∈ LS such that

‖C∗ − C̃‖ = min
C∈LS

‖C − C̃‖,

where ‖ · ‖ is the Frobenius norm.

The best approximation problem arises frequently in experimental design, see for
instance [17, p.123]. Here the matrix C̃ may be a matrix obtained from experiments,
but it may not satisfy the structural requirement (centrosymmetric or the submatrix
constraint) and/or spectral requirement (having eigenpairs X and Λ). The best esti-
mate C∗ is the matrix that satisfies both requirements and is the best approximation
of C̃ in the Frobenius norm. In addition, because there are fast algorithms for solving
various kinds of centrosymmetric matrices [15], the best approximate C∗ of C̃ can
also be used as a preconditioner in the preconditioned conjugate gradient method for
solving linear systems with coefficient matrix C̃, see for instance [3].

We remark that when s = 0, Problem I is reduced to the inverse eigenproblem for
centrosymmetric matrices discussed by Bai and R. Chan [2]. When s = n, C∗ = C0

is the best approximation of the matrix C̃ to Problem II. In this paper, we consider
the general case when 0 < s < n.

In this paper, we use the following notations. We denote the identity matrix of
order n by In. Let rank(A) be the rank of a matrix A. Let A+ and A(1 : s) denote the
Moore-Penrose generalized inverse and the leading principal submatrix of a matrix
A respectively. R(A) and N (A) denote the column space and the null space of A
respectively.

The paper is organized as follows. In §2 we first review the structure of cen-
trosymmetric matrices and give some useful lemmas. In §3 we provide the solvability
conditions for and the general solutions of Problem I. In §4 we show the existence
and uniqueness of the solution to Problem II when the solution set of Problem I is
nonempty, and derive a formula for the best approximation of Problem II, and then
propose a numerical algorithm for computing the minimizer. In §5 an experiment is
presented to illustrate our results. Finally, in §6, we give some conclusions.

2. Preliminary Lemmas. In this section, we will recall the properties of cen-
trosymmetric matrices and give some preliminary lemmas.

Let k = [n/2] denote the largest integer number that is not greater than n/2.
When n = 2k, we define

K =
1√
2

(
Ik Ik

Ek −Ek

)

and when n = 2k + 1, let

K =
1√
2




Ik 0 Ik

0
√

2 0
Ek 0 −Ek


 .

Clearly, K is orthogonal. Then we have the following splitting of centrosymmetric
matrices into smaller submatrices using K, see for example [9, 2].

Lemma 2.1. [9] Denote the set of all n-by-n real centrosymmetric matrices by
Cn. Then any C ∈ C2k can be written as

C =
(

A BEk

EkB EkAEk

)
= K

(
A + B 0

0 A−B

)
KT , A, B ∈ Rk×k.
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Any C ∈ C2k+1 can be written as

C =




A p BEk

qT c qT Ek

EkB Ekp EkAEk


 = K




A + B
√

2p 0√
2qT c 0
0 0 A−B


 KT ,

where A,B ∈ Rk×k, p,q ∈ Rk, c ∈ R. Moreover, for all n = 2k and 2k + 1, any
C ∈ Cn is of the form:

C = K

(
F1 0
0 F2

)
KT , F1 ∈ R(n−k)×(n−k), F2 ∈ Rk×k. (2.1)

Lemma 2.2. Suppose that C ∈ Cn and C0 = C(1 : s). If s < n− k, then

F1(1 : s) + F2(1 : s) = 2C0, (2.2)

where F1 and F2 are the same as (2.1), and if s ≥ n− k, then we obtain

C =




C11 C12 HEn−s

C21 C22 E2s−nC21En−s

En−sH En−sC12E2s−n En−sA11En−s


 , (2.3)

where H ∈ R(n−s)×(n−s) and C0 = C(1 : s) =
(

C11 C12

C21 C22

)
with C11 ∈ R(n−s)×(n−s)

and C22 ∈ C2s−n.
Proof. If s < n− k, we get from Lemma 2.1 that

C(1 : s) = A(1 : s)

and

F1(1 : s) + F2(1 : s) = (A + B)(1 : s) + (A−B)(1 : s) = 2A(1 : s).

Thus (2.2) holds.

If s ≥ n − k, then since C(1 : s) =
(

C11 C12

C21 C22

)
, we can partition C into the

following form

C =




C11 C12 C13

C21 C22 C23

C31 C32 C33


 , (2.4)

where C11 ∈ R(n−s)×(n−s), C22 ∈ R(2s−n)×(2s−n), C33 ∈ R(n−s)×(n−s). By (2.4)
and comparing the two sides of C = EnCEn, we obtain C13 = En−sC31En−s,
C22 = E2s−nC22E2s−n, C23 = E2s−nC21En−s, C32 = En−sC12E2s−n and C33 =
En−sC11En−s. Let H = C13En−s, we get C13 = HEn−s and C31 = En−sH. Substi-
tuting C13, C23, C31, C32 and C33 into (2.4) and noticing that C22 = E2s−nC22E2s−n,
we have (2.3).

In order to investigate the solvability of Problem I, we need the following lemmas.
Lemma 2.3. [21, Lemma 1.3] Given X, G ∈ Rn×m with rank(X) = l. Then

Y X = G has a solution Y ∈ Rn×n if and only if GX+X = G. In this case the general
solution is

Y = GX+ + ZUT
2 ,
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where U2 ∈ Rn×(n−l), UT
2 U2 = In−l, R(U2) = N (XT ), and Z ∈ Rn×(n−l) is arbi-

trary.
Lemma 2.4. [24, Lemma 3.1] Given any E, F ∈ Rn×n. Then there exists a

unique Y ∗ ∈ Rn×n such that

‖Y ∗ − E‖2 + ‖Y ∗ − F‖2 = min
Y ∈Rn×n

{‖Y − E‖2 + ‖Y − F‖2}

and

Y ∗ =
E + F

2
.

Lemma 2.5. Given any E, F ∈ Ru×v, D = diag(d1, . . . , dv) > 0 and Θ =
diag(θ1, . . . , θv), where θi = 1/(1 + d2

i ). Then there exists a unique Y ∗ ∈ Ru×v such
that

‖Y ∗ − E‖2 + ‖Y ∗D − F‖2 = min
Y ∈Ru×v

{‖Y − E‖2 + ‖Y D − F‖2}

and

Y ∗ = (E + FD)Θ.

Proof. Let Y = (yij), E = (eij), F = (fij). Since

‖Y − E‖2 + ‖Y D − F‖2 =
u∑

i=1

v∑

j=1

(yij − eij)2 +
u∑

i=1

v∑

j=1

(yijdj − fij)2

=
u∑

i=1

v∑

j=1

[y2
ij(1 + d2

j )− 2yij(eij + fijdj) + e2
ij + f2

ij ]

=
u∑

i=1

v∑

j=1

(1 + d2
j )[(yij − eij + fijdj

1 + d2
j

)2 +
e2
ij + f2

ij

1 + d2
j

− (eij + fijdj)2

(1 + d2
j )2

].

Thus there exists Y ∈ Ru×v such that ‖Y −E‖2 + ‖Y D−F‖2 = min is equivalent to
yij = (eij + fijdj)/(1 + d2

j ), i.e. Y ∗ = (E + FD)Θ.
From Lemma 2.5, we can easily see that Lemma 2.4 is a special case of Lemma

2.5 where u = v = n, D = In, and Θ = 1/2In.

3. Solvability Conditions and General Solutions of Problem I. Before
we come to Problem I, we first note the following facts: For a real matrix C ∈ Cn, its
complex eigenvectors and eigenvalues are complex conjugate pairs. If a± b

√−1 and
x±√−1y are one of its eigenpairs, then we have Cx = ax− by and Cy = ay + bx,
i.e.

C[x,y] = [x,y]
(

a b
−b a

)
.

Therefore, without loss of generality, we can assume that X ∈ Rn×m and

Λ = diag(Ψ1,Ψ2, . . . ,Ψl, g1, . . . , gm−2l) ∈ Rm×m, (3.1)
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where Ψi =
(

ai bi

−bi ai

)
with ai, bi and gi are real numbers.

Theorem 3.1. Given X ∈ Rn×m and Λ as in (3.1), and C0 ∈ Rs×s where
s < n− k. Partition KT X as

KT X =
(

X̃1

X̃2

)
, X̃2 ∈ Rk×m. (3.2)

Define

M1 = [Is, O1]U2, M2 = [Is, O2]V2, (3.3)

where U2 ∈ R(n−k)×(n−k−l1) and V2 ∈ Rk×(k−l2) are column orthonormal, R(U2) =
N (X̃T

1 ), R(V2) = N (X̃T
2 ), l1 = rank(X̃1), l2 = rank(X̃2), and O1 ∈ Rs×(n−k−s)

and O2 ∈ Rs×(k−s) are zero matrices. Suppose that the generalized singular value
decomposition (GSVD) of the matrix pair MT

1 and MT
2 is

MT
1 = PΣ1S

T , MT
2 = QΣ2S

T , (3.4)

where S is an s-by-s nonsingular matrix, P ∈ R(n−k−l1)×(n−k−l1), Q ∈ R(k−l2)×(k−l2)

are orthogonal, and

Σ1 =




r t h− r − t s− h

Ir

Γ1 O
O3


, Σ2 =




r t h− r − t s− h

O4

Γ2 O
Ih−r−t




(3.5)
with h = rank(M) = rank([M1,M2]), r = h−rank(M2), t = rank(M1)+rank(M2)−h,
O, O3 and O4 are zero matrices of size implied by context, and Γ1 = diag(γ1, γ2, . . . , γt),
Γ2 = diag(δ1, δ2, . . . , δt) with 1 ≥ γt ≥ · · · ≥ γ1 > 0, 0 < δ1 ≤ · · · ≤ δt, γ2

i + δ2
i = 1

for i = 1, . . . , t. Let

G̃ = 2C0 − [Is, O1]X̃1ΛX̃+
1 [Is, O1]T − [Is, O2]X̃2ΛX̃+

2 [Is, O2]T (3.6)

and partition G̃S−T into the following form:

G̃S−T =




r t h− r − t s− h

r G11 G12 G13 G14

t G21 G22 G23 G24

s− r − t G31 G32 G33 G34


. (3.7)

Then there exists a matrix C ∈ Cn such that CX = XΛ and C(1 : s) = C0 if and only
if

X̃1ΛX̃+
1 X̃1 = X̃1Λ, X̃2ΛX̃+

2 X̃2 = X̃2Λ and [GT
14, G

T
24, G

T
34] = 0. (3.8)

In this case, the general solution is given by

C = K

(
X̃1ΛX̃+

1 + Z1U
T
2 0

0 X̃2ΛX̃+
2 + Z2V

T
2

)
KT (3.9)

with

Z1 =




r t n− k − l1 − r − t

r G11 X12 X13

t G21 X22 X23

s− r − t G31 X32 X33

n− k − s X41 X42 X43


PT ,
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Z2 =




k − l2 + r − h t h− r − t

r Y11 (G12 −X12Γ1)Γ−1
2 G13

t Y21 (G22 −X22Γ1)Γ−1
2 G23

s− r − t Y31 (G32 −X32Γ1)Γ−1
2 G33

k − s Y41 Y42 Y43


QT ,

where X12, X13, X22, X23, X32, X33, X41, X42, X43, Y11, Y21, Y31, Y41, Y42 and Y43

are arbitrary matrices.
Proof. By Lemmas 2.1 and 2.2, C ∈ Cn is a solution to Problem I if and only if

there exist F1 ∈ R(n−k)×(n−k) and F2 ∈ Rk×k such that

C = K

(
F1 0
0 F2

)
KT , F1(1 : s) + F2(1 : s) = 2C0 (3.10)

and

K

(
F1 0
0 F2

)
KT X = XΛ. (3.11)

Using (3.2), (3.11) is equivalent to

F1X̃1 = X̃1Λ and F2X̃2 = X̃2Λ. (3.12)

According to Lemma 2.3, equations (3.12) have solutions if and only if

X̃1ΛX̃+
1 X̃1 = X̃1Λ, X̃2ΛX̃+

2 X̃2 = X̃2Λ.

Moreover in this case, the general solution of (3.12) is given by

F1 = X̃1ΛX̃+
1 + Z1U

T
2 , (3.13)

F2 = X̃2ΛX̃+
2 + Z2V

T
2 , (3.14)

where Z1 ∈ R(n−k)×(n−k−l1) and Z2 ∈ Rk×(k−l2) are both arbitrary. Putting (3.13)
and (3.14) into F1(1 : s) + F2(1 : s) = 2C0, and using the definition of M1,M2, G̃ and
the GSVD of the matrix pair MT

1 and MT
2 , it is easy to show that Z1 and Z2 must

satisfy

[Is, O1]Z1PΣ1 + [Is, O2]Z2QΣ2 = G̃S−T . (3.15)

Partition Z1P and Z2Q into the following form:

Z1P =




X11 X12 X13

X21 X22 X23

X31 X32 X33

X41 X42 X43


 , Z2Q =




Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

Y41 Y42 Y43


 . (3.16)

Substituting (3.5), (3.7) and (3.16) into (3.15) yields



X11 X12Γ1 + Y12Γ2 Y13 0
X21 X22Γ1 + Y22Γ2 Y23 0
X31 X32Γ1 + Y32Γ2 Y33 0


 =




G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34


 . (3.17)

Thus (3.17), and hence (3.15) holds if and only if

[GT
14, G

T
24, G

T
34] = 0, (3.18)
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X11 = G11, X21 = G21, X31 = G31, Y13 = G13, Y23 = G23, Y33 = G33,
(3.19)

Y12 = (G12 −X12Γ1)Γ−1
2 , Y22 = (G22 −X22Γ1)Γ−1

2 , Y32 = (G32 −X32Γ1)Γ−1
2 .

(3.20)
Therefore, the solvability conditions for Problem I and the general expression of the
solution of Problem I are obtained by (3.10), (3.12)–(3.14), (3.16), and (3.18)–(3.20).

Theorem 3.2. Given X ∈ Rn×m and Λ as in (3.1), and C0 ∈ Rs×s where
s ≥ n− k. Partition C0 and X as

C0 =
(

C11 C12

C21 C22

)
, X =




X1

X2

X3


 , (3.21)

where C11 ∈ R(n−s)×(n−s), C22 ∈ R(2s−n)×(2s−n), X1, X3 ∈ R(n−s)×m and X2 ∈
R(2s−n)×m. Let

U = [X1, En−sX3] (3.22)

and

V = [En−sX3Λ− C12E2s−nX2 − C11En−sX3, X1Λ− C11X1 − C12X2]. (3.23)

Then Problem I is solvable if and only if

V U+U = V, C21X1 + C22X2 + E2s−nC21En−sX3 = X2Λ, C22 ∈ C2s−n. (3.24)

In this case, the general solution to Problem I can be expressed as

C =




C11 C12 HEn−s

C21 C22 E2s−nC21En−s

En−sH En−sC12E2s−n En−sC11En−s


 , (3.25)

where H = V U+ + WQT
2 , where Q2 ∈ R(n−s)×(n−s−l3) is orthogonal, R(Q2) =

N (UT ), l3 = rank(U) and W ∈ R(n−s)×(n−s−l3) is arbitrary.
Proof. By Lemma 2.2, there exists C ∈ Cn such that CX = XΛ and C0 = C(1 : s)

if and only if there exists H ∈ R(n−s)×(n−s) such that

C =




C11 C12 HEn−s

C21 C22 E2s−nC21En−s

En−sH En−sC12E2s−n En−sC11En−s


 , CX = XΛ.

Equivalently,

C21X1 + C22X2 + E2s−nC21En−sX3 = X2Λ, C22 ∈ C2s−n

and

HU = V. (3.26)

From Lemma 2.3, (3.26) holds if and only if

V U+U = V, (3.27)

and when (3.27) holds, H can be expressed as

H = V U+ + WQT
2 .

Thus Problem I is solvable if and only if the conditions in (3.24) hold, and the general
solution can be expressed as (3.25).
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4. The Solution of Problem II. In this section, we solve Problem II over LS

when LS is nonempty.
Theorem 4.1. Given X ∈ Rn×m and Λ as in (3.1), and C0 ∈ Rs×s where

s < n− k. Suppose the solution set LS of Problem I be nonempty. Let

KT C̃K =
(

C̃11 C̃12

C̃21 C̃22

)
, (4.1)

(C̃11 − X̃1ΛX̃+
1 )U2P =




E11 E12 E13

E21 E22 E23

E31 E32 E33

E41 E42 E43


 , (4.2)

(C̃22 − X̃2ΛX̃+
2 )V2Q =




F11 F12 F13

F21 F22 F23

F31 F32 F33

F41 F42 F43


 , (4.3)

where X̃1, X̃2 are the same as (3.2), the size of matrices C̃11 and C̃22 are the same as
F1 and F2 in (3.10) respectively, the partition form of (4.2) and (4.3) are the same
as (3.16). Then Problem II has a unique solution and the solution is given by

C∗ = K

(
X̃1ΛX̃+

1 + Z1U
T
2 0

0 X̃2ΛX̃+
2 + Z2V

T
2

)
KT , (4.4)

where

Z1 =




G11 X̂12 E13

G21 X̂22 E23

G31 X̂32 E33

E41 E42 E43


 PT , Z2 =




F11 (G12 − X̂12Γ1)Γ−1
2 G13

F21 (G22 − X̂22Γ1)Γ−1
2 G23

F31 (G32 − X̂32Γ1)Γ−1
2 G33

F41 F42 F43


 QT .

X̂12 = (G12Γ1Γ−2
2 + E12 − F12Γ1Γ−1

2 )Θ,

X̂22 = (G22Γ1Γ−2
2 + E22 − F22Γ1Γ−1

2 )Θ,

X̂32 = (G32Γ1Γ−2
2 + E32 − F32Γ1Γ−1

2 )Θ,

Θ = diag(θ1, . . . , θt), θi =
δ2
i

δ2
i + γ2

i

.

Proof. When LS is nonempty, it is easy to verify from (3.9) that LS is a closed
convex set. Since Rn×n is a uniformly convex Banach space under the Frobenius
norm, there exists a unique solution for Problem II [6, p. 22]. Moreover, because the
Frobenius norm is unitary invariant, Problem II is equivalent to

min
C∈LS

‖KT C̃K −KT CK‖2. (4.5)
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By (3.9) and (4.1)–(4.3), (4.5) is equivalent to

min
Z1∈R(n−k)×(n−k−l1)

‖X̃1ΛX̃+
1 + Z1U

T
2 − C̃11‖2 + min

Z2∈Rk×(k−l2)
‖X̃2ΛX̃+

2 + Z2V
T
2 − C̃22‖2.

Equivalently,

min
Z1∈R(n−k)×(n−k−l1)

‖Z1−(C̃11−X̃1ΛX̃+
1 )U2‖2+ min

Z2∈Rk×(k−l2)
‖Z2−(C̃22−X̃2ΛX̃+

2 )V2‖2.

Clearly, the solution is given by X12, X13, X22, X23, X32, X33, X41,X42, X43 and
Y11, Y21, Y31, Y41, Y42, Y43 such that

‖X13 − E13‖ = min, ‖X23 − E23‖ = min, ‖X33 − E33‖ = min, (4.6)

‖X41 − E41‖ = min, ‖X42 − E42‖ = min, ‖X43 − E43‖ = min, (4.7)

‖Y11 − F11‖ = min, ‖Y21 − F21‖ = min, ‖Y31 − F31‖ = min, (4.8)

‖Y41 − F41‖ = min, ‖Y42 − F42‖ = min, ‖Y43 − F43‖ = min, (4.9)

‖X12 − E12‖2 + ‖X12Γ1Γ−1
2 − (G12Γ−1

2 − F12)‖2 = min, (4.10)

‖X22 − E22‖2 + ‖X22Γ1Γ−1
2 − (G22Γ−1

2 − F22)‖2 = min, (4.11)

‖X32 − E32‖2 + ‖X32Γ1Γ−1
2 − (G32Γ−1

2 − F32)‖2 = min . (4.12)

By (4.6)–(4.9), we get

X13 = E13, X23 = E23, X33 = E33, X41 = E41, X42 = E42, X43 = E43,
(4.13)

Y11 = F11, Y21 = F21, Y31 = F31, Y41 = F41, Y42 = F42, Y42 = F42, Y43 = F43.
(4.14)

Applying Lemma 2.5 to (4.10)–(4.12), we obtain

X12 = (G12Γ1Γ−2
2 + E12 − F12Γ1Γ−1

2 )Θ, X22 = (G22Γ1Γ−2
2 + E22 − F22Γ1Γ−1

2 )Θ,
(4.15)

X32 = (G32Γ1Γ−2
2 + E32 − F32Γ1Γ−1

2 )Θ. (4.16)

By (3.9) and (4.13)–(4.16), we have the unique solution of Problem II is given by
(4.4).

Theorem 4.2. Given X ∈ Rn×m and Λ as in (3.1), and C0 ∈ Rs×s where
s ≥ n− k. Suppose the solution set LS of Problem I is nonempty. Let

C̃ =




W11 W12 W13

W21 W22 W23

W31 W32 W33


 , (4.17)
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where W11 ∈ R(n−s)×(n−s), W22 ∈ R(2s−n)×(2s−n), W33 ∈ R(n−s)×(n−s). Then Prob-
lem II has a unique solution and it can be expressed as

C∗ =




C11 C12 ĤEn−s

C21 C22 E2s−nC21En−s

En−sĤ En−sC12E2s−n En−sC11En−s


 , (4.18)

where

Ĥ = V U+ + ŴQT
2 , Ŵ =

1
2
(W13En−s + En−sW31)Q2.

Proof. As in the proof of Theorem 4.1, we can show that Problem II has a unique
solution in LS . By (3.25) and (4.17), we know that Problem II is equivalent to

min
H∈R(n−s)×(n−s)

(‖HEn−s −W13‖2 + ‖En−sH −W31‖2).

Equivalently,

min
H∈R(n−s)×(n−s)

(‖H −W13En−s‖2 + ‖H − En−sW31‖2).

By Lemma 2.4, it is in turn equivalent to

min
H∈R(n−s)×(n−s)

‖H − 1
2
(W13En−s + En−sW31)‖.

That is,

min
W∈R(n−s)×(n−k−l3)

‖V U+ + WQT
2 −

1
2
(W13En−s + En−sW31)‖.

Since Q2 is orthogonal and U+Q2 = 0, we have

W =
1
2
(W13En−s + En−sW31)Q2.

Therefore, the solution of Problem II can be expressed as (4.18).
Based on the above discussion, we give the following algorithm for solving Problem

II.

ALGORITHM I

Given X = [x1,x2, . . . ,xm] ∈ Rn×m and Λ as in (3.1), C0 ∈ Rs×s, and C̃ ∈ Rn×n.
1. Calculate k = [n/2].
2. If s < n− k, then

(a) Compute X̃1 and X̃2 by (3.2) and then compute X̃+
1 and X̃+

2 .
(b) If X̃1ΛX̃+

1 X̃1 = X̃1Λ and X̃2ΛX̃+
2 X̃2 = X̃2Λ, then we continue. Other-

wise we stop.
(c) Calculate M1 and M2 as in (3.3).
(d) Construct the GSVD of the matrix pair [MT

1 ,MT
2 ] by (3.4).

(e) Compute G̃ as in (3.6) and then calculate G̃S−T .
(f) Partition G̃S−T as in (3.7).
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(g) If G14, G24 and G34 are zero matrices, then calculate C∗ as in (4.4).
Otherwise we stop.

3. else
(a) Partition X and C0 as in (3.21), and calculate U and V as in (3.22) and

(3.23).
(b) If the conditions of (3.24) are satisfied, then compute C∗ as in (4.18).

Otherwise we stop.
Now we consider the computational complexity of our algorithm. We first consider

the cost of Step 2. For Substep (a), since K has only 2 nonzero entries per row,
it requires O(nm) operations to compute X̃1 and X̃2. Then using singular value
decomposition (SVD) to compute X̃+

1 and X̃+
2 requires O(n2m + m3) operations.

Substep (b) obviously requires O(n2m) operations. For Substep (c), because U2 and
V2 can be obtained by SVD of X̃1 and X̃2 in Substep (a) respectively, it requires
no operations to compute M1 and M2. For Substep (d), if we use Paige’s algorithm
[19] to compute the GSVD of the matrix pair [MT

1 ,MT
2 ], then the cost will be of

O(s2(n− l1− l2−s/3)) operations if n− l1− l2 ≥ s (O((n− l1− l2)2(s−(n− l1− l2)/3))
operations if n−l1−l2 ≤ s). Substep (e) requires O(n2m+s3) operations. Substep (f)
requires no operations. Finally, because of the sparsity of K again, Step (g) requires
O(n2(n− k− l1)+n(n− k− l1)2 +n2(k− l2)+n(k− l2)2) operations. Thus the total
complexity of Step 2 is O(n2(n − l1 − l2) + s2(n − l1 − l2 − s/3) + s3 + n2m + m3)
if n − l1 − l2 ≥ s (O(n2(n − l1 − l2) + s2(s − (n − l1 − l2)/3) + s3 + n2m + m3) if
n− l1 − l2 ≤ s).

Next, we consider the cost of Step 3. For Substep (a), since En is a backward
identity matrix, it requires O((n−s)2m+(n−s)(2s−n)m) operations to form U and V .
For Substep (b), using SVD to compute U+ requires O((n−s)2m+m3) operations. If
we compute V U+U as [V (U+U)], then the cost will only be of O(m2(n−s)) operations.
Thus the cost for Substep (b) is O((n−s)2m+m3 +m2(n−s)+(n−s)3). Therefore,
the total cost of Step 3 is O((n−s)3 +(n−s)2m+(n−s)(2s−n)m+m2(n−s)+m3).

From above, we know that the total cost of the algorithm is the cost required by
Step 2 if s < n− k or by Step 3 if s ≥ n− k. We remark that in practice, m ¿ n.

5. Numerical Experiments. In this section, we will demonstrate the algorithm
using Matlab.

Example 1. We consider the following Hopfield neural network system

du
dt

= T−1(−u + Ωf(u)), (5.1)

where T = diag(τ1, . . . , τn), Ω = [ωij ], and f = [f1(u1), . . . , fn(un)]T with fi(ui) are
squashing functions, see [8] for detail.

In this example, we design a neural network such that u∗ is a stable equilibrium,
with fi(u∗i ) = 1/(1 + e−u∗i ) 6= 0. It is known that u∗ is an equilibrium only if

u∗ = Ωf . (5.2)

It implies that

Ω = TCG−1
d + G−1

d , (5.3)

where C satisfies that

CG−1
d f = T−1(u∗ −G−1

d f). (5.4)
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Here, Gd = diag(f (1)
1 (u∗1), . . . , f

(1)
n (u∗n)), where (·)(1) denotes the 1th derivatives.

For any given T , the design problem is reduced to finding a stable matrix C that
maps G−1

d f to T−1(u∗−G−1
d f). Moreover, we know that if T−1(u∗−G−1

d f) = λG−1
d f

for some real negative number λ, then there exists a stable matrix C such that (5.4)
holds, see [8, Theorem 4.1].

In practice, we may be interested in that the matrix C is a centrosymmetric matrix
and its s-by-s leading principal submatrix is the given matrix C0. Moreover, we can
obtain an experimental matrix C̃ which may not satisfy the structural requirement
(centrosymmetric or the submatrix constraint) and/or spectral requirement (having
eigenpairs G−1

d f and λ). We want to find such structural stable matrix C∗ which maps
G−1

d f to T−1(u∗ − G−1
d f) = λG−1

d f (λ < 0) and is the best approximation of C̃ in
Frobenius norm. Therefore the design problem turn into Problems I and II proposed
in this paper.

For demonstration purpose, we let n = 8, m = 1, s = 5. Given u∗ = 0. Then
we have fi(u∗i ) = 1/2 and f

(1)
i (u∗i ) = 1/4 for i = 1, . . . , n. Thus Gd = 1/4In and

f = 1/2e where e denotes the n-vector of all ones. Therefore, the given eigenvector
G−1

d f = 2e. For this example, we chose T = 0.4938In so that one eigenvalue of C is
λ = −1/0.4938 = −2.0251.

Given X = G−1
d f = 2e, Λ = λ = −2.0251 and

C0 =

0BBBB@
1.0134 −0.6262 −0.6091 0.2024 0.8464
0.3118 0.1653 1.1857 0.8940 0.0265
0.1912 0.6515 −0.9667 1.0504 −0.5886
−0.7399 0.4515 −0.6165 −0.5674 −0.9952
−0.0169 −0.8830 −0.2698 −0.9952 −0.5674

1CCCCA .

Assume that from the experiment, we get the following matrix C̃ 6∈ C8:

C̃ =

0BBBBBBBBBB@

3.6448 −1.5739 0.5661 1.2763 0.5473 0.5312 0.2992 −1.2917
1.5866 0.1344 0.4095 1.1794 −0.9925 0.8905 0.5602 −1.1477
0.7641 0.6437 −2.0927 1.5228 0.0533 0.8970 0.1428 0.5543
−1.0982 1.4538 −2.1948 −1.4674 −0.7619 0.1669 0.1910 −1.4562
0.7249 −1.8998 −0.1476 −0.7729 0.5174 −2.3614 −0.3332 −0.3404
0.1476 0.8403 −0.3028 −0.4868 0.8683 0.4873 −0.0583 1.8999
2.2642 1.8592 1.4312 0.6824 0.5707 1.9692 1.3696 −0.6353
−0.0637 −0.4936 1.9980 1.9972 −0.1334 0.8525 −3.0381 0.5415

1CCCCCCCCCCA
.

We can show that Problem I is solvable. Then following the steps in the algorithm in
§4, we obtain the required matrix C∗ ∈ LS as follows:

C∗ =

0BBBBBBBBBB@

1.0134 −0.6262 −0.6091 0.2024 0.8464 0.1507 −1.2111 −1.7916
0.3118 0.1653 1.1857 0.8940 0.0265 −1.3515 −1.3027 −1.9541
0.1912 0.6515 −0.9667 1.0504 −0.5886 −0.8704 −0.6760 −0.8166
−0.7399 0.4515 −0.6165 −0.5674 −0.9952 −0.2698 −0.8830 −0.0169
−0.0169 −0.8830 −0.2698 −0.9952 −0.5674 −0.6165 0.4515 −0.7399
−0.8166 −0.6760 −0.8704 −0.5886 1.0504 −0.9667 0.6515 0.1912
−1.9541 −1.3027 −1.3515 0.0265 0.8940 1.1857 0.1653 0.3118
−1.7916 −1.2111 0.1507 0.8464 0.2024 −0.6091 −0.6262 1.0134

1CCCCCCCCCCA
which satisfies ‖C∗−C̃‖ = minC∈LS ‖C−C̃‖. Finally, the following matrix Ω∗ = TC∗G−1

d +
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G−1
d can be calculated:

Ω∗ =

0BBBBBBBBBB@

6.0016 −1.2368 −1.2031 0.3997 1.6719 0.2976 −2.3922 −3.5388
0.6158 4.3265 2.3420 1.7659 0.0523 −2.6695 −2.5731 −3.8598
0.3776 1.2868 2.0907 2.0748 −1.1625 −1.7192 −1.3352 −1.6129
−1.4615 0.8918 −1.2176 2.8793 −1.9657 −0.5329 −1.7441 −0.0333
−0.0333 −1.7441 −0.5329 −1.9657 2.8793 −1.2176 0.8918 −1.4615
−1.6129 −1.3352 −1.7192 −1.1625 2.0748 2.0907 1.2868 0.3776
−3.8598 −2.5731 −2.6695 0.0523 1.7659 2.3420 4.3265 0.6158
−3.5388 −2.3922 0.2976 1.6719 0.3997 −1.2031 −1.2368 6.0016

1CCCCCCCCCCA
.

Example 2. In this example, we demonstrate our algorithm in another way. For

simplicity , we consider n = 10, m = 3, s = 6. We first choose a random matrix Ĉ ∈ C10:

Ĉ =

0BBBBBBBBBBBB@

1.6405 −0.1078 −0.8875 0.3703 −0.2894 −0.6384 0.7080 0.2080 0.3988 0.8062
−0.4574 −0.8891 −0.1455 −0.0858 −0.2658 −1.3510 0.7036 −0.3054 0.4304 1.4557
0.1118 −0.1969 0.1812 −0.2555 1.1810 0.5378 0.4137 0.8233 −1.2063 1.3373
−0.7977 −0.0109 0.3346 −0.3387 0.3376 0.2088 −0.0052 0.0533 0.8645 −0.2588
0.1512 −0.5887 −0.3039 −0.0137 0.4058 0.1813 0.5433 −0.1110 0.4449 −0.0643
−0.0643 0.4449 −0.1110 0.5433 0.1813 0.4058 −0.0137 −0.3039 −0.5887 0.1512
−0.2588 0.8645 0.0533 −0.0052 0.2088 0.3376 −0.3387 0.3346 −0.0109 −0.7977
1.3373 −1.2063 0.8233 0.4137 0.5378 1.1810 −0.2555 0.1812 −0.1969 0.1118
1.4557 0.4304 −0.3054 0.7036 −1.3510 −0.2658 −0.0858 −0.1455 −0.8891 −0.4574
0.8062 0.3988 0.2080 0.7080 −0.6384 −0.2894 0.3703 −0.8875 −0.1078 1.6405

1CCCCCCCCCCCCA
.

Then we compute its eigenpairs: Three of the eigenvalues of Ĉ are 2.1176, 1.0359 ±
1.1570

√−1. Let x1, x2 ±
√−1x3 be the corresponding eigenvectors. We now take

X = [x2,x3,x1] =

0BBBBBBBBBBBBBB@

−0.0659 −0.2562 −0.5799
0.0678 0.0191 −0.2116
−0.6079 0 −0.2835
0.0422 0.0986 0.1571
0.0959 −0.1867 0.1181
0.0959 −0.1867 0.1181
0.0422 0.0986 0.1571
−0.6079 0.0000 −0.2835
0.0678 0.0191 −0.2116
−0.0659 −0.2562 −0.5799

1CCCCCCCCCCCCCCA
and

Λ =

0@ 1.0359 1.1570 0
−1.1570 1.0359 0

0 0 2.1176

1A .

Given such X, Λ, and

C0 =

0BBBBBB@
1.6405 −0.1078 −0.8875 0.3703 −0.2894 −0.6384
−0.4574 −0.8891 −0.1455 −0.0858 −0.2658 −1.3510
0.1118 −0.1969 0.1812 −0.2555 1.1810 0.5378
−0.7977 −0.0109 0.3346 −0.3387 0.3376 0.2088
0.1512 −0.5887 −0.3039 −0.0137 0.4058 0.1813
−0.0643 0.4449 −0.1110 0.5433 0.1813 0.4058

1CCCCCCA ,

we can verify that Problem I is solvable. Hence LS is nonempty. We now perturb Ĉ by a
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random matrix to obtain a matrix C̃ 6∈ C10:

C̃ =

0BBBBBBBBBBBB@

1.6510 −0.0907 −0.8789 0.3653 −0.2906 −0.6402 0.7090 0.2027 0.4049 0.8028
−0.4538 −0.8976 −0.1401 −0.0693 −0.2665 −1.3369 0.6919 −0.3034 0.4402 1.4466
0.1097 −0.1948 0.1928 −0.2422 1.1870 0.5320 0.4281 0.8313 −1.2258 1.3349
−0.7985 −0.0205 0.3434 −0.3477 0.3422 0.2029 0.0032 0.0747 0.8667 −0.2572
0.1457 −0.5941 −0.2902 −0.0137 0.4016 0.1786 0.5295 −0.1168 0.4491 −0.0602
−0.0578 0.4532 −0.1160 0.5324 0.1973 0.4021 −0.0297 −0.3002 −0.5844 0.1455
−0.2607 0.8667 0.0397 −0.0128 0.1987 0.3351 −0.3423 0.3373 −0.0018 −0.7974
1.3200 −1.2080 0.8347 0.4064 0.5380 1.1847 −0.2747 0.1803 −0.1985 0.1151
1.4712 0.4299 −0.2972 0.7098 −1.3340 −0.2750 −0.0797 −0.1331 −0.9039 −0.4427
0.8031 0.3804 0.2401 0.7207 −0.6404 −0.2924 0.3609 −0.8630 −0.1050 1.6367

1CCCCCCCCCCCCA
.

Using the proposed algorithm in §4, we can obtain C∗ ∈ LS such that ‖C∗ − C̃‖ =

minC∈LS ‖C − C̃‖. Moreover, the solution C∗ is given by:

C
∗

=

0BBBBBBBBBBBB@

1.6405 −0.1078 −0.8875 0.3703 −0.2894 −0.6384 0.7141 0.2080 0.3972 0.8084
−0.4574 −0.8891 −0.1455 −0.0858 −0.2658 −1.3510 0.7013 −0.3054 0.4310 1.4549
0.1118 −0.1969 0.1812 −0.2555 1.1810 0.5378 0.4160 0.8233 −1.2068 1.3381
−0.7977 −0.0109 0.3346 −0.3387 0.3376 0.2088 −0.0054 0.0533 0.8646 −0.2588
0.1512 −0.5887 −0.3039 −0.0137 0.4058 0.1813 0.5433 −0.1110 0.4449 −0.0643
−0.0643 0.4449 −0.1110 0.5433 0.1813 0.4058 −0.0137 −0.3039 −0.5887 0.1512
−0.2588 0.8646 0.0533 −0.0054 0.2088 0.3376 −0.3387 0.3346 −0.0109 −0.7977
1.3381 −1.2068 0.8233 0.4160 0.5378 1.1810 −0.2555 0.1812 −0.1969 0.1118
1.4549 0.4310 −0.3054 0.7013 −1.3510 −0.2658 −0.0858 −0.1455 −0.8891 −0.4574
0.8084 0.3972 0.2080 0.7141 −0.6384 −0.2894 0.3703 −0.8875 −0.1078 1.6405

1CCCCCCCCCCCCA
.

In addition, we note that if in Problem I, we also assume that the required matrix C is
symmetric, i.e. C is bisymmetric, then Problem I is reduced to the inverse problem for sub-
matrix constrained bisymmetric matrices discussed in [18]. For the corresponding solvability
conditions, the algorithm for finding the best approximation solution to the corresponding
best approximation problem and the numerical examples, we can refer to [18].

These examples and many other numerical experiments with the algorithm proposed in
§4 confirm our theoretical results in this paper.

6. Conclusions. In this paper, we discussed the inverse eigenproblem for the sub-
matrix constrained centrosymmetric matrices. We also considered the best approximation
solution in the corresponding solution set for the constrained inverse problem to a given ma-
trix in Frobenius norm. The solvability conditions and the explicit formula for the solution
are provided. We proposed an algorithm for finding the best approximation solution. Some
tests are also given to illustrate our results.
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