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Polynomial Interpolation

This chapter is addressed to the approximation of a function which is known
through its nodal values.

Precisely, given m+1 pairs (xi, yi), the problem consists of finding a func-
tion Φ = Φ(x) such that Φ(xi) = yi for i = 0, . . . ,m, yi being some given
values, and say that Φ interpolates {yi} at the nodes {xi}. We speak about
polynomial interpolation if Φ is an algebraic polynomial, trigonometric ap-
proximation if Φ is a trigonometric polynomial or piecewise polynomial
interpolation (or spline interpolation) if Φ is only locally a polynomial.

The numbers yi may represent the values attained at the nodes xi by a
function f that is known in closed form, as well as experimental data. In the
former case, the approximation process aims at replacing f with a simpler
function to deal with, in particular in view of its numerical integration
or derivation. In the latter case, the primary goal of approximation is to
provide a compact representation of the available data, whose number is
often quite large.

Polynomial interpolation is addressed in Sections 8.1 and 8.2, while piece-
wise polynomial interpolation is introduced in Sections 8.3, 8.4 and 8.5. Fi-
nally, univariate and parametric splines are addressed in Sections 8.6 and
8.7. Interpolation processes based on trigonometric or algebraic orthogonal
polynomials will be considered in Chapter 10.
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8.1 Polynomial Interpolation

Let us consider n + 1 pairs (xi, yi). The problem is to find a polynomial
Πm ∈ Pm, called an interpolating polynomial, such that

Πm(xi) = amxm
i + . . . + a1xi + a0 = yi i = 0, . . . , n. (8.1)

The points xi are called interpolation nodes. If n '= m the problem is over
or under-determined and will be addressed in Section 10.7.1. If n = m, the
following result holds.

Theorem 8.1 Given n+1 distinct points x0, . . . , xn and n+1 correspond-
ing values y0, . . . , yn, there exists a unique polynomial Πn ∈ Pn such that
Πn(xi) = yi for i = 0, . . . , n.

Proof. To prove existence, let us use a constructive approach, providing an
expression for Πn. Denoting by {li}ni=0 a basis for Pn, then Πn admits a repre-
sentation on such a basis of the form Πn(x) =

∑n
i=0 bili(x) with the property

that

Πn(xi) =
n∑

j=0

bj lj(xi) = yi, i = 0, . . . , n. (8.2)

If we define

li ∈ Pn : li(x) =
n∏

j=0
j &=i

x− xj

xi − xj
i = 0, . . . , n, (8.3)

then li(xj) = δij and we immediately get from (8.2) that bi = yi.
The polynomials {li, i = 0, . . . , n} form a basis for Pn (see Exercise 1). As a con-
sequence, the interpolating polynomial exists and has the following form (called
Lagrange form)

Πn(x) =
n∑

i=0

yili(x). (8.4)

To prove uniqueness, suppose that another interpolating polynomial Ψm of de-
gree m ≤ n exists, such that Ψm(xi) = yi for i = 0, ..., n. Then, the difference
polynomial Πn−Ψm vanishes at n+1 distinct points xi and thus coincides with
the null polynomial. Therefore, Ψm = Πn.

An alternative approach to prove existence and uniqueness of Πn is provided
in Exercise 2. !

It can be checked that (see Exercise 3)

Πn(x) =
n∑

i=0

ωn+1(x)
(x− xi)ω′

n+1(xi)
yi (8.5)
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where ωn+1 is the nodal polynomial of degree n + 1 defined as

ωn+1(x) =
n∏

i=0

(x− xi). (8.6)

Formula (8.4) is called the Lagrange form of the interpolating polynomial,
while the polynomials li(x) are the characteristic polynomials. In Figure
8.1 we show the characteristic polynomials l2(x), l3(x) and l4(x), in the
case of degree n = 6, on the interval [-1,1] where equally spaced nodes are
taken, including the end points.
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FIGURE 8.1. Lagrange characteristic polynomials

Notice that |li(x)| can be greater than 1 within the interpolation interval.
If yi = f(xi) for i = 0, . . . , n, f being a given function, the interpolating

polynomial Πn(x) will be denoted by Πnf(x).

8.1.1 The Interpolation Error
In this section we estimate the interpolation error that is made when re-
placing a given function f with its interpolating polynomial Πnf at the
nodes x0, x1, . . . , xn (for further results, we refer the reader to [Wen66],
[Dav63]).

Theorem 8.2 Let x0, x1, . . . , xn be n+1 distinct nodes and let x be a point
belonging to the domain of a given function f . Assume that f ∈ Cn+1(Ix),
where Ix is the smallest interval containing the nodes x0, x1, . . . , xn and x.
Then the interpolation error at the point x is given by

En(x) = f(x)−Πnf(x) =
f (n+1)(ξ)
(n + 1)!

ωn+1(x), (8.7)

where ξ ∈ Ix and ωn+1 is the nodal polynomial of degree n + 1.
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Proof. The result is obviously true if x coincides with any of the interpola-
tion nodes. Otherwise, define, for any t ∈ Ix, the function G(t) = En(t) −
ωn+1(t)En(x)/ωn+1(x). Since f ∈ C(n+1)(Ix) and ωn+1 is a polynomial, then
G ∈ C(n+1)(Ix) and it has n + 2 distinct zeros in Ix, since

G(xi) = En(xi)− ωn+1(xi)En(x)/ωn+1(x) = 0, i = 0, . . . , n

G(x) = En(x)− ωn+1(x)En(x)/ωn+1(x) = 0.

Then, thanks to the mean value theorem, G′ has n + 1 distinct zeros and, by
recursion, G(j) admits n + 2 − j distinct zeros. As a consequence, G(n+1) has a
unique zero, which we denote by ξ. On the other hand, since E(n+1)

n (t) = f (n+1)(t)
and ω(n+1)

n+1 (x) = (n + 1)! we get

G(n+1)(t) = f (n+1)(t)− (n + 1)!
ωn+1(x)

En(x),

which, evaluated at t = ξ, gives the desired expression for En(x). !

8.1.2 Drawbacks of Polynomial Interpolation on Equally
Spaced Nodes and Runge’s Counterexample

In this section we analyze the behavior of the interpolation error (8.7) as
n tends to infinity. For this purpose, for any function f ∈ C0([a, b]), define
its maximum norm

‖f‖∞ = max
x∈[a,b]

|f(x)|. (8.8)

Then, let us introduce a lower triangular matrix X of infinite size, called the
interpolation matrix on [a, b], whose entries xij , for i, j = 0, 1, . . . , represent
points of [a, b], with the assumption that on each row the entries are all
distinct.

Thus, for any n ≥ 0, the n + 1-th row of X contains n + 1 distinct
values that we can identify as nodes, so that, for a given function f , we
can uniquely define an interpolating polynomial Πnf of degree n at those
nodes (any polynomial Πnf depends on X, as well as on f).

Having fixed f and an interpolation matrix X, let us define the interpo-
lation error

En,∞(X) = ‖f −Πnf‖∞, n = 0, 1, . . . (8.9)

Next, denote by p∗n ∈ Pn the best approximation polynomial, for which

E∗
n = ‖f − p∗n‖∞ ≤ ‖f − qn‖∞ ∀qn ∈ Pn.

The following comparison result holds (for the proof, see [Riv74]).
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Property 8.1 Let f ∈ C0([a, b]) and X be an interpolation matrix on [a, b].
Then

En,∞(X) ≤ E∗
n (1 + Λn(X)) , n = 0, 1, . . . (8.10)

where Λn(X) denotes the Lebesgue constant of X, defined as

Λn(X) =

∥∥∥∥∥∥

n∑

j=0

|l(n)
j |

∥∥∥∥∥∥
∞

, (8.11)

and where l(n)
j ∈ Pn is the j-th characteristic polynomial associated with

the n + 1-th row of X, that is, satisfying l(n)
j (xnk) = δjk, j, k = 0, 1, . . .

Since E∗
n does not depend on X, all the information concerning the effects

of X on En,∞(X) must be looked for in Λn(X). Although there exists an
interpolation matrix X∗ such that Λn(X) is minimized, it is not in general a
simple task to determine its entries explicitly. We shall see in Section 10.3,
that the zeros of the Chebyshev polynomials provide on the interval [−1, 1]
an interpolation matrix with a very small value of the Lebesgue constant.

On the other hand, for any possible choice of X, there exists a constant
C > 0 such that (see [Erd61])

Λn(X) >
2
π

log(n + 1)− C, n = 0, 1, . . .

This property shows that Λn(X) →∞ as n→∞. This fact has important
consequences: in particular, it can be proved (see [Fab14]) that, given an
interpolation matrix X on an interval [a, b], there always exists a continuous
function f in [a, b], such that Πnf does not converge uniformly (that is, in
the maximum norm) to f . Thus, polynomial interpolation does not allow for
approximating any continuous function, as demonstrated by the following
example.

Example 8.1 (Runge’s counterexample) Suppose we approximate the fol-
lowing function

f(x) =
1

1 + x2 , −5 ≤ x ≤ 5 (8.12)

using Lagrange interpolation on equally spaced nodes. It can be checked that
some points x exist within the interpolation interval such that

lim
n→∞

|f(x)−Πnf(x)| $= 0.

In particular, Lagrange interpolation diverges for |x| > 3.63 . . . . This phenomenon
is particularly evident in the neighborhood of the end points of the interpolation
interval, as shown in Figure 8.2, and is due to the choice of equally spaced nodes.
We shall see in Chapter 10 that resorting to suitably chosen nodes will allow for
uniform convergence of the interpolating polynomial to the function f to hold. •
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FIGURE 8.2. Lagrange interpolation on equally spaced nodes for the function
f(x) = 1/(1 + x2): the interpolating polynomials Π5f and Π10f are shown in
dotted and dashed line, respectively

8.1.3 Stability of Polynomial Interpolation

Let us consider a set of function values
{
f̃(xi)

}
which is a perturbation

of the data f(xi) relative to the nodes xi, with i = 0, . . . , n, in an interval
[a, b]. The perturbation may be due, for instance, to the effect of rounding
errors, or may be caused by an error in the experimental measure of the
data.

Denoting by Πnf̃ the interpolating polynomial on the set of values f̃(xi),
we have

‖Πnf −Πnf̃‖∞ = max
a≤x≤b

∣∣∣∣∣∣

n∑

j=0

(f(xj)− f̃(xj))lj(x)

∣∣∣∣∣∣
≤ Λn(X) max

i=0,...,n
|f(xi)− f̃(xi)|.

As a consequence, small changes on the data give rise to small changes
on the interpolating polynomial only if the Lebesgue constant is small.
This constant plays the role of the condition number for the interpolation
problem.

As previously noticed, Λn grows as n→∞ and in particular, in the case
of Lagrange interpolation on equally spaced nodes, it can be proved that
(see [Nat65])

Λn(X) 1 2n+1

en log n

where e 1 2.7183 is the naeperian number. This shows that, for n large,
this form of interpolation can become unstable. Notice also that so far we
have completely neglected the errors generated by the interpolation process
in constructing Πnf . However, it can be shown that the effect of such errors
is generally negligible (see [Atk89]).
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FIGURE 8.3. Instability of Lagrange interpolation. In solid line Π21f , on unper-
turbed data, in dashed line Π21f̃ , on perturbed data, for Example 8.2

Example 8.2 On the interval [−1, 1] let us interpolate the function f(x) =
sin(2πx) at 22 equally spaced nodes xi. Next, we generate a perturbed set of val-
ues f̃(xi) of the function evaluations f(xi) = sin(2πxi) with maxi=0,...,21 |f(xi)−
f̃(xi)| 0 9.5 · 10−4. In Figure 8.3 we compare the polynomials Π21f and Π21f̃ :
notice how the difference between the two interpolating polynomials, around the
end points of the interpolation interval, is quite larger than the impressed per-
turbation (actually, ‖Π21f −Π21f̃‖∞ 0 2.1635 and Λ21 0 24000). •

8.2 Newton Form of the Interpolating Polynomial

The Lagrange form (8.4) of the interpolating polynomial is not the most
convenient from a practical standpoint. In this section we introduce an
alternative form characterized by a cheaper computational cost. Our goal
is the following:

given n + 1 pairs {xi, yi}, i = 0, . . . , n, we want to represent Πn (with
Πn(xi) = yi for i = 0, . . . , n) as the sum of Πn−1 (with Πn−1(xi) = yi for
i = 0, . . . , n−1) and a polynomial of degree n which depends on the nodes
xi and on only one unknown coefficient. We thus set

Πn(x) = Πn−1(x) + qn(x), (8.13)

where qn ∈ Pn. Since qn(xi) = Πn(xi)−Πn−1(xi) = 0 for i = 0, . . . , n− 1,
it must necessarily be that

qn(x) = an(x− x0) . . . (x− xn−1) = anωn(x).
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To determine the unknown coefficient an, suppose that yi = f(xi), i =
0, . . . , n, where f is a suitable function, not necessarily known in explicit
form. Since Πnf(xn) = f(xn), from (8.13) it follows that

an =
f(xn)−Πn−1f(xn)

ωn(xn)
. (8.14)

The coefficient an is called n-th the Newton divided difference and is gen-
erally denoted by

an = f [x0, x1, . . . , xn] (8.15)

for n ≥ 1. As a consequence, (8.13) becomes

Πnf(x) = Πn−1f(x) + ωn(x)f [x0, x1, . . . , xn]. (8.16)

If we let y0 = f(x0) = f [x0] and ω0 = 1, by recursion on n we can obtain
from (8.16) the following formula

Πnf(x) =
n∑

k=0

ωk(x)f [x0, . . . , xk]. (8.17)

Uniqueness of the interpolating polynomial ensures that the above expres-
sion yields the same interpolating polynomial generated by the Lagrange
form. Form (8.17) is commonly known as the Newton divided difference
formula for the interpolating polynomial.

Program 65 provides an implementation of Newton’s formula. The input
vectors x and y contain the interpolation nodes and the corresponding func-
tional evaluations of f , respectively, while vector z contains the abscissae
where the polynomial Πnf is to be evaluated. This polynomial is stored in
the output vector f.

Program 65 - interpol : Lagrange polynomial using Newton’s formula

function [f] = interpol (x,y,z)
[m n] = size(y);
for j = 1:m
a (:,1) = y (j,:)’;
for i = 2:n
a (i:n,i) = ( a(i:n,i-1)-a(i-1,i-1) )./(x(i:n)-x(i-1))’;

end
f(j,:) = a(n,n).*(z-x(n-1)) + a(n-1,n-1);
for i = 2:n-1
f(j,:) = f(j,:).*(z-x(n-i))+a(n-i,n-i);

end
end
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8.2.1 Some Properties of Newton Divided Differences
The n-th divided difference f [x0, . . . , xn] = an can be further characterized
by noticing that it is the coefficient of xn in Πnf . Isolating such a coefficient
from (8.5) and equating it with the corresponding coefficient in the Newton
formula (8.17), we end up with the following explicit representation

f [x0, . . . , xn] =
n∑

i=0

f(xi)
ω′
n+1(xi)

. (8.18)

This formula has remarkable consequences:

1. the value attained by the divided difference is invariant with respect
to permutations of the indexes of the nodes. This instance can be
profitably employed when stability problems suggest exchanging the
indexes (for example, if x is the point where the polynomial must be
computed, it is convenient to introduce a permutation of the indexes
such that |x− xk| ≤ |x− xk−1| with k = 1, . . . , n);

2. if f = αg + βh for some α,β ∈ R, then

f [x0, . . . , xn] = αg[x0, . . . , xn] + βh[x0, . . . , xn];

3. if f = gh, the following formula (called the Leibniz formula) holds
(see [Die93])

f [x0, . . . , xn] =
n∑

j=0

g[x0, . . . , xj ]h[xj , . . . , xn];

4. an algebraic manipulation of (8.18) (see Exercise 7) yields the follow-
ing recursive formula for computing divided differences

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
, n ≥ 1. (8.19)

Program 66 implements the recursive formula (8.19). The evaluations of f
at the interpolation nodes x are stored in vector y, while the output matrix
d (lower triangular) contains the divided differences, which are stored in
the following form

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
...

...
...

. . .
xn f [xn] f [xn−1, xn] f [xn−2, xn−1, xn] . . . f [x0, . . . , xn]
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The coefficients involved in the Newton formula are the diagonal entries of
the matrix.

Program 66 - dividif : Newton divided differences

function [d]=dividif(x,y)
[n,m]=size(y);
if n == 1, n = m; end
n = n-1; d = zeros (n+1,n+1); d (:,1) = y’;
for j = 2:n+1
for i = j:n+1
d (i,j) = ( d (i-1,j-1)-d (i,j-1))/(x (i-j+1)-x (i));

end
end

Using (8.19), n(n + 1) sums and n(n + 1)/2 divisions are needed to gen-
erate the whole matrix. If a new evaluation of f were available at a new
node xn+1, only the calculation of a new row of the matrix would be re-
quired (f [xn, xn+1], . . . , f [x0, x1, . . . , xn+1]). Thus, in order to construct
Πn+1f from Πnf , it suffices to add to Πnf the term an+1ωn+1(x), with a
computational cost of (n + 1) divisions and 2(n + 1) sums. For the sake of
notational simplicity, we write below Drfi = f [xi, xi+1, . . . , xr].

Example 8.3 In Table 8.1 we show the divided differences on the interval (0,2)
for the function f(x) = 1+sin(3x). The values of f and the corresponding divided
differences have been computed using 16 significant figures, although only the first
5 figures are reported. If the value of f were available at node x = 0.2, updating
the divided difference table would require only to computing the entries denoted
by italics in Table 8.1. •

xi f(xi) f [xi, xi−1] D2fi D3fi D4fi D5fi D6fi
0 1.0000

0.2 1.5646 2.82
0.4 1.9320 1.83 -2.46
0.8 1.6755 -0.64 -4.13 -2.08
1.2 0.5575 -2.79 -2.69 1.43 2.93
1.6 0.0038 -1.38 1.76 3.71 1.62 -0.81
2.0 0.7206 1.79 3.97 1.83 -1.17 -1.55 -0.36

TABLE 8.1. Divided differences for the function f(x) = 1 + sin(3x) in the case
in which the evaluation of f at x = 0.2 is also available. The newly computed
values are denoted by italics
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Notice that f [x0, . . . , xn] = 0 for any f ∈ Pn−1. This property, how-
ever, is not always verified numerically, since the computation of divided
differences might be highly affected by rounding errors.

Example 8.4 Consider again the divided differences for the function f(x) =
1 + sin(3x) on the interval (0, 0.0002). The function behaves like 1 + 3x in a
sufficiently small neighbourhood of 0, so that we expect to find smaller numbers as
the order of divided differences increases. However, the results obtained running
Program 66, and shown in Table 8.2 in exponential notation up to the first 4
significant figures (although 16 digits have been employed in the calculations),
exhibit a substantially different pattern. The small rounding errors introduced in
the computation of divided differences of low order have dramatically propagated
on the higher order divided differences. •

xi f(xi) f [xi, xi−1] D2fi D3fi D4fi D5fi
0 1.0000

4.0e-5 1.0001 3.000
8.0e-5 1.0002 3.000 -5.39e-4
1.2e-4 1.0004 3.000 -1.08e-3 -4.50
1.6e-4 1.0005 3.000 -1.62e-3 -4.49 1.80e+1
2.0e-4 1.0006 3.000 -2.15e-3 -4.49 -7.23 −1.2e + 5

TABLE 8.2. Divided differences for the function f(x) = 1+sin(3x) on the interval
(0,0.0002). Notice the completely wrong value in the last column (it should be
approximately equal to 0), due to the propagation of rounding errors throughout
the algorithm

8.2.2 The Interpolation Error Using Divided Differences
Consider the nodes x0, . . . , xn and let Πnf be the interpolating polynomial
of f on such nodes. Now let x be a node distinct from the previous ones;
letting xn+1 = x, we denote by Πn+1f the interpolating polynomial of f
at the nodes xk, k = 0, . . . , n + 1. Using the Newton divided differences
formula, we get

Πn+1f(t) = Πnf(t) + (t− x0) . . . (t− xn)f [x0, . . . , xn, t].

Since Πn+1f(x) = f(x), we obtain the following formula for the interpola-
tion error at t = x

En(x) = f(x)−Πnf(x) = Πn+1f(x)−Πnf(x)

= (x− x0) . . . (x− xn)f [x0, . . . , xn, x]

= ωn+1(x)f [x0, . . . , xn, x].

(8.20)
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Assuming f ∈ C(n+1)(Ix) and comparing (8.20) with (8.7), yields

f [x0, . . . , xn, x] =
f (n+1)(ξ)
(n + 1)!

(8.21)

for a suitable ξ ∈ Ix. Since (8.21) resembles the remainder of the Tay-
lor series expansion of f , the Newton formula (8.17) for the interpolating
polynomial is often regarded as being a truncated expansion around x0
provided that |xn − x0| is not too big.

8.3 Piecewise Lagrange Interpolation

In Section 8.1.1 we have outlined the fact that, for equally spaced inter-
polating nodes, uniform convergence of Πnf to f is not guaranteed as
n→∞. On the other hand, using equally spaced nodes is clearly computa-
tionally convenient and, moreover, Lagrange interpolation of low degree is
sufficiently accurate, provided sufficiently small interpolation intervals are
considered.

Therefore, it is natural to introduce a partition Th of [a, b] into K subin-
tervals Ij = [xj , xj+1] of length hj , with h = max0≤j≤K−1 hj , such that
[a, b] = ∪K−1

j=0 Ij and then to employ Lagrange interpolation on each Ij

using n + 1 equally spaced nodes
{
x(i)
j , 0 ≤ i ≤ n

}
with a small n.

For k ≥ 1, we introduce on Th the piecewise polynomial space

Xk
h =

{
v ∈ C0([a, b]) : v|Ij ∈ Pk(Ij)∀Ij ∈ Th

}
(8.22)

which is the space of the continuous functions over [a, b] whose restric-
tions on each Ij are polynomials of degree ≤ k. Then, for any continuous
function f in [a, b], the piecewise interpolation polynomial Πk

hf coincides
on each Ij with the interpolating polynomial of f|Ij at the n + 1 nodes{
x(i)
j , 0 ≤ i ≤ n

}
. As a consequence, if f ∈ Ck+1([a, b]), using (8.7) within

each interval we obtain the following error estimate

‖f −Πk
hf‖∞ ≤ Chk+1 ‖f (k+1)‖∞. (8.23)

Note that a small interpolation error can be obtained even for low k pro-
vided that h is sufficiently “small”.

Example 8.5 Let us go back to the function of Runge’s counterexample. Now,
piecewise polynomials of degree k = 1 and k = 2 are employed. We check ex-
perimentally for the behavior of the error as h decreases. In Table 8.3 we show
the absolute errors measured in the maximum norm over the interval [−5, 5] and
the corresponding estimates of the convergence order p with respect to h. Except
when using an excessively small number of subintervals, the results confirm the
theoretical estimate (8.23), that is p = k + 1. •
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h ‖f −Πh
1‖∞ p ‖f −Πh

2‖∞ p
5 0.4153 0.0835
2.5 0.1787 1.216 0.0971 -0.217
1.25 0.0631 1.501 0.0477 1.024
0.625 0.0535 0.237 0.0082 2.537
0.3125 0.0206 1.374 0.0010 3.038
0.15625 0.0058 1.819 1.3828e-04 2.856
0.078125 0.0015 1.954 1.7715e-05 2.964

TABLE 8.3. Interpolation error for Lagrange piecewise interpolation of degree
k = 1 and k = 2, in the case of Runge’s function (8.12); p denotes the trend of
the exponent of h. Notice that, as h→ 0, p→ k + 1, as predicted by (8.23)

Besides estimate (8.23), convergence results in integral norms exist (see
[QV94], [EEHJ96]). For this purpose, we introduce the following space

L2(a, b) =




f : (a, b) → R,

b∫

a

|f(x)|2dx < +∞




 , (8.24)

with

‖f‖L2(a,b) =




b∫

a

|f(x)|2dx





1/2

. (8.25)

Formula (8.25) defines a norm for L2(a, b). (We recall that norms and semi-
norms of functions can be defined in a manner similar to what was done in
Definition 1.17 in the case of vectors). We warn the reader that the integral
of the function |f |2 in (8.24) has to be intended in the Lebesgue sense (see,
e.g., [Rud83]). In particular, f needs not be continuous everywhere.

Theorem 8.3 Let 0 ≤ m ≤ k + 1, with k ≥ 1 and assume that f (m) ∈
L2(a, b) for 0 ≤ m ≤ k + 1; then there exists a positive constant C, inde-
pendent of h, such that

‖(f −Πk
hf)(m)‖L2(a,b) ≤ Chk+1−m‖f (k+1)‖L2(a,b). (8.26)

In particular, for k = 1, and m = 0 or m = 1, we obtain

‖f −Π1
hf‖L2(a,b) ≤ C1h2‖f ′′‖L2(a,b),

‖(f −Π1
hf)′‖L2(a,b) ≤ C2h‖f ′′‖L2(a,b),

(8.27)

for two suitable positive constants C1 and C2.

Proof. We only prove (8.27) and refer to [QV94], Chapter 3 for the proof of
(8.26) in the general case.
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Define e = f − Π1
hf . Since e(xj) = 0 for all j = 0, . . . ,K, Rolle’s theorem

infers the existence of ξj ∈ (xj , xj+1), for j = 0, . . . ,K − 1 such that e′(ξj) = 0.
Since Π1

hf is a linear function on each Ij , for x ∈ Ij we obtain

e′(x) =
∫ x

ξj

e′′(s)ds =
∫ x

ξj

f ′′(s)ds,

whence

|e′(x)| ≤
∫ xj+1

xj

|f ′′(s)|ds, for x ∈ [xj , xj+1]. (8.28)

We recall the Cauchy-Schwarz inequality
∣∣∣∣

∫ β

α

u(x)v(x)dx
∣∣∣∣ ≤

(∫ β

α

u2(x)dx
)1/2 (∫ β

α

v2(x)dx
)1/2

(8.29)

which holds if u, v ∈ L2(α,β). If we apply this inequality to (8.28) we obtain

|e′(x)| ≤





xj+1∫

xj

12dx





1/2 



xj+1∫

xj

|f ′′(s)|2ds





1/2

≤ h1/2





xj+1∫

xj

|f ′′(s)|2ds





1/2

.

(8.30)

To find a bound for |e(x)|, we notice that

e(x) =
∫ x

xj

e′(s)ds,

so that, applying (8.30), we get

|e(x)| ≤
∫ xj+1

xj

|e′(s)|ds ≤ h3/2

(∫ xj+1

xj

|f ′′(s)|2ds
)1/2

. (8.31)

Then
xj+1∫

xj

|e′(x)|2dx ≤ h2

xj+1∫

xj

|f ′′(s)|2ds and

xj+1∫

xj

|e(x)|2dx ≤ h4

xj+1∫

xj

|f ′′(s)|2ds,

from which, summing over the index j from 0 to K − 1 and taking the square
root of both sides, we obtain

(∫ b

a

|e′(x)|2dx
)1/2

≤ h

(∫ b

a

|f ′′(x)|2dx
)1/2

,

and (∫ b

a

|e(x)|2dx
)1/2

≤ h2
(∫ b

a

|f ′′(x)|2dx
)1/2

,

which is the desired estimate (8.27), with C1 = C2 = 1. !
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8.4 Hermite-Birkoff Interpolation

Lagrange polynomial interpolation can be generalized to the case in which
also the values of the derivatives of a function f are available at some (or
all) of the nodes xi.

Let us then suppose that (xi, f (k)(xi)) are given data, with i = 0, . . . , n,
k = 0, . . . ,mi and mi ∈ N. Letting N =

∑n
i=0(mi + 1), it can be proved

(see [Dav63]) that, if the nodes {xi} are distinct, there exists a unique
polynomial HN−1 ∈ PN−1, called the Hermite interpolation polynomial,
such that

H(k)
N−1(xi) = y(k)

i , i = 0, . . . , n k = 0, . . . ,mi,

of the form

HN−1(x) =
n∑

i=0

mi∑

k=0

y(k)
i Lik(x) (8.32)

where y(k)
i = f (k)(xi), i = 0, . . . , n, k = 0, . . . ,mi.

The functions Lik ∈ PN−1 are called the Hermite characteristic polynomials
and are defined through the relations

dp

dxp
(Lik)(xj) =

{
1 if i = j and k = p,

0 otherwise.

Defining the polynomials

lij(x) =
(x− xi)j

j!

n∏

k=0
k &=i

(
x− xk

xi − xk

)mk+1

, i = 0, . . . , n, j = 0, . . . ,mi,

and letting Limi(x) = limi(x) for i = 0, . . . , n, we have the following recur-
sive formula for the polynomials Lij

Lij(x) = lij(x)−
mi∑

k=j+1

l(k)
ij (xi)Lik(x) j = mi − 1,mi − 2, . . . , 0.

As for the interpolation error, the following estimate holds

f(x)−HN−1(x) =
f (N)(ξ)

N !
ΩN (x) ∀x ∈ R

where ξ ∈ I(x;x0, . . . , xn) and ΩN is the polynomial of degree N defined
by

ΩN (x) = (x− x0)m0+1(x− x1)m1+1 . . . (x− xn)mn+1. (8.33)
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Example 8.6 (osculatory interpolation) Let us set mi = 1 for i = 0, . . . , n.
In this case N = 2n + 2 and the interpolating Hermite polynomial is called the
osculating polynomial, and it is given by

HN−1(x) =
n∑

i=0

(
yiAi(x) + y(1)

i Bi(x)
)

where Ai(x) = (1 − 2(x − xi)l′i(xi))li(x)2 and Bi(x) = (x − xi)li(x)2, for i =
0, . . . , n, with

l′i(xi) =
n∑

k=0,k #=i

1
xi − xk

, i = 0, . . . , n.

As a comparison, we use Programs 65 and 67 to compute the Lagrange and
Hermite interpolating polynomials of the function f(x) = sin(4πx) on the interval
[0, 1] taking four equally spaced nodes (n = 3). Figure 8.4 shows the superposed
graphs of the function f (dashed line) and of the two polynomials Πnf (dotted
line) and HN−1 (solid line). •

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

FIGURE 8.4. Lagrange and Hermite interpolation for the function
f(x) = sin(4πx) on the interval [0, 1]

Program 67 computes the values of the osculating polynomial at the ab-
scissae contained in the vector z. The input vectors x, y and dy contain the
interpolation nodes and the corresponding function evaluations of f and
f ′, respectively.

Program 67 - hermpol : Osculating polynomial

function [herm] = hermite(x,y,dy,z)
n = max(size(x)); m = max(size(z)); herm = [];
for j = 1:m
xx = z(j); hxv = 0;
for i = 1:n,
den = 1; num = 1; xn = x(i); derLi = 0;
for k = 1:n,
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if k ˜= i, num = num*(xx-x(k)); arg = xn-x(k);
den = den*arg; derLi = derLi+1/arg;

end
end
Lix2 = (num/den)ˆ2; p = (1-2*(xx-xn)*derLi)*Lix2;
q = (xx-xn)*Lix2; hxv = hxv+(y(i)*p+dy(i)*q);
end
herm = [herm, hxv];

end

8.5 Extension to the Two-Dimensional Case

In this section we briefly address the extension of the previous concepts to
the two-dimensional case, referring to [SL89], [CHQZ88], [QV94] for more
details. We denote by Ω a bounded domain in R2 and by x = (x, y) the
coordinate vector of a point in Ω.

8.5.1 Polynomial Interpolation
A particularly simple situation occurs when Ω = [a, b] × [c, d], i.e., the
interpolation domain Ω is the tensor product of two intervals. In such a
case, introducing the nodes a = x0 < x1 < . . . < xn = b and c = y0 <
y1 < . . . < ym = d, the interpolating polynomial Πn,mf can be written as
Πn,mf(x, y) =

∑n
i=0

∑m
j=0 αij li(x)lj(y), where li ∈ Pn, i = 0, . . . , n, and

lj ∈ Pm, j = 0, . . . ,m, are the characteristic one-dimensional Lagrange
polynomials with respect to the x and y variables respectively, and where
αij = f(xi, yj).

The drawbacks of one-dimensional Lagrange interpolation are inherited
by the two-dimensional case, as confirmed by the example in Figure 8.5.

Remark 8.1 (The general case) If Ω is not a rectangular domain or if
the interpolation nodes are not uniformly distributed over a Cartesian grid,
the interpolation problem is difficult to solve, and, generally speaking, it is
preferable to resort to a least-squares solution (see Section 10.7). We also
point out that in d dimensions (with d ≥ 2) the problem of finding an
interpolating polynomial of degree n with respect to each space variable on
n + 1 distinct nodes might be ill-posed.

Consider, for example, a polynomial of degree 1 with respect to x and y
of the form p(x, y) = a3xy+a2x+a1y+a0 to interpolate a function f at the
nodes (−1, 0), (0,−1), (1, 0) and (0, 1). Although the nodes are distinct, the
problem (which is nonlinear) does not in general admit a unique solution;
actually, imposing the interpolation constraints, we end up with a system
that is satisfied by any value of the coefficient a3. !
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FIGURE 8.5. Runge’s counterexample extended to the two-dimensional case:
interpolating polynomial on a 6× 6 nodes grid (left) and on a 11× 11 nodes grid
(right). Notice the change in the vertical scale between the two plots

8.5.2 Piecewise Polynomial Interpolation
In the multidimensional case, the higher flexibility of piecewise interpola-
tion allows for easy handling of domains of complex shape. Let us suppose
that Ω is a polygon in R2. Then, Ω can be partitioned into K nonover-
lapping triangles (or elements) T , which define the so called triangulation
of the domain which will be denoted by Th. Clearly, Ω =

⋃
T∈Th

T . Suppose

that the maximum length of the edges of the triangles is less than a positive
number h. As shown in Figure 8.6 (left), not any arbitrary triangulation is
allowed. Precisely, the admissible ones are those for which any pair of non
disjoint triangles may have a vertex or an edge in common.

T

T2

1

2

T
T

2
1

T1
T2

T1 T

1

0 1

FT

T̂
x̂

ŷ y

x

aT
1 T

aT
3

aT
2

FIGURE 8.6. The left side picture shows admissible (above) and non admissible
(below) triangulations while the right side picture shows the affine map from the
reference triangle T̂ to the generic element T ∈ Th

Any element T ∈ Th, of area equal to |T |, is the image through the affine
map x = FT (x̂) = BT x̂ + bT of the reference triangle T̂ , of vertices (0,0),
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(1,0) and (0,1) in the x̂ = (x̂, ŷ) plane (see Figure 8.6, right), where the
invertible matrix BT and the right-hand side bT are given respectively by

BT =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]

, bT = (x1, y1)T , (8.34)

while the coordinates of the vertices of T are denoted by a(l)
T = (xl, yl)T

for l = 1, 2, 3.

(x)

l (x,y)i

iz

z

1

i

li

1

z

iz

i

1

li(x,y)

1

li (x)

FIGURE 8.7. Characteristic piecewise Lagrange polynomial, in one and two space
dimensions. Left, k = 0; right, k = 1

The affine map (8.34) is of remarkable importance in practical computa-
tions, since, once a basis has been generated for representing the piecewise
polynomial interpolant on T̂ , it is possible, applying the change of coor-
dinates x = FT (x̂), to reconstruct the polynomial on each element T of
Th. We are thus interested in devising local basis functions, which can be
fully described over each triangle without needing any information from
adjacent triangles.
For this purpose, let us introduce on Th the set Z of the piecewise interpo-
lation nodes zi = (xi, yi)T , for i = 1, . . . , N , and denote by Pk(Ω), k ≥ 0,
the space of algebraic polynomials of degree ≤ k in the space variables x, y

Pk(Ω) =





p(x, y) =

k∑

i,j=0
i+j≤k

aijx
iyj , x, y ∈ Ω





. (8.35)

Finally, for k ≥ 0, let Pc
k(Ω) be the space of piecewise polynomials of degree

≤ k, such that, for any p ∈ Pc
k(Ω), p|T ∈ Pk(T ) for any T ∈ Th. An ele-

mentary basis for Pc
k(Ω) consists of the Lagrange characteristic polynomials

li = li(x, y), such that li ∈ Pc
k(Ω) and

li(zj) = δij , i, j = 1, . . . , N, (8.36)
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where δij is the Kronecker symbol. We show in Figure 8.7 the functions li for
k = 0, 1, together with their corresponding one-dimensional counterparts.
In the case k = 0, the interpolation nodes are collocated at the centers of
gravity of the triangles, while in the case k = 1 the nodes coincide with
the vertices of the triangles. This choice, that we are going to maintain
henceforth, is not the only one possible. The midpoints of the edges of the
triangles could be used as well, giving rise to a discontinuous piecewise
polynomial over Ω.
For k ≥ 0, the Lagrange piecewise interpolating polynomial of f , Πk

hf ∈
Pc
k(Ω), is defined as

Πk
hf(x, y) =

N∑

i=1

f(zi)li(x, y). (8.37)

Notice that Π0
hf is a piecewise constant function, while Π1

hf is a linear
function over each triangle, continuous at the vertices, and thus globally
continuous.

For any T ∈ Th, we shall denote by Πk
T f the restriction of the piecewise

interpolating polynomial of f over the element T . By definition, Πk
T f ∈

Pk(T ); noticing that dk = dimPk(T ) = (k + 1)(k + 2)/2, we can therefore
write

Πk
T f(x, y) =

dk−1∑

m=0

f(z̃(m)
T )lm,T (x, y), ∀T ∈ Th. (8.38)

In (8.38), we have denoted by z̃(m)
T , for m = 0, . . . , dk − 1, the piecewise

interpolation nodes on T and by lm,T (x, y) the restriction to T of the La-
grange characteristic polynomial having index i in (8.37) which corresponds
in the list of the “global” nodes zi to that of the “local” node z̃(m)

T .
Keeping on with this notation, we have lj,T (x) = l̂j ◦ F−1

T (x), where
l̂j = l̂j(x̂) is, for j = 0, . . . , dk − 1, the j-th Lagrange basis function for
Pk(T̂ ) generated on the reference element T̂ . We notice that if k = 0 then
d0 = 1, that is, only one local interpolation node exists (coinciding with
the center of gravity of the triangle T ), while if k = 1 then d1 = 3, that is,
three local interpolation nodes exist, coinciding with the vertices of T . In
Figure 8.8 we draw the local interpolation nodes on T̂ for k = 0, 1 and 2.
As for the interpolation error estimate, denoting for any T ∈ Th by hT the
maximum length of the edges of T , the following result holds (see for the
proof, [CL91], Theorem 16.1, pp. 125-126 and [QV94], Remark 3.4.2, pp.
89-90)

‖f −Πk
T f‖∞,T ≤ Chk+1

T ‖f (k+1)‖∞,T , k ≥ 0, (8.39)

where for every g ∈ C0(T ), ‖g‖∞,T = maxx∈T |g(x)|. In (8.39), C is a
positive constant independent of hT and f .
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FIGURE 8.8. Local interpolation nodes on T̂ ; left, k = 0, center k = 1, right,
k = 2

Let us assume that the triangulation Th is regular, i.e., there exists a
positive constant σ such that

max
T∈Th

hT

ρT
≤ σ,

where ∀T ∈ Th, ρT is the diameter of the inscribed circle to T , Then, it
is possible to derive from (8.39) the following interpolation error estimate
over the whole domain Ω

‖f −Πk
hf‖∞,Ω ≤ Chk+1‖f (k+1)‖∞,Ω, k ≥ 0, ∀f ∈ Ck+1(Ω).

(8.40)

The theory of piecewise interpolation is a basic tool of the finite element
method, a computational technique that is widely used in the numerical
approximation of partial differential equations (see Chapter 12 for the one-
dimensional case and [QV94] for a complete presentation of the method).

Example 8.7 We compare the convergence of the piecewise polynomial interpo-
lation of degree 0, 1 and 2, on the function f(x, y) = e−(x2+y2) on Ω = (−1, 1)2.
We show in Table 8.4 the error Ek = ‖f −Πk

hf‖∞,Ω, for k = 0, 1, 2, and the order
of convergence pk as a function of the mesh size h = 2/N for N = 2, . . . , 32.
Clearly, linear convergence is observed for interpolation of degree 0 while the
order of convergence is quadratic with respect to h for interpolation of degree 1
and cubic for interpolation of degree 2. •

h E0 p0 E1 p1 E2 p2
1 0.4384 0.2387 0.016
1
2 0.2931 0.5809 0.1037 1.2028 1.6678 · 10−3 3.2639
1
4 0.1579 0.8924 0.0298 1.7990 2.8151 · 10−4 2.5667
1
8 0.0795 0.9900 0.0077 1.9524 3.5165 · 10−5 3.001
1
16 0.0399 0.9946 0.0019 2.0189 4.555 · 10−6 2.9486

TABLE 8.4. Convergence rates and orders for piecewise interpolations of degree
0, 1 and 2
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8.6 Approximation by Splines

In this section we address the matter of approximating a given function us-
ing splines, which allow for a piecewise interpolation with a global smooth-
ness.

Definition 8.1 Let x0, . . . , xn, be n + 1 distinct nodes of [a, b], with a =
x0 < x1 < . . . < xn = b. The function sk(x) on the interval [a,b] is a spline
of degree k relative to the nodes xj if

sk|[xj ,xj+1] ∈ Pk, j = 0, 1, . . . , n− 1 (8.41)

sk ∈ Ck−1[a, b]. (8.42)

!

Denoting by Sk the space of splines sk on [a, b] relative to n + 1 distinct
nodes, then dimSk = n+k. Obviously, any polynomial of degree k on [a, b]
is a spline; however, in the practice a spline is represented by a different
polynomial on each subinterval and for this reason there could be a discon-
tinuity in its k-th derivative at the internal nodes x1, . . . , xn−1. The nodes
for which this actually happens are called active nodes.

It is simple to check that conditions (8.41) and (8.42) do not suffice to
characterize a spline of degree k. Indeed, the restriction sk,j = sk|[xj ,xj+1]
can be represented as

sk,j(x) =
k∑

i=0

sij(x− xj)i, if x ∈ [xj , xj+1] (8.43)

so that (k + 1)n coefficients sij must be determined. On the other hand,
from (8.42) it follows that

s(m)
k,j−1(xj) = s(m)

k,j (xj), j = 1, . . . , n− 1, m = 0, ..., k − 1

which amounts to setting k(n − 1) conditions. As a consequence, the re-
maining degrees of freedom are (k + 1)n− k(n− 1) = k + n.
Even if the spline were interpolatory, that is, such that sk(xj) = fj for
j = 0, . . . , n, where f0, . . . , fn are given values, there would still be k − 1
unsaturated degrees of freedom. For this reason further constraints are
usually imposed, which lead to:

1. periodic splines, if

s(m)
k (a) = s(m)

k (b), m = 0, 1, . . . , k − 1; (8.44)
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2. natural splines, if for k = 2l − 1, with l ≥ 2

s(l+j)
k (a) = s(l+j)

k (b) = 0, j = 0, 1, . . . , l − 2. (8.45)

From (8.43) it turns out that a spline can be conveniently represented using
k+n spline basis functions, such that (8.42) is automatically satisfied. The
simplest choice, which consists of employing a suitably enriched monomial
basis (see Exercise 10), is not satisfactory from the numerical standpoint,
since it is ill-conditioned. In Sections 8.6.1 and 8.6.2 possible examples of
spline basis functions will be provided: cardinal splines for the specific case
k = 3 and B-splines for a generic k.

8.6.1 Interpolatory Cubic Splines
Interpolatory cubic splines are particularly significant since: i. they are
the splines of minimum degree that yield C2 approximations; ii. they are
sufficiently smooth in the presence of small curvatures.

Let us thus consider, in [a, b], n + 1 ordered nodes a = x0 < x1 < . . . <
xn = b and the corresponding evaluations fi, i = 0, . . . , n. Our aim is to
provide an efficient procedure for constructing the cubic spline interpolating
those values. Since the spline is of degree 3, its second-order derivative must
be continuous. Let us introduce the following notation

fi = s3(xi), mi = s′3(xi), Mi = s′′3(xi), i = 0, . . . , n.

Since s3,i−1 ∈ P3, s′′3,i−1 is linear and

s′′3,i−1(x) = Mi−1
xi − x

hi
+ Mi

x− xi−1

hi
for x ∈ [xi−1, xi] (8.46)

where hi = xi − xi−1. Integrating (8.46) twice we get

s3,i−1(x) = Mi−1
(xi − x)3

6hi
+ Mi

(x− xi−1)3

6hi
+ Ci−1(x− xi−1) + C̃i−1,

and the constants Ci−1 and C̃i−1 are determined by imposing the end point
values s3(xi−1) = fi−1 and s3(xi) = fi. This yields, for i = 1, . . . , n− 1

C̃i−1 = fi−1 −Mi−1
h2
i

6
, Ci−1 =

fi − fi−1

hi
− hi

6
(Mi −Mi−1).

Let us now enforce the continuity of the first derivatives at xi; we get

s′3(x
−
i ) =

hi

6
Mi−1 +

hi

3
Mi +

fi − fi−1

hi

= −hi+1

3
Mi −

hi+1

6
Mi+1 +

fi+1 − fi
hi+1

= s′3(x
+
i ),
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where s′3(x
±
i ) = lim

t→0
s′3(xi ± t). This leads to the following linear system

(called M-continuity system)

µiMi−1 + 2Mi + λiMi+1 = di i = 1, . . . , n− 1 (8.47)

where we have set

µi =
hi

hi + hi+1
, λi =

hi+1

hi + hi+1
,

di =
6

hi + hi+1

(
fi+1 − fi
hi+1

− fi − fi−1

hi

)
, i = 1, . . . , n− 1.

System (8.47) has n + 1 unknowns and n − 1 equations; thus, 2(= k − 1)
conditions are still lacking. In general, these conditions can be of the form

2M0 + λ0M1 = d0, µnMn−1 + 2Mn = dn,

with 0 ≤ λ0, µn ≤ 1 and d0, dn given values. For instance, in order to
obtain the natural splines (satisfying s′′3(a) = s′′3(b) = 0), we must set the
above coefficients equal to zero. A popular choice sets λ0 = µn = 1 and
d0 = d1, dn = dn−1, which corresponds to prolongating the spline outside
the end points of the interval [a, b] and treating a and b as internal points.
This strategy produces a spline with a “smooth” behavior. In general, the
resulting linear system is tridiagonal of the form





2 λ0 0 . . . 0

µ1 2 λ1
...

0
. . . . . . . . . 0

... µn−1 2 λn−1
0 . . . 0 µn 2









M0
M1
...
Mn−1
Mn




=





d0
d1
...
dn−1
dn




(8.48)

and it can be efficiently solved using the Thomas algorithm (3.53).
A closure condition for system (8.48), which can be useful when the

derivatives f ′(a) and f ′(b) are not available, consists of enforcing the con-
tinuity of s′′′3 (x) at x1 and xn−1. Since the nodes x1 and xn−1 do not
actually contribute in constructing the cubic spline, it is called a not-a-
knot spline, with “active” knots {x0, x2, . . . , xn−2, xn} and interpolating f
at all the nodes {x0, x1, x2, . . . , xn−2, xn−1, xn}.

Remark 8.2 (Specific software) Several packages exist for dealing with
interpolating splines. In the case of cubic splines, we mention the command
spline, which uses the not-a-knot condition introduced above, or, in gen-
eral, the spline toolbox of MATLAB [dB90] and the library FITPACK
[Die87a], [Die87b]. !
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A completely different approach for generating s3 consists of providing
a basis {ϕi} for the space S3 of cubic splines, whose dimension is equal to
n+3. We consider here the case in which the n+3 basis functions ϕi have
global support in the interval [a, b], referring to Section 8.6.2 for the case
of a basis with local support.

Functions ϕi, for i, j = 0, . . . , n, are defined through the following inter-
polation constraints

ϕi(xj) = δij , ϕ′
i(x0) = ϕ′

i(xn) = 0,

and two suitable splines must be added, ϕn+1 and ϕn+2. For instance, if
the spline must satisfy some assigned conditions on the derivative at the
end points, we ask that

ϕn+1(xj) = 0, j = 0, ..., n ϕ′
n+1(x0) = 1, ϕ′

n+1(xn) = 0,

ϕn+2(xj) = 0, j = 0, ..., n ϕ′
n+2(x0) = 0, ϕ′

n+2(xn) = 1.

By doing so, the spline takes the form

s3(x) =
n∑

i=0

fiϕi(x) + f ′
0ϕn+1(x) + f ′

nϕn+2(x),

where f ′
0 and f ′

n are two given values. The resulting basis {ϕi, i = 0, ..., n + 2}
is called a cardinal spline basis and is frequently employed in the numerical
solution of differential or integral equations. Figure 8.9 shows a generic car-
dinal spline, which is computed over a virtually unbounded interval where
the interpolation nodes xj are the integers. The spline changes sign in any
adjacent intervals [xj−1, xj ] and [xj , xj+1] and rapidly decays to zero.

Restricting ourselves to the positive axis, it can be shown (see [SL89])
that the extremant of the function on the interval [xj , xj+1] is equal to
the extremant on the interval [xj+1, xj+2] multiplied by a decaying factor
λ ∈ (0, 1). In such a way, possible errors arising over an interval are rapidly
damped on the next one, thus ensuring the stability of the algorithm.

Let us summarize the main properties of interpolating cubic splines, re-
ferring to [Sch81] and [dB83] for the proofs and more general results.

Property 8.2 Let f ∈ C2([a, b]), and let s3 be the natural cubic spline
interpolating f . Then

b∫

a

[s′′3(x)]2dx ≤
b∫

a

[f ′′(x)]2dx, (8.49)

where equality holds if and only if f = s3.

The above result is known as the minimum norm property and has the
meaning of the minimum energy principle in mechanics. Property (8.49)
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FIGURE 8.9. Cardinal spline

still holds if conditions on the first derivative of the spline at the end points
are assigned instead of natural conditions (in such a case, the spline is called
constrained, see Exercise 11).

The cubic interpolating spline sf of a function f ∈ C2([a, b]), with
s′f (a) = f ′(a) and s′f (b) = f ′(b), also satisfies the following property

b∫

a

[f ′′(x)− s′′f (x)]2dx ≤
b∫

a

[f ′′(x)− s′′(x)]2dx, ∀s ∈ S3.

As far as the error estimate is concerned, the following result holds.

Property 8.3 Let f ∈ C4([a, b]) and fix a partition of [a, b] into subinter-
vals of width hi such that h = maxi hi and β = h/mini hi. Let s3 be the
cubic spline interpolating f . Then

‖f (r) − s(r)
3 ‖∞ ≤ Crh

4−r‖f (4)‖∞, r = 0, 1, 2, 3, (8.50)

with C0 = 5/384, C1 = 1/24, C2 = 3/8 and C3 = (β + β−1)/2.

As a consequence, spline s3 and its first and second order derivatives
uniformly converge to f and to its derivatives, as h tends to zero. The third
order derivative converges as well, provided that β is uniformly bounded.

Example 8.8 Figure 8.10 shows the cubic spline approximating the function in
the Runge’s example, and its first, second and third order derivatives, on a grid
of 11 equally spaced nodes, while in Table 8.5 the error ‖s3 − f‖∞ is reported as
a function of h together with the computed order of convergence p. The results
clearly demonstrate that p tends to 4 (the theoretical order) as h tends to zero.
•
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h 1 0.5 0.25 0.125 0.0625
‖s3 − f‖∞ 0.022 0.0032 2.7741e-4 1.5983e-5 9.6343e-7
p – 2.7881 3.5197 4.1175 4.0522

TABLE 8.5. Experimental interpolation error for Runge’s function using cubic
splines
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FIGURE 8.10. Interpolating spline (a) and its first (b), second (c) and third (d)
order derivatives (in solid line) for the function of Runge’s example (in dashed
line)

8.6.2 B-splines
Let us go back to splines of a generic degree k, and consider the B-spline
(or bell-spline) basis, referring to divided differences introduced in Section
8.2.1.

Definition 8.2 The normalized B-spline Bi,k+1 of degree k relative to the
distinct nodes xi, . . . , xi+k+1 is defined as

Bi,k+1(x) = (xi+k+1 − xi)g[xi, . . . , xi+k+1], (8.51)

where

g(t) = (t− x)k+ =

{
(t− x)k if x ≤ t,

0 otherwise.
(8.52)
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!

Substituting (8.18) into (8.51) yields the following explicit representation

Bi,k+1(x) = (xi+k+1 − xi)
k+1∑

j=0

(xj+i − x)k+
k+1∏

l=0
l '=j

(xi+j − xi+l)

. (8.53)

From (8.53) it turns out that the active nodes of Bi,k+1(x) are xi, . . . , xi+k+1
and that Bi,k+1(x) is non null only within the interval [xi, xi+k+1].

Actually, it can be proved that it is the unique non null spline of min-
imum support relative to nodes xi, . . . , xi+k+1 [Sch67]. It can also be
shown that Bi,k+1(x) ≥ 0 [dB83] and |B(l)

i,k+1(xi)| = |B(l)
i,k+1(xi+k+1)| for

l = 0, . . . , k−1 [Sch81]. B-splines admit the following recursive formulation
([dB72], [Cox72])

Bi,1(x) =

{
1 if x ∈ [xi, xi+1],

0 otherwise,

Bi,k+1(x) =
x− xi

xi+k − xi
Bi,k(x) +

xi+k+1 − x

xi+k+1 − xi+1
Bi+1,k(x), k ≥ 1,

(8.54)

which is usually preferred to (8.53) when evaluating a B-spline at a given
point.

Remark 8.3 It is possible to define B-splines even in the case of partially
coincident nodes, by suitably extending the definition of divided differences.
This leads to a new recursive form of Newton divided differences given by
(see for further details [Die93])

f [x0, . . . , xn] =






f [x1, . . . , xn]− f [x0, . . . , xn−1]
xn − x0

if x0 < x1 < . . . < xn

f (n+1)(x0)
(n + 1)!

if x0 = x1 = . . . = xn.

Assuming that m (with 1 < m < k+2) of the k+2 nodes xi, . . . , xi+k+1
are coincident and equal to λ, then (8.46) will contain a linear combination
of the functions (λ − x)k+1−j

+ , for j = 1, . . . ,m. As a consequence, the
B-spline can have continuous derivatives at λ only up to order k −m and,
therefore, it is discontinuous if m = k + 1. It can be checked [Die93] that,
if xi−1 < xi = . . . = xi+k < xi+k+1, then

Bi,k+1(x) =






(
xi+k+1 − x

xi+k+1 − xi

)k

if x ∈ [xi, xi+k+1],

0 otherwise,
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while for xi < xi+1 = . . . = xi+k+1 < xi+k+2

Bi,k+1(x) =






(
x− xi

xi+k+1 − xi

)k

if x ∈ [xi, xi+k+1],

0 otherwise.

Combining these formulae with the recursive relation (8.54) allows for con-
structing B-splines with coincident nodes. !

Example 8.9 Let us examine the special case of cubic B-splines on equally
spaced nodes xi+1 = xi + h for i = 0, ..., n− 1. Equation (8.53) becomes

6h3Bi,4(x) =





(x− xi)3, if x ∈ [xi, xi+1],

h3 + 3h2(x− xi+1) + 3h(x− xi+1)2 − 3(x− xi+1)3, if x ∈ [xi+1, xi+2],

h3 + 3h2(xi+3 − x) + 3h(xi+3 − x)2 − 3(xi+3 − x)3, if x ∈ [xi+2, xi+3],

(xi+4 − x)3, if x ∈ [xi+3, xi+4],

0 otherwise.

In Figure 8.11 the graph of Bi,4 is shown in the case of distinct nodes and of
partially coincident nodes. •
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FIGURE 8.11. B-spline with distinct nodes (in solid line) and with three coin-
cident nodes at the origin (in dashed line). Notice the discontinuity of the first
derivative

Given n + 1 distinct nodes xj , j = 0, . . . , n, n − k linearly independent
B-splines of degree k can be constructed, though 2k degrees of freedom are
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still available to generate a basis for Sk. One way of proceeding consists of
introducing 2k fictitious nodes

x−k ≤ x−k+1 ≤ . . . ≤ x−1 ≤ x0 = a,

b = xn ≤ xn+1 ≤ . . . ≤ xn+k

(8.55)

which the B-splines Bi,k+1, with i = −k, . . . ,−1 and i = n− k, . . . , n− 1,
are associated with. By doing so, any spline sk ∈ Sk can be uniquely written
as

sk(x) =
n−1∑

i=−k

ciBi,k+1(x). (8.56)

The real numbers ci are the B-spline coefficients of sk. Nodes (8.55) are
usually chosen as coincident or periodic.

1. Coincident: this choice is suitable for enforcing the values attained
by a spline at the end points of its definition interval. In such a case,
indeed, thanks to Remark 8.3 about B-splines with coincident nodes,
we get

sk(a) = c−k, sk(b) = cn−1. (8.57)

2. Periodic, that is

x−i = xn−i − b + a, xi+n = xi + b− a, i = 1, . . . , k.

This choice is useful if the periodicity conditions (8.44) have to be
imposed.

Remark 8.4 (Inserting nodes) Using B-splines instead of cardinal spli-
nes is advantageous when handling, with a reduced computational effort, a
given configuration of nodes for which a spline sk is known. In particular,
assume that the coefficients ci of sk (in form (8.56)) are available over the
nodes x−k, x−k+1, . . . , xn+k, and that we wish to add to these a new node
x̃.

The spline s̃k ∈ Sk, defined over the new set of nodes, admits the follow-
ing representation with respect to a new B-spline basis

{
B̃i,k+1

}

s̃k(x) =
n−1∑

i=−k

diB̃i,k+1(x).

The new coefficients di can be computed starting from the known coeffi-
cients ci using the following algorithm [Boe80]:
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let x̃ ∈ [xj , xj+1); then, construct a new set of nodes {yi} such that

yi = xi for i = −k, . . . , j, yj+1 = x̃,

yi = xi−1 for i = j + 2, . . . , n + k + 1;

define

ωi =






1 for i = −k, . . . , j − k,

yj+1 − yi
yi+k+1 − yi

for i = j − k + 1, . . . , j,

0 for i = j + 1, . . . , n;

compute

di = ωici + (1− ωi)ci i = −k, ..., n− 1.

This algorithm has good stability properties and can be generalized to the
case where more than one node is inserted at the same time (see [Die93]).
!

8.7 Splines in Parametric Form

Using interpolating splines presents the following two drawbacks:

1. the resulting approximation is of good quality only if the function
f does not exhibit large derivatives (in particular, we require that
|f ′(x)| < 1 for every x). Otherwise, oscillating behaviors may arise
in the spline, as demonstrated by the example considered in Figure
8.12 which shows, in solid line, the cubic interpolating spline over the
following set of data (from [SL89])

xi 8.125 8.4 9 9.845 9.6 9.959 10.166 10.2
fi 0.0774 0.099 0.28 0.6 0.708 1.3 1.8 2.177

2. sk depends on the choice of the coordinate system. In fact, performing
a clockwise rotation of 36 degrees of the coordinate system in the
above example, would lead to the spline without spurious oscillations
reported in the boxed frame in Figure 8.12.

All the interpolation procedures considered so far depend on the cho-
sen Cartesian reference system, which is a negative feature if the
spline is used for a graphical representation of a given figure (for in-
stance, an ellipse). Indeed, we would like such a representation to
be independent of the reference system, that is, to have a geometric
invariance property.
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FIGURE 8.12. Geometric noninvariance for an interpolating cubic spline s3: the
set of data for s3 in the boxed frame is the same as in the main figure, rotated
by 36 degrees. The rotation diminishes the slope of the interpolated curve and
eliminates any oscillation from s3. Notice that resorting to a parametric spline
(dashed line) removes the oscillations in s3 without any rotation of the reference
system

A solution is provided by parametric splines, in which any component of the
curve, written in parametric form, is approximated by a spline function.
Consider a plane curve in parametric form P(t) = (x(t), y(t)), with t ∈
[0, T ], then take the set of the points in the plane of coordinates Pi =
(xi, yi), for i = 0, . . . , n, and introduce a partition onto [0, T ]: 0 = t0 <
t1 < . . . < tn = T .

Using the two sets of values {ti, xi} and {ti, yi} as interpolation data,
we obtain the two splines sk,x and sk,y, with respect to the independent
variable t, that interpolate x(t) and y(t), respectively. The parametric curve
Sk(t) = (sk,x(t), sk,y(t)) is called the parametric spline. Obviously, different
parameterizations of the interval [0, T ] yield different splines (see Figure
8.13).

A reasonable choice of the parameterization makes use of the length of
each segment Pi−1Pi,

li =
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1, . . . , n.

Setting t0 = 0 and ti =
∑i

k=1 lk for i = 1, . . . , n, every ti represents the
cumulative length of the piecewise line that joins the points from P0 to
Pi. This function is called the cumulative length spline and approximates
satisfactorily even those curves with large curvature. Moreover, it can also
be proved (see [SL89]) that it is geometrically invariant.

Program 68 implements the construction of cumulative parametric cu-
bic splines in two dimensions (it can be easily generalized to the three-
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FIGURE 8.13. Parametric splines for a spiral-like node distribution. The spline
of cumulative length is drawn in solid line

dimensional case). Composite parametric splines can be generated as well
by enforcing suitable continuity conditions (see [SL89]).

Program 68 - par spline : Parametric splines

function [xi,yi] = par spline (x, y)
t (1) = 0;
for i = 1:length (x)-1
t (i+1) = t (i) + sqrt ( (x(i+1)-x(i))ˆ2 + (y(i+1)-y(i))ˆ2 );

end
z = [t(1):(t(length(t))-t(1))/100:t(length(t))];
xi = spline (t,x,z);
yi = spline (t,y,z);

8.7.1 Bézier Curves and Parametric B-splines
The Bézier curves and parametric B-splines are widely employed in graph-
ical applications, where the nodes’ locations might be affected by some
uncertainty.

Let P0,P1, . . . ,Pn be n + 1 points ordered in the plane. The oriented
polygon formed by them is called the characteristic polygon or Bézier poly-
gon. Let us introduce the Bernstein polynomials over the interval [0, 1]
defined as

bn,k(t) =
(

n
k

)
tk(1− t)n−k =

n!
k!(n− k)!

tk(1− t)n−k,
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for n = 0, 1, . . . and k = 0, . . . , n. They can be obtained by the following
recursive formula
{

bn,0(t) = (1− t)n

bn,k(t) = (1− t)bn−1,k(t) + tbn−1,k−1(t), k = 1, . . . , n, t ∈ [0, 1].

It is easily seen that bn,k ∈ Pn, for k = 0, . . . , n. Also, {bn,k, k = 0, . . . , n}
provides a basis for Pn. The Bézier curve is defined as follows

Bn(P0,P1, . . . ,Pn, t) =
n∑

k=0

Pkbn,k(t), 0 ≤ t ≤ 1. (8.58)

This expression can be regarded as a weighted average of the points Pk,
with weights bn,k(t).

The Bézier curves can also be obtained by a pure geometric approach
starting from the characteristic polygon. Indeed, for any fixed t ∈ [0, 1],
we define Pi,1(t) = (1 − t)Pi + tPi+1 for i = 0, . . . , n − 1 and, for t
fixed, the piecewise line that joins the new nodes Pi,1(t) forms a polygon
of n − 1 edges. We can now repeat the procedure by generating the new
vertices Pi,2(t) (i = 0, . . . , n− 2), and terminating as soon as the polygon
comprises only the vertices P0,n−1(t) and P1,n−1(t). It can be shown that

P0,n(t) = (1− t)P0,n−1(t) + tP1,n−1(t) = Bn(P0,P1, . . . ,Pn, t),

that is, P0,n(t) is equal to the value of the Bézier curve Bn at the points
corresponding to the fixed value of t. Repeating the process for several val-
ues of the parameter t yields the construction of the curve in the considered
region of the plane.
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FIGURE 8.14. Computation of the value of B3 relative to the points (0,0), (4,7),
(14,7), (17,0) for t = 0.5, using the graphical method described in the text

Notice that, for a given node configuration, several curves can be con-
structed according to the ordering of points Pi. Moreover, the Bézier curve
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Bn(P0,P1, . . . ,Pn, t) coincides with Bn(Pn,Pn−1, . . . ,P0, t), apart from
the orientation.

Program 69 computes bn,k at the point x for x ∈ [0, 1].

Program 69 - bernstein : Bernstein polynomials

function [bnk]=bernstein (n,k,x)
if k == 0,

C = 1;
else,

C = prod ([1:n])/( prod([1:k])*prod([1:n-k]));
end
bnk = C * xˆk * (1-x)ˆ(n-k);

Program 70 plots the Bézier curve relative to the set of points (x, y).

Program 70 - bezier : Bézier curves

function [bezx,bezy] = bezier (x, y, n)
i = 0; k = 0;
for t = 0:0.01:1,

i = i + 1; bnk = bernstein (n,k,t); ber(i) = bnk;
end
bezx = ber * x (1); bezy = ber * y (1);
for k = 1:n

i = 0;
for t = 0:0.01:1

i = i + 1; bnk = bernstein (n,k,t); ber(i) = bnk;
end

bezx = bezx + ber * x (k+1); bezy = bezy + ber * y (k+1);
end
plot(bezx,bezy)

In practice, the Bézier curves are rarely used since they do not provide a
sufficiently accurate approximation to the characteristic polygon. For this
reason, in the 70’s the parametric B-splines were introduced, and they are
used in (8.58) instead of the Bernstein polynomials. Parametric B-splines
are widely employed in packages for computer graphics since they enjoy
the following properties:

1. perturbing a single vertex of the characteristic polygon yields a local
perturbation of the curve only around the vertex itself;

2. the parametric B-spline better approximates the control polygon than
the corresponding Bézier curve does, and it is always contained within
the convex hull of the polygon.



362 8. Polynomial Interpolation

In Figure 8.15 a comparison is made between Bézier curves and para-
metric B-splines for the approximation of a given characteristic polygon.

FIGURE 8.15. Comparison of a Bézier curve (left) and a parametric B-spline
(right). The vertices of the characteristic polygon are denoted by ×

We conclude this section by noticing that parametric cubic B-splines
allow for obtaining locally straight lines by aligning four consecutive ver-
tices (see Figure 8.16) and that a parametric B-spline can be constrained
at a specific point of the characteristic polygon by simply making three
consecutive points of the polygon coincide with the desired point.

FIGURE 8.16. Some parametric B-splines as functions of the number and posi-
tions of the vertices of the characteristic polygon. Notice in the last figure (right)
the localization effects due to moving a single vertex

8.8 Applications

In this section we consider two problems arising from the solution of fourth-
order differential equations and from the reconstruction of images in axial
tomographies.
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8.8.1 Finite Element Analysis of a Clamped Beam
Let us employ piecewise Hermite polynomials (see Section 8.4) for the nu-
merical approximation of the transversal bending of a clamped beam. This
problem was already considered in Section 4.7.2 where centered finite dif-
ferences were used.

The mathematical model is the fourth-order boundary value problem
(4.74), here presented in the following general formulation

{
(α(x)u′′(x))′′ = f(x), 0 < x < L

u(0) = u(L) = 0, u′(0) = u′(L) = 0.
(8.59)

In the particular case of (4.74) we have α = EJ and f = P ; we assume
henceforth that α is a positive and bounded function over (0,L) and that
f ∈ L2(0,L).

We multiply (8.59) by a sufficiently smooth arbitrary function v, then,
we integrate by parts twice, to obtain

L∫

0

αu′′v′′dx− [αu′′′v]L0 + [αu′′v′]L0 =
L∫

0

fvdx.

Problem (8.59) is then replaced by the following problem in integral form

findu ∈ V such that
L∫

0

αu′′v′′dx =
L∫

0

fvdx, ∀v ∈ V, (8.60)

where

V =
{
v : v(k) ∈ L2(0,L), k = 0, 1, 2, v(k)(0) = v(k)(L) = 0, k = 0, 1

}
.

Problem (8.60) admits a unique solution, which represents the deformed
configuration that minimizes the total potential energy of the beam over
the space V (see, for instance, [Red86], p. 156)

J(u) =
L∫

0

(
1
2
α(u′′)2 − fu

)
dx.

In view of the numerical solution of problem (8.60), we introduce a partition
Th of [0,L] into K subintervals Tk = [xk−1, xk], (k = 1, . . . ,K) of uniform
length h = L/K, with xk = kh, and the finite dimensional space

Vh =
{
vh ∈ C1([0,L]), vh|T ∈ P3(T )

∀T ∈ Th, v(k)
h (0) = v(k)

h (L) = 0, k = 0, 1
}
.

(8.61)
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Let us equip Vh with a basis. For this purpose, we associate with each
internal node xi (i = 1, . . . ,K − 1) a support σi = Ti ∪ Ti+1 and two
functions ϕi, ψi defined as follows: for any k, ϕi|Tk ∈ P3(Tk), ψi|Tk ∈ P3(Tk)
and for any j = 0, . . . ,K,






ϕi(xj) = δij , ϕ′
i(xj) = 0,

ψi(xj) = 0, ψ′
i(xj) = δij .

(8.62)

Notice that the above functions belong to Vh and define a basis

Bh = {ϕi, ψi, i = 1, . . . ,K − 1}. (8.63)

These basis functions can be brought back to the reference interval T̂ =
[0, 1] for 0 ≤ x̂ ≤ 1, by the affine maps x = hx̂ + xk−1 between T̂ and Tk,
for k = 1, . . . ,K.

Therefore, let us introduce on the interval T̂ the basis functions ϕ̂(0)
0

and ϕ̂(1)
0 , associated with the node x̂ = 0, and ϕ̂(0)

1 and ϕ̂(1)
1 , associated

with node x̂ = 1. Each of these is of the form ϕ̂ = a0 + a1x̂ + a2x̂2 +
a3x̂3; in particular, the functions with superscript “0” must satisfy the
first two conditions in (8.62), while those with superscript “1” must fulfill
the remaining two conditions. Solving the (4×4) associated system, we get

ϕ̂(0)
0 (x̂) = 1− 3x̂2 + 2x̂3, ϕ̂(1)

0 (x̂) = x̂− 2x̂2 + x̂3,

ϕ̂(0)
1 (x̂) = 3x̂2 − 2x̂3, ϕ̂(1)

1 (x̂) = −x̂2 + x̂3.
(8.64)

The graphs of the functions (8.64) are drawn in Figure 8.17 (left), where
(0), (1), (2) and (3) denote ϕ̂(0)

0 , ϕ̂(0)
1 , ϕ̂(1)

0 and ϕ̂(1)
1 , respectively.

The function uh ∈ Vh can be written as

uh(x) =
K−1∑

i=1

uiϕi(x) +
K−1∑

i=1

u(1)
i ψi(x). (8.65)

The coefficients and the degrees of freedom of uh have the following mean-
ing: ui = uh(xi), u

(1)
i (xi) = u′

h(xi) for i = 1, . . . ,K − 1. Notice that (8.65)
is a special instance of (8.32), having set mi = 1.

The discretization of problem (8.60) reads

finduh ∈ Vh such that
L∫

0

αu′′
hv

′′
hdx =

L∫

0

fvhdx, ∀vh ∈ Bh. (8.66)

This is called the Galerkin finite element approximation of the differential
problem (8.59). We refer to Chapter 12, Sections 12.4 and 12.4.5, for a
more comprehensive discussion and analysis of the method.
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FIGURE 8.17. Canonical Hermite basis on the reference interval 0 ≤ x̂ ≤ 1 (left);
convergence histories for the conjugate gradient method in the solution of system
(8.69) (right). On the x-axis the number of iterations k is shown, while the y-axis
represents the quantity ‖r(k)‖2/‖b1‖2, where r is the residual of system (8.69)

Using the representation (8.65) we end up with the following system in
the 2K − 2 unknowns u1, u2, . . . , uK−1, u

(1)
1 , u(1)

2 , . . . u(1)
K−1






K−1∑

j=1




uj

L∫

0

αϕ′′
jϕ

′′
i dx + u(1)

j

L∫

0

αψ′′
j ϕ

′′
i dx




 =
L∫

0

fϕidx,

K−1∑

j=1




uj

L∫

0

αϕ′′
jψ

′′
i dx + u(1)

j

L∫

0

αψ′′
j ψ

′′
i dx




 =
L∫

0

fψidx,

(8.67)

for i = 1, . . . ,K−1. Assuming, for the sake of simplicity, that the beam has
unit length L, that α and f are two constants and computing the integrals
in (8.67), the final system reads in matrix form

{
Au + Bp = b1

BTu + Cp = 0,
(8.68)

where the vectors u,p ∈ RK−1 contain the nodal unknowns ui and u(1)
i ,

b1 ∈ RK−1 is the vector of components equal to h4f/α, while

A = tridiagK−1(−12, 24,−12),

B = tridiagK−1(−6, 0, 6),

C = tridiagK−1(2, 8, 2).

System (8.68) has size equal to 2(K − 1); eliminating the unknown p from
the second equation, we get the reduced system (of size K − 1)

(
A− BC−1BT

)
u = b1. (8.69)
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Since B is skew-symmetric and A is symmetric and positive definite (s.p.d.),
the matrix M = A−BC−1BT is s.p.d. too. Using Cholesky factorization for
solving system (8.69) is impractical as C−1 is full. An alternative is thus the
conjugate gradient method (CG) supplied with a suitable preconditioner
as the spectral condition number of M is of the order of h−4 = K4.

We notice that computing the residual at each step k ≥ 0 requires solv-
ing a linear system whose right side is the vector BTu(k), u(k) being the
current iterate of CG method, and whose coefficient matrix is matrix C.
This system can be solved using the Thomas algorithm (3.53) with a cost
of the order of K flops.

The CG algorithm terminates in correspondence to the lowest value of k
for which ‖r(k)‖2 ≤ u‖b1‖2, where r(k) is the residual of system (8.69) and
u is the roundoff unit.

The results obtained running the CG method in the case of a uniform
partition of [0, 1] with K = 50 elements and setting α = f = 1 are sum-
marized in Figure 8.17 (right), which shows the convergence histories of
the method in both nonpreconditioned form (denoted by “Non Prec.”) and
with SSOR preconditioner (denoted by “Prec.”), having set the relaxation
parameter ω = 1.95.

We notice that the CG method does not converge within K − 1 steps
due to the effect of the rounding errors. Notice also the effectiveness of the
SSOR preconditioner in terms of the reduction of the number of iterations.
However, the high computational cost of this preconditioner prompts us to
devise another choice. Looking at the structure of the matrix M a natural
preconditioner is M = A−BC̃−1BT , where C̃ is the diagonal matrix whose
entries are c̃ii =

∑K−1
j=1 |cij |. The matrix M is banded so that its inversion

requires a strongly reduced cost than for the SSOR preconditioner. More-
over, as shown in Table 8.6, using M provides a dramatic decrease of the
number of iterations to converge.

K Without Precond. SSOR M
25 51 27 12
50 178 61 25
100 685 118 33
200 2849 237 34

TABLE 8.6. Number of iterations as a function of K

8.8.2 Geometric Reconstruction Based on Computer
Tomographies

A typical application of the algorithms presented in Section 8.7 deals with
the reconstruction of the three-dimensional structure of internal organs of
human body based on computer tomographies (CT).
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FIGURE 8.18. Cross-section of a blood vessel (left) and an associated character-
istic polygon using 16 points Pi (right)

The CT usually provides a sequence of images which represent the sections
of an organ at several horizontal planes; as a convention, we say that the
CT produces sections of the x, y plane in correspondance of several values of
z. The result is analogous to what we would get by sectioning the organ at
different values of z and taking the picture of the corresponding sections.
Obviously, the great advantage in using the CT is that the organ under
investigation can be visualized without being hidden by the neighboring
ones, as happens in other kinds of medical images, e.g., angiographies.

The image that is obtained for each section is coded into a matrix of
pixels (abbreviation of pictures elements) in the x, y plane; a certain value
is associated with each pixel expressing the level of grey of the image at
that point. This level is determined by the density of X rays which are
collected by a detector after passing through the human body. In practice,
the information contained in a CT at a given value of z is expressed by a
set of points (xi, yi) which identify the boundary of the organ at z.

To improve the diagnostics it is often useful to reconstruct the three-
dimensional structure of the organ under examination starting from the
sections provided by the CT. With this aim, it is necessary to convert the
information coded by pixels into a parametric representation which can be
expressed by suitable functions interpolating the image at some significant
points on its boundary. This reconstruction can be carried out by using the
methods described in Section 8.7 as shown in Figure 8.19.
A set of curves like those shown in Figure 8.19 can be suitably stacked to
provide an overall three-dimensional view of the organ under examination.
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(a)

(b)

(c)

FIGURE 8.19. Reconstruction of the internal vessel of Figure 8.18 using different
interpolating splines with the same characteristic polygon: (a) Bézier curves, (b)
parametric splines and (c) parametric B-splines

8.9 Exercises
1. Prove that the characteristic polynomials li ∈ Pn defined in (8.3) form a

basis for Pn.

2. An alternative approach to the method in Theorem 8.1, for constructing
the interpolating polynomial, consists of directly enforcing the n + 1 in-
terpolation constraints on Πn and then computing the coefficients ai. By
doing so, we end up with a linear system Xa= y, with a = (a0, . . . , an)T ,
y = (y0, . . . , yn)T and X = [xj

i ]. X is called Vandermonde matrix. Prove
that X is nonsingular if the nodes xi are distinct.

[Hint: show that det(X)=
∏

0≤j<i≤n

(xi − xj) by recursion on n.]

3. Prove that ω′
n+1(xi) =

n∏

j=0
j &=i

(xi − xj) where ωn+1 is the nodal polynomial

(8.6). Then, check (8.5).

4. Provide an estimate of ‖ωn+1‖∞, in the cases n = 1 and n = 2, for a
distribution of equally spaced nodes.

5. Prove that

(n− 1)!hn−1|(x− xn−1)(x− xn)| ≤ |ωn+1(x)| ≤ n!hn−1|(x− xn−1)(x− xn)|,

where n is even, −1 = x0 < x1 < . . . < xn−1 < xn = 1, x ∈ (xn−1, xn) and
h = 2/n.
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[Hint : let N = n/2 and show first that

ωn+1(x) = (x + Nh)(x + (N − 1)h) . . . (x + h)x

(x− h) . . . (x− (N − 1)h)(x−Nh).
(8.70)

Then, take x = rh with N − 1 < r < N .]

6. Under the assumptions of Exercise 5, show that |ωn+1| is maximum if
x ∈ (xn−1, xn) (notice that |ωn+1| is an even function).
[Hint : use (8.70) to prove that |ωn+1(x + h)/ωn+1(x)| > 1 for any x ∈
(0, xn−1) with x not coinciding with any interpolation node.]

7. Prove the recursive relation (8.19) for Newton divided differences.

8. Determine an interpolating polynomial Hf ∈ Pn such that

(Hf)(k)(x0) = f (k)(x0), k = 0, . . . , n,

and check that

Hf(x) =
n∑

j=0

f (j)(x0)
j!

(x− x0)j ,

that is, the Hermite interpolating polynomial on one node coincides with
the Taylor polynomial.

9. Given the following set of data
{
f0 = f(−1) = 1, f1 = f ′(−1) = 1, f2 = f ′(1) = 2, f3 = f(2) = 1

}
,

prove that the Hermite-Birkoff interpolating polynomial H3 does not exist
for them.
[Solution : letting H3(x) = a3x

3 + a2x
2 + a1x + a0, one must check that

the matrix of the linear system H3(xi) = fi for i = 0, . . . , 3 is singular.]

10. Check that any sk ∈ Sk[a, b] admits a representation of the form

sk(x) =
k∑

i=0

bix
i +

g∑

i=1

ci(x− xi)k+,

that is, 1, x, x2, . . . , xk, (x− x1)k+, . . . , (x− xg)k+ form a basis for Sk[a, b].

11. Prove Property 8.2 and check its validity even in the case where the spline
s satisfies conditions of the form s′(a) = f ′(a), s′(b) = f ′(b).
[Hint: start from

b∫

a

[
f ′′(x)− s′′(x)

]
s′′(x)dx =

n∑

i=1

xi∫

xi−1

[
f ′′(x)− s′′(x)

]
s′′dx

and integrate by parts twice.]
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12. Let f(x) = cos(x) = 1 − x2

2! + x4

4! −
x6

6! + . . . ; then, consider the following
rational approximation

r(x) =
a0 + a2x

2 + a4x
4

1 + b2x2 , (8.71)

called the Padé approximation. Determine the coefficients of r in such a
way that

f(x)− r(x) = γ8x
8 + γ10x

10 + . . .

[Solution: a0 = 1, a2 = −7/15, a4 = 1/40, b2 = 1/30.]

13. Assume that the function f of the previous exercise is known at a set of n
equally spaced points xi ∈ (−π/2,π/2) with i = 0, . . . , n. Repeat Exercise
12, determining, by using MATLAB, the coefficients of r in such a way
that the quantity

∑n
i=0 |f(xi) − r(xi)|2 is minimized. Consider the cases

n = 5 and n = 10.



9
Numerical Integration

In this chapter we present the most commonly used methods for numer-
ical integration. We will mainly consider one-dimensional integrals over
bounded intervals, although in Sections 9.8 and 9.9 an extension of the tech-
niques to integration over unbounded intervals (or integration of functions
with singularities) and to the multidimensional case will be considered.

9.1 Quadrature Formulae

Let f be a real integrable function over the interval [a, b]. Computing ex-
plicitly the definite integral I(f) =

∫ b
a f(x)dx may be difficult or even

impossible. Any explicit formula that is suitable for providing an approxi-
mation of I(f) is said to be a quadrature formula or numerical integration
formula.

An example can be obtained by replacing f with an approximation fn,
depending on the integer n ≥ 0, then computing I(fn) instead of I(f).
Letting In(f) = I(fn), we have

In(f) =
b∫

a

fn(x)dx, n ≥ 0. (9.1)

The dependence on the end points a, b is always understood, so we write
In(f) instead of In(f ; a, b).
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If f ∈ C0([a, b]), the quadrature error En(f) = I(f)− In(f) satisfies

|En(f)| ≤
b∫

a

|f(x)− fn(x)|dx ≤ (b− a)‖f − fn‖∞.

Therefore, if for some n, ‖f − fn‖∞ < ε, then |En(f)| ≤ ε(b− a).
The approximant fn must be easily integrable, which is the case if, for

example, fn ∈ Pn. In this respect, a natural approach consists of using
fn = Πnf , the interpolating Lagrange polynomial of f over a set of n + 1
distinct nodes {xi}, with i = 0, . . . , n. By doing so, from (9.1) it follows
that

In(f) =
n∑

i=0

f(xi)
b∫

a

li(x)dx, (9.2)

where li is the characteristic Lagrange polynomial of degree n associated
with node xi (see Section 8.1). We notice that (9.2) is a special instance of
the following quadrature formula

In(f) =
n∑

i=0

αif(xi), (9.3)

where the coefficients αi of the linear combination are given by
∫ b
a li(x)dx.

Formula (9.3) is a weighted sum of the values of f at the points xi, for
i = 0, . . . , n. These points are said to be the nodes of the quadrature
formula, while the numbers αi ∈ R are its coefficients or weights. Both
weights and nodes depend in general on n; again, for notational simplicity,
this dependence is always understood.
Formula (9.2), called the Lagrange quadrature formula, can be generalized
to the case where also the values of the derivative of f are available. This
leads to the Hermite quadrature formula (see Section 9.5)

In(f) =
1∑

k=0

n∑

i=0

αikf
(k)(xi) (9.4)

where the weights are now denoted by αik.
Both (9.2) and (9.4) are interpolatory quadrature formulae, since the

function f has been replaced by its interpolating polynomial (Lagrange
and Hermite polynomials, respectively). We define the degree of exactness
of a quadrature formula as the maximum integer r ≥ 0 for which

In(f) = I(f), ∀f ∈ Pr.

Any interpolatory quadrature formula that makes use of n + 1 distinct
nodes has degree of exactness equal to at least n. Indeed, if f ∈ Pn, then
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Πnf = f and thus In(Πnf) = I(Πnf). The converse statement is also true,
that is, a quadrature formula using n+ 1 distinct nodes and having degree
of exactness equal at least to n is necessarily of interpolatory type (for the
proof see [IK66], p. 316).

As we will see in Section 10.2, the degree of exactness of a Lagrange
quadrature formula can be as large as 2n + 1 in the case of the so-called
Gaussian quadrature formulae.

9.2 Interpolatory Quadratures

We consider three remarkable instances of formula (9.2), corresponding to
n = 0, 1 and 2.

9.2.1 The Midpoint or Rectangle Formula
This formula is obtained by replacing f over [a, b] with the constant function
equal to the value attained by f at the midpoint of [a, b] (see Figure 9.1,
left). This yields

I0(f) = (b− a)f
(
a + b

2

)
(9.5)

with weight α0 = b − a and node x0 = (a + b)/2. If f ∈ C2([a, b]), the
quadrature error is

E0(f) =
h3

3
f ′′(ξ), h =

b− a

2
, (9.6)

where ξ lies within the interval (a, b).

ba

f(x)

x0

x

f(x)

xm−1xk

x
x0

FIGURE 9.1. The midpoint formula (left); the composite midpoint formula
(right)

Indeed, expanding f in a Taylor’s series around c = (a + b)/2 and trun-
cating at the second-order, we get

f(x) = f(c) + f ′(c)(x− c) + f ′′(η(x))(x− c)2/2,
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from which, integrating on (a, b) and using the mean-value theorem, (9.6)
follows. From this, it turns out that (9.5) is exact for constant and affine
functions (since in both cases f ′′(ξ) = 0 for any ξ ∈ (a, b)), so that the
midpoint rule has degree of exactness equal to 1.
It is worth noting that if the width of the integration interval [a, b] is
not sufficiently small, the quadrature error (9.6) can be quite large. This
drawback is common to all the numerical integration formulae that will
be described in the three forthcoming sections and can be overcome by
resorting to their composite counterparts as discussed in Section 9.4.

Suppose now that we approximate the integral I(f) by replacing f over
[a, b] with its composite interpolating polynomial of degree zero, constructed
on m subintervals of width H = (b − a)/m, for m ≥ 1 (see Figure 9.1,
right). Introducing the quadrature nodes xk = a + (2k + 1)H/2, for k =
0, . . . ,m− 1, we get the composite midpoint formula

I0,m(f) = H
m−1∑

k=0

f(xk), m ≥ 1. (9.7)

The quadrature error E0,m(f) = I(f)− I0,m(f) is given by

E0,m(f) =
b− a

24
H2f ′′(ξ), H =

b− a

m
(9.8)

provided that f ∈ C2([a, b]) and where ξ ∈ (a, b). From (9.8) we conclude
that (9.7) has degree of exactness equal to 1; (9.8) can be proved by recalling
(9.6) and using the additivity of integrals. Indeed, for k = 0, . . . ,m−1 and
ξk ∈ (a + kH, a + (k + 1)H),

E0,m(f) =
m−1∑

k=0

f ′′(ξk)(H/2)3/3 =
m−1∑

k=0

f ′′(ξk)
H2

24
b− a

m
=

b− a

24
H2f ′′(ξ).

The last equality is a consequence of the following theorem, that is applied
letting u = f ′′ and δj = 1 for j = 0, . . . ,m− 1.

Theorem 9.1 (discrete mean-value theorem) Let u ∈ C0([a, b]) and
let xj be s+1 points in [a, b] and δj be s+1 constants, all having the same
sign. Then there exists η ∈ [a, b] such that

s∑

j=0

δju(xj) = u(η)
s∑

j=0

δj . (9.9)

Proof. Let um = minx∈[a,b] u(x) = u(x̄) and uM = maxx∈[a,b] u(x) = u(¯̄x),
where x̄ and ¯̄x are two points in (a, b). Then

um

s∑

j=0

δj ≤
s∑

j=0

δju(xj) ≤ uM

s∑

j=0

δj . (9.10)
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Let σs =
∑s

j=0 δju(xj) and consider the continuous function U(x) = u(x)
∑s

j=0 δj .
Thanks to (9.10), U(x̄) ≤ σs ≤ U(¯̄x). Applying the mean-value theorem, there
exists a point η between a and b such that U(η) = σs, which is (9.9). A similar
proof can be carried out if the coefficients δj are negative. !

The composite midpoint formula is implemented in Program 71. Through-
out this chapter, we shall denote by a and b the end points of the integration
interval and by m the number of quadrature subintervals. The variable fun
contains the expression of the function f , while the output variable int
contains the value of the approximate integral.

Program 71 - midpntc : Midpoint composite formula

function int = midpntc(a,b,m,fun)
h=(b-a)/m; x=[a+h/2:h:b]; dim = max(size(x)); y=eval(fun);
if size(y)==1, y=diag(ones(dim))*y; end; int=h*sum(y);

9.2.2 The Trapezoidal Formula
This formula is obtained by replacing f with Π1f , its Lagrange interpolat-
ing polynomial of degree 1, relative to the nodes x0 = a and x1 = b (see
Figure 9.2, left). The resulting quadrature, having nodes x0 = a, x1 = b
and weights α0 = α1 = (b− a)/2, is

I1(f) =
b− a

2
[f(a) + f(b)] . (9.11)

If f ∈ C2([a, b]), the quadrature error is given by

E1(f) = −h3

12
f ′′(ξ), h = b− a (9.12)

where ξ is a point within the integration interval.

f(x)

a = x0 b = x1

x

b = x2
a+b
2 = x1

x

f(x)

a = x0

FIGURE 9.2. Trapezoidal formula (left) and Cavalieri-Simpson formula (right)
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Indeed, from the expression of the interpolation error (8.7) one gets

E1(f) =
b∫

a

(f(x)−Π1f(x))dx = −1
2

b∫

a

f ′′(ξ(x))(x− a)(b− x)dx.

Since ω2(x) = (x− a)(x− b) < 0 in (a, b), the mean-value theorem yields

E1(f) = (1/2)f ′′(ξ)
b∫

a

ω2(x)dx = −f ′′(ξ)(b− a)3/12,

for some ξ ∈ (a, b), which is (9.12). The trapezoidal quadrature therefore
has degree of exactness equal to 1, as is the case with the midpoint rule.

To obtain the composite trapezoidal formula, we proceed as in the case
where n = 0, by replacing f over [a, b] with its composite Lagrange polyno-
mial of degree 1 on m subintervals, with m ≥ 1. Introduce the quadrature
nodes xk = a + kH, for k = 0, . . . ,m and H = (b− a)/m, getting

I1,m(f) =
H

2

m−1∑

k=0

(f(xk) + f(xk+1)) , m ≥ 1. (9.13)

Each term in (9.13) is counted twice, except the first and the last one, so
that the formula can be written as

I1,m(f) = H

[
1
2
f(x0) + f(x1) + . . . + f(xm−1) +

1
2
f(xm)

]
. (9.14)

As was done for (9.8), it can be shown that the quadrature error associated
with (9.14) is

E1,m(f) = −b− a

12
H2f ′′(ξ),

provided that f ∈ C2([a, b]), where ξ ∈ (a, b). The degree of exactness is
again equal to 1.

The composite trapezoidal rule is implemented in Program 72.

Program 72 - trapezc : Composite trapezoidal formula

function int = trapezc(a,b,m,fun)
h=(b-a)/m; x=[a:h:b]; dim = max(size(x)); y=eval(fun);
if size(y)==1, y=diag(ones(dim))*y; end;
int=h*(0.5*y(1)+sum(y(2:m))+0.5*y(m+1));
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9.2.3 The Cavalieri-Simpson Formula
The Cavalieri-Simpson formula can be obtained by replacing f over [a, b]
with its interpolating polynomial of degree 2 at the nodes x0 = a, x1 =
(a + b)/2 and x2 = b (see Figure 9.2, right). The weights are given by
α0 = α2 = (b− a)/6 and α1 = 4(b− a)/6, and the resulting formula reads

I2(f) =
b− a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
. (9.15)

It can be shown that the quadrature error is

E2(f) = −h5

90
f (4)(ξ), h =

b− a

2
(9.16)

provided that f ∈ C4([a, b]), and where ξ lies within (a, b). From (9.16) it
turns out that (9.15) has degree of exactness equal to 3.

Replacing f with its composite polynomial of degree 2 over [a, b] yields
the composite formula corresponding to (9.15). Introducing the quadrature
nodes xk = a + kH/2, for k = 0, . . . , 2m and letting H = (b− a)/m, with
m ≥ 1 gives

I2,m =
H

6

[

f(x0) + 2
m−1∑

r=1

f(x2r) + 4
m−1∑

s=0

f(x2s+1) + f(x2m)

]

. (9.17)

The quadrature error associated with (9.17) is

E2,m(f) = −b− a

180
(H/2)4f (4)(ξ),

provided that f ∈ C4([a, b]) and where ξ ∈ (a, b); the degree of exactness
of the formula is 3.
The composite Cavalieri-Simpson quadrature is implemented in Program
73.

Program 73 - simpsonc : Composite Cavalieri-Simpson formula

function int = simpsonc(a,b,m,fun)
h=(b-a)/m; x=[a:h/2:b]; dim = max(size(x)); y=eval(fun);
if size(y)==1, y=diag(ones(dim))*y; end;
int=(h/6)*(y(1)+2*sum(y(3:2:2*m-1))+4*sum(y(2:2:2*m))+y(2*m+1));

Example 9.1 Let us employ the midpoint, trapezoidal and Cavalieri-Simpson
composite formulae to compute the integral

2π∫

0

xe−x cos(2x)dx =
[
3(e−2π − 1)− 10πe−2π

]

25
0 −0.122122. (9.18)
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Table 9.1 shows in even columns the behavior of the absolute value of the er-
ror when halving H (thus, doubling m), while in odd columns the ratio Rm =
|Em|/|E2m| between two consecutive errors is given. As predicted by the previous
theoretical analysis, Rm tends to 4 for the midpoint and trapezoidal rules and
to 16 for the Cavalieri-Simpson formula. •

m |E0,m| Rm |E1,m| Rm |E2,m| Rm

1 0.9751 1.589e-01 7.030e-01
2 1.037 0.9406 0.5670 0.2804 0.5021 1.400
4 0.1221 8.489 0.2348 2.415 3.139 · 10−3 159.96
8 2.980 · 10−2 4.097 5.635 · 10−2 4.167 1.085 · 10−3 2.892
16 6.748 · 10−3 4.417 1.327 · 10−2 4.245 7.381 · 10−5 14.704
32 1.639 · 10−3 4.118 3.263 · 10−3 4.068 4.682 · 10−6 15.765
64 4.066 · 10−4 4.030 8.123 · 10−4 4.017 2.936 · 10−7 15.946
128 1.014 · 10−4 4.008 2.028 · 10−4 4.004 1.836 · 10−8 15.987
256 2.535 · 10−5 4.002 5.070 · 10−5 4.001 1.148 · 10−9 15.997

TABLE 9.1. Absolute error for midpoint, trapezoidal and Cavalieri-Simpson com-
posite formulae in the approximate evaluation of integral (9.18)

9.3 Newton-Cotes Formulae

These formulae are based on Lagrange interpolation with equally spaced
nodes in [a, b]. For a fixed n ≥ 0, let us denote the quadrature nodes
by xk = x0 + kh, k = 0, . . . , n. The midpoint, trapezoidal and Simpson
formulae are special instances of the Newton-Cotes formulae, taking n = 0,
n = 1 and n = 2 respectively. In the general case, we define:

- closed formulae, those where x0 = a, xn = b and h =
b− a

n
(n ≥ 1);

- open formulae, those where x0 = a+h, xn = b−h and h =
b− a

n + 2
(n ≥ 0).

A significant property of the Newton-Cotes formulae is that the quadra-
ture weights αi depend explicitly only on n and h, but not on the integration
interval [a, b]. To check this property in the case of closed formulae, let us
introduce the change of variable x = Ψ(t) = x0 + th. Noting that Ψ(0) = a,
Ψ(n) = b and xk = a + kh, we get

x− xk

xi − xk
=

a + th− (a + kh)
a + ih− (a + kh)

=
t− k

i− k
.

Therefore, if n ≥ 1

li(x) =
n∏

k=0,k '=i

t− k

i− k
= ϕi(t), 0 ≤ i ≤ n.
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The following expression for the quadrature weights is obtained

αi =
b∫

a

li(x)dx =
n∫

0

ϕi(t)hdt = h

n∫

0

ϕi(t)dt,

from which we get the formula

In(f) = h
n∑

i=0

wif(xi), wi =
n∫

0

ϕi(t)dt.

Open formulae can be interpreted in a similar manner. Actually, using again
the mapping x = Ψ(t), we get x0 = a+h, xn = b−h and xk = a+h(k+1)
for k = 1, . . . , n− 1. Letting, for sake of coherence, x−1 = a, xn+1 = b and
proceeding as in the case of closed formulae, we get αi = h

∫ n+1
−1 ϕi(t)dt,

and thus

In(f) = h
n∑

i=0

wif(xi), wi =
n+1∫

−1

ϕi(t)dt.

In the special case where n = 0, since l0(x) = ϕ0(t) = 1, we get w0 = 2.
The coefficients wi do not depend on a, b, h and f , but only depend on n,

and can therefore be tabulated a priori. In the case of closed formulae, the
polynomials ϕi and ϕn−i, for i = 0, . . . , n− 1, have by symmetry the same
integral, so that also the corresponding weights wi and wn−i are equal for
i = 0, . . . , n−1. In the case of open formulae, the weights wi and wn−i are
equal for i = 0, . . . , n. For this reason, we show in Table 9.2 only the first
half of the weights.
Notice the presence of negative weights in open formulae for n ≥ 2. This can
be a source of numerical instability, in particular due to rounding errors.

n 1 2 3 4 5 6

w0
1
2

1
3

3
8

14
45

95
288

41
140

w1 0 4
3

9
8

64
45

375
288

216
140

w2 0 0 0 24
45

250
288

27
140

w3 0 0 0 0 0 272
140

n 0 1 2 3 4 5

w0 2 3
2

8
3

55
24

66
20

4277
1440

w1 0 0 − 4
3

5
24 − 84

20 − 3171
1440

w2 0 0 0 0 156
20

3934
1440

TABLE 9.2. Weights of closed (left) and open Newton-Cotes formulae (right)

Besides its degree of exactness, a quadrature formula can also be qualified
by its order of infinitesimal with respect to the integration stepsize h, which
is defined as the maximum integer p such that |I(f) − In(f)| = O(hp).
Regarding this, the following result holds
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Theorem 9.2 For any Newton-Cotes formula corresponding to an even
value of n, the following error characterization holds

En(f) =
Mn

(n + 2)!
hn+3f (n+2)(ξ), (9.19)

provided f ∈ Cn+2([a, b]), where ξ ∈ (a, b) and

Mn =






n∫

0

t πn+1(t)dt < 0 for closed formulae,

n+1∫

−1

t πn+1(t)dt > 0 for open formulae,

having defined πn+1(t) =
∏n

i=0(t − i). From (9.19), it turns out that the
degree of exactness is equal to n+ 1 and the order of infinitesimal is n+ 3.

Similarly, for odd values of n, the following error characterization holds

En(f) =
Kn

(n + 1)!
hn+2f (n+1)(η), (9.20)

provided f ∈ Cn+1([a, b]), where η ∈ (a, b) and

Kn =






n∫

0

πn+1(t)dt < 0 for closed formulae,

n+1∫

−1

πn+1(t)dt > 0 for open formulae.

The degree of exactness is thus equal to n and the order of infinitesimal is
n + 2.

Proof. We give a proof in the particular case of closed formulae with n even,
referring to [IK66], pp. 308-314, for a complete demonstration of the theorem.

Thanks to (8.20), we have

En(f) = I(f)− In(f) =
b∫

a

f [x0, . . . , xn, x]ωn+1(x)dx. (9.21)

Set W (x) =
∫ x

a
ωn+1(t)dt. Clearly, W (a) = 0; moreover, ωn+1(t) is an odd func-

tion with respect to the midpoint (a + b)/2 so that W (b) = 0. Integrating by
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parts (9.21) we get

En(f) =
b∫

a

f [x0, . . . , xn, x]W ′(x)dx = −
b∫

a

d
dx

f [x0, . . . , xn, x]W (x)dx

= −
b∫

a

f (n+2)(ξ(x))
(n + 2)!

W (x)dx.

In deriving the formula above we have used the following identity (see Exercise
4)

d
dx

f [x0, . . . , xn, x] = f [x0, . . . , xn, x, x]. (9.22)

Since W (x) > 0 for a < x < b (see [IK66], p. 309), using the mean-value theorem
we obtain

En(f) = −f (n+2)(ξ)
(n + 2)!

b∫

a

W (x)dx = −f (n+2)(ξ)
(n + 2)!

b∫

a

x∫

a

ωn+1(t) dt dx (9.23)

where ξ lies within (a, b). Exchanging the order of integration, letting s = x0+τh,
for 0 ≤ τ ≤ n, and recalling that a = x0, b = xn, yields

b∫

a

W (x)dx =
b∫

a

b∫

s

(s− x0) . . . (s− xn)dxds

=
xn∫

x0

(s− x0) . . . (s− xn−1)(s− xn)(xn − s)ds

= −hn+3

n∫

0

τ(τ − 1) . . . (τ − n + 1)(τ − n)2dτ.

Finally, letting t = n− τ and combining this result with (9.23), we get (9.19). !

Relations (9.19) and (9.20) are a priori estimates for the quadrature error
(see Chapter 2, Section 2.3). Their use in generating a posteriori estimates
of the error in the frame of adaptive algorithms will be examined in Section
9.7.

In the case of closed Newton-Cotes formulae, we show in Table 9.3, for
1 ≤ n ≤ 6, the degree of exactness (that we denote henceforth by rn) and
the absolute value of the constant Mn = Mn/(n + 2)! (if n is even) or
Kn = Kn/(n + 1)! (if n is odd).

Example 9.2 The purpose of this example is to assess the importance of the
regularity assumption on f for the error estimates (9.19) and (9.20). Consider
the closed Newton-Cotes formulae, for 1 ≤ n ≤ 6, to approximate the integral∫ 1
0 x5/2dx = 2/7 0 0.2857. Since f is only C2([0, 1]), we do not expect a substan-

tial increase of the accuracy as n gets larger. Actually, this is confirmed by Table
9.4, where the results obtained by running Program 74 are reported.
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n rn Mn Kn n rn Mn Kn n rn Mn Kn

1 1 1
12 3 3 3

80 5 5 275
12096

2 3 1
90 4 5 8

945 6 7 9
1400

TABLE 9.3. Degree of exactness and error constants for closed Newton-Cotes
formulae

For n = 1, . . . , 6, we have denoted by Ec
n(f) the module of the absolute error,

by qcn the computed order of infinitesimal and by qsn the corresponding theoretical
value predicted by (9.19) and (9.20) under optimal regularity assumptions for f .
As is clearly seen, qcn is definitely less than the potential theoretical value qsn. •

n Ec
n(f) qcn qsn n Ec

n(f) qcn qsn
1 0.2143 3 3 4 5.009 · 10−5 4.7 7
2 1.196 · 10−3 3.2 5 5 3.189 · 10−5 2.6 7
3 5.753 · 10−4 3.8 5 6 7.857 · 10−6 3.7 9

TABLE 9.4. Error in the approximation of
∫ 1
0 x5/2dx

Example 9.3 From a brief analysis of error estimates (9.19) and (9.20), we could
be led to believe that only non-smooth functions can be a source of trouble when
dealing with Newton-Cotes formulae. Thus, it is a little surprising to see results
like those in Table 9.5, concerning the approximation of the integral

I(f) =
5∫

−5

1
1 + x2 dx = 2arctan 5 0 2.747, (9.24)

where f(x) = 1/(1+x2) is Runge’s function (see Section 8.1.2), which belongs to
C∞(R). The results clearly demonstrate that the error remains almost unchanged
as n grows. This is due to the fact that singularities on the imaginary axis may
also affect the convergence properties of a quadrature formula. This is indeed the
case with the function at hand, which exhibits two singularities at ±

√
−1 (see

[DR75], pp. 64-66). •

n En(f) n En(f) n En(f)
1 0.8601 3 0.2422 5 0.1599
2 -1.474 4 0.1357 6 -0.4091

TABLE 9.5. Relative error En(f) = [I(f) − In(f)]/In(f) in the approximate
evaluation of (9.24) using closed Newton-Cotes formulae

To increase the accuracy of an interpolatory quadrature rule, it is by
no means convenient to increase the value of n. By doing so, the same
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drawbacks of Lagrange interpolation on equally spaced nodes would arise.
For example, the weights of the closed Newton-Cotes formula with n = 8
do not have the same sign (see Table 9.6 and recall that wi = wn−i for
i = 0, . . . , n− 1).

n w0 w1 w2 w3 w4 rn Mn

8 3956
14175

23552
14175 − 3712

14175
41984
14175 −18160

14175
9 2368

467775

TABLE 9.6. Weights of the closed Newton-Cotes formula with 9 nodes

This can give rise to numerical instabilities, due to rounding errors (see
Chapter 2), and makes this formula useless in the practice, as happens for
all the Newton-Cotes formulae using more than 8 nodes. As an alternative,
one can resort to composite formulae, whose error analysis is addressed in
Section 9.4, or to Gaussian formulae, which will be dealt with in Chapter
10 and which yield maximum degree of exactness with a non equally spaced
nodes distribution.

The closed Newton-Cotes formulae, for 1 ≤ n ≤ 6, are implemented in
Program 74.

Program 74 - newtcot : Closed Newton-Cotes formulae

function int = newtcot(a,b,n,fun)
h=(b-a)/n; n2=fix(n/2);
if n > 6, disp(’maximum value of n equal to 6 ’); return; end
a03=1/3; a08=1/8; a45=1/45; a288=1/288; a140=1/140;
alpha=[0.5 0 0 0; ...

a03 4*a03 0 0; ...
3*a08 9*a08 0 0; ...
14*a45 64*a45 24*a45 0; ...
95*a288 375*a288 250*a288 0; ...
41*a140 216*a140 27*a140 272*a140];

x=a; y(1)=eval(fun);
for j=2:n+1, x=x+h; y(j)=eval(f); end; int=0;
for j=1:n2+1, int=int+y(j)*alpha(n,j); end;
for j=n2+2:n+1, int=int+y(j)*alpha(n,n-j+2); end; int=int*h;

9.4 Composite Newton-Cotes Formulae

The examples of Section 9.2 have already pointed out that composite
Newton-Cotes formulae can be constructed by replacing f with its com-
posite Lagrange interpolating polynomial, introduced in Section 8.1.
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The general procedure consists of partitioning the integration interval
[a, b] into m subintervals Tj = [yj , yj+1] such that yj = a+ jH, where H =
(b − a)/m for j = 0, . . . ,m. Then, over each subinterval, an interpolatory
formula with nodes {x(j)

k , 0 ≤ k ≤ n} and weights {α(j)
k , 0 ≤ k ≤ n} is

used. Since

I(f) =
b∫

a

f(x)dx =
m−1∑

j=0

∫

Tj

f(x)dx,

a composite interpolatory quadrature formula is obtained by replacing I(f)
with

In,m(f) =
m−1∑

j=0

n∑

k=0

α(j)
k f(x(j)

k ). (9.25)

The quadrature error is defined as En,m(f) = I(f)−In,m(f). In particular,
over each subinterval Tj one can resort to a Newton-Cotes formula with
n+ 1 equally spaced nodes: in such a case, the weights α(j)

k = hwk are still
independent of Tj .

Using the same notation as in Theorem 9.2, the following convergence
result holds for composite formulae.

Theorem 9.3 Let a composite Newton-Cotes formula, with n even, be
used. If f ∈ Cn+2([a, b]), then

En,m(f) =
b− a

(n + 2)!
Mn

(n + 2)n+3H
n+2f (n+2)(ξ) (9.26)

where ξ ∈ (a, b). Therefore, the quadrature error is an infinitesimal in H
of order n + 2 and the formula has degree of exactness equal to n + 1.

For a composite Newton-Cotes formula, with n odd, if f ∈ Cn+1([a, b])

En,m(f) =
b− a

(n + 1)!
Kn

nn+2H
n+1f (n+1)(η) (9.27)

where η ∈ (a, b). Thus, the quadrature error is an infinitesimal in H of
order n + 1 and the formula has degree of exactness equal to n.

Proof. We only consider the case where n is even. Using (9.19), and noticing
that Mn does not depend on the integration interval, we get

En,m(f) =
m−1∑

j=0

[
I(f)|Tj − In(f)|Tj

]
=

Mn

(n + 2)!

m−1∑

j=0

hn+3
j f (n+2)(ξj),

where, for j = 0, . . . , (m− 1), hj = |Tj |/(n+ 2) = (b− a)/(m(n+ 2)); this time,
ξj is a suitable point of Tj . Since (b− a)/m = H, we obtain

En,m(f) =
Mn

(n + 2)!
b− a

m(n + 2)n+3H
n+2

m−1∑

j=0

f (n+2)(ξj),
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from which, applying Theorem 9.1 with u(x) = f (n+2)(x) and δj = 1 for j =
0, . . . ,m− 1, (9.26) immediately follows. A similar procedure can be followed to
prove (9.27). !

We notice that, for n fixed, En,m(f) → 0 as m → ∞ (i.e., as H → 0).
This ensures the convergence of the numerical integral to the exact value
I(f). We notice also that the degree of exactness of composite formulae
coincides with that of simple formulae, whereas its order of infinitesimal
(with respect to H) is reduced by 1 with respect to the order of infinitesimal
(in h) of simple formulae.
In practical computations, it is convenient to resort to a local interpolation
of low degree (typically n ≤ 2, as done in Section 9.2), this leads to com-
posite quadrature rules with positive weights, with a minimization of the
rounding errors.

Example 9.4 For the same integral (9.24) considered in Example 9.3, we show
in Table 9.7 the behavior of the absolute error as a function of the number of
subintervals m, in the case of the composite midpoint, trapezoidal and Cavalieri-
Simpson formulae. Convergence of In,m(f) to I(f) as m increases can be clearly
observed. Moreover, we notice that E0,m(f) 0 E1,m(f)/2 for m ≥ 32 (see Exer-
cise 1).

m |E0,m| |E1,m| |E2,m|
1 7.253 2.362 4.04
2 1.367 2.445 9.65 · 10−2

8 3.90 · 10−2 3.77 · 10−2 1.35 · 10−2

32 1.20 · 10−4 2.40 · 10−4 4.55 · 10−8

128 7.52 · 10−6 1.50 · 10−5 1.63 · 10−10

512 4.70 · 10−7 9.40 · 10−7 6.36 · 10−13

TABLE 9.7. Absolute error for composite quadratures in the computation of
(9.24)

•

Convergence of In,m(f) to I(f) can be established under less stringent
regularity assumptions on f than those required by Theorem 9.3. In this
regard, the following result holds (see for the proof [IK66], pp. 341-343).

Property 9.1 Let f ∈ C0([a, b]) and assume that the weights α(j)
k in (9.25)

are nonnegative. Then

lim
m→∞

In,m(f) =
∫ b

a
f(x)dx, ∀n ≥ 0.

Moreover ∣∣∣∣∣

∫ b

a
f(x)dx− In,m(f)

∣∣∣∣∣ ≤ 2(b− a)Ω(f ;H),
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where

Ω(f ;H) = sup{|f(x)− f(y)|, x, y ∈ [a, b], x '= y, |x− y| ≤ H}

is the module of continuity of function f .

9.5 Hermite Quadrature Formulae

Thus far we have considered quadrature formulae based on Lagrange inter-
polation (simple or composite). More accurate formulae can be devised by
resorting to Hermite interpolation (see Section 8.4).

Suppose that 2(n+1) values f(xk), f ′(xk) are available at n+1 distinct
points x0, . . . , xn, then the Hermite interpolating polynomial of f is given
by

H2n+1f(x) =
n∑

i=0

f(xi)Li(x) +
n∑

i=0

f ′(xi)Mi(x), (9.28)

where the polynomials Lk,Mk ∈ P2n+1 are defined, for k = 0, . . . , n, as

Lk(x) =
[
1−

ω′′
n+1(xk)
ω′
n+1(xk)

(x− xk)
]
l2k(x), Mk(x) = (x− xk)l2k(x).

Integrating (9.28) over [a, b], we get the quadrature formula of type (9.4)

In(f) =
n∑

k=0

αkf(xk) +
n∑

k=0

βkf
′(xk) (9.29)

where

αk = I(Lk), βk = I(Mk), k = 0, . . . , n.

Formula (9.29) has degree of exactness equal to 2n + 1. Taking n = 1, the
so-called corrected trapezoidal formula is obtained

Icorr1 (f) =
b− a

2
[f(a) + f(b)] +

(b− a)2

12
[f ′(a)− f ′(b)] (9.30)

with weights α0 = α1 = (b−a)/2, β0 = (b−a)2/12 and β1 = −β0. Assuming
f ∈ C4([a, b]), the quadrature error associated with (9.30) is

Ecorr
1 (f) =

h5

720
f (4)(ξ), h = b− a (9.31)

with ξ ∈ (a, b). Notice the increase of accuracy from O(h3) to O(h5) with
respect to the corresponding expression (9.12) (of the same order as the
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Cavalieri-Simpson formula (9.15)). The composite formula can be generated
in a similar manner

Icorr1,m (f) =
b− a

m

{
1
2

[f(x0) + f(xm)]

+f(x1) + . . . + f(xm−1)} +
(b− a)2

12
[f ′(a)− f ′(b)] ,

(9.32)

where the assumption that f ∈ C1([a, b]) gives rise to the cancellation of
the first derivatives at the nodes xk, with k = 1, . . . ,m− 1.

Example 9.5 Let us check experimentally the error estimate (9.31) in the simple
(m = 1) and composite (m > 1) cases, running Program 75 for the approximate
computation of integral (9.18). Table 9.8 reports the behavior of the module of
the absolute error as H is halved (that is, m is doubled) and the ratio Rm between
two consecutive errors. This ratio, as happens in the case of Cavalieri-Simpson
formula, tends to 16, demonstrating that formula (9.32) has order of infinitesimal
equal to 4. Comparing Table 9.8 with the corresponding Table 9.1, we can also
notice that |Ecorr

1,m (f)| 0 4|E2,m(f)| (see Exercise 9). •

m Ecorr
1,m (f) Rm m Ecorr

1,m (f) Rm m Ecorr
1,m (f) Rm

1 3.4813 8 4.4 · 10−3 6.1 64 1.1 · 10−6 15.957
2 1.398 2.4 16 2.9 · 10−4 14.9 128 7.3 · 10−8 15.990
4 2.72 · 10−2 51.4 32 1.8 · 10−5 15.8 256 4.5 · 10−9 15.997

TABLE 9.8. Absolute error for the corrected trapezoidal formula in the compu-
tation of I(f) =

∫ 2π

0 xe−x cos(2x)dx

The corrected composite trapezoidal quadrature is implemented in Pro-
gram 75, where dfun contains the expression of the derivative of f .

Program 75 - trapmodc : Composite corrected trapezoidal formula

function int = trapmodc(a,b,m,fun,dfun)
h=(b-a)/m; x=[a:h:b]; y=eval(fun);
f1a=feval(dfun,a); f1b=feval(dfun,b);
int=h*(0.5*y(1)+sum(y(2:m))+0.5*y(m+1))+(hˆ2/12)*(f1a-f1b);

9.6 Richardson Extrapolation

The Richardson extrapolation method is a procedure which combines several
approximations of a certain quantity α0 in a smart way to yield a more
accurate approximation of α0. More precisely, assume that a method is
available to approximate α0 by a quantity A(h) that is computable for any
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value of the parameter h '= 0. Moreover, assume that, for a suitable k ≥ 0,
A(h) can be expanded as follows

A(h) = α0 + α1h + . . . + αkh
k + Rk+1(h), (9.33)

where |Rk+1(h)| ≤ Ck+1hk+1. The constants Ck+1 and the coefficients αi,
for i = 0, . . . , k, are independent of h. Henceforth, α0 = limh→0 A(h).

Writing (9.33) with δh instead of h, for 0 < δ < 1 (typically, δ = 1/2),
we get

A(δh) = α0 + α1(δh) + . . . + αk(δh)k + Rk+1(δh).

Subtracting (9.33) multiplied by δ from this expression then yields

B(h) =
A(δh)− δA(h)

1− δ = α0 + α̃2h
2 + . . . + α̃kh

k + R̃k+1(h),

having defined, for k ≥ 2, α̃i = αi(δi − δ)/(1 − δ), for i = 2, . . . , k and
R̃k+1(h) = [Rk+1(δh)− δRk+1(h)] /(1− δ).
Notice that α̃i '= 0 iff αi '= 0. In particular, if α1 '= 0, then A(h) is a first-
order approximation of α0, while B(h) is at least second-order accurate.
More generally, if A(h) is an approximation of α0 of order p, then the
quantity B(h) = [A(δh)− δpA(h)] /(1 − δp) approximates α0 up to order
p + 1 (at least).
Proceeding by induction, the following Richardson extrapolation algorithm
is generated: setting n ≥ 0, h > 0 and δ ∈ (0, 1), we construct the sequences

Am,0 = A(δmh), m = 0, . . . , n,

Am,q+1 =
Am,q − δq+1Am−1,q

1− δq+1 , q = 0, . . . , n− 1,

m = q + 1, . . . , n,

(9.34)

which can be represented by the diagram below

A0,0
↘

A1,0 → A1,1
↘ ↘

A2,0 → A2,1 → A2,2
↘ ↘ ↘

A3,0 → A3,1 → A3,2 → A3,3
↘ ↘ ↘ ↘

...
. . . . . . . . . . . .
↘ ↘ ↘ ↘

An,0 → An,1 → An,2 → An,3 . . . → An,n

where the arrows indicate the way the terms which have been already
computed contribute to the construction of the “new” ones.

The following result can be proved (see [Com95], Proposition 4.1).
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Property 9.2 For n ≥ 0 and δ ∈ (0, 1)

Am,n = α0 + O((δmh)n+1), m = 0, . . . , n. (9.35)

In particular, for the terms in the first column (n = 0) the convergence
rate to α0 is O((δmh)), while for those of the last one it is O((δmh)n+1),
i.e., n times higher.

Example 9.6 Richardson extrapolation has been employed to approximate at
x = 0 the derivative of the function f(x) = xe−x cos(2x), introduced in Ex-
ample 9.1. For this purpose, algorithm (9.34) has been executed with A(h) =
[f(x + h)− f(x)] /h, δ = 0.5, n = 5 and h = 0.1. Table 9.9 reports the sequence
of absolute errors Em,k = |α0 − Am,k|. The results demonstrate that the error
decays as predicted by (9.35). •

Em,0 Em,1 Em,2 Em,3 Em,4 Em,5
0.113 – – – – –

5.3 · 10−2 6.1 · 10−3 – – – –
2.6 · 10−2 1.7 · 10−3 2.2 · 10−4 – – –
1.3 · 10−2 4.5 · 10−4 2.8 · 10−5 5.5 · 10−7 – –
6.3 · 10−3 1.1 · 10−4 3.5 · 10−6 3.1 · 10−8 3.0 · 10−9 –
3.1 · 10−3 2.9 · 10−5 4.5 · 10−7 1.9 · 10−9 9.9 · 10−11 4.9 · 10−12

TABLE 9.9. Errors in the Richardson extrapolation for the approximate evalua-
tion of f ′(0) where f(x) = xe−x cos(2x)

9.6.1 Romberg Integration
The Romberg integration method is an application of Richardson extrap-
olation to the composite trapezoidal rule. The following result, known as
the Euler-MacLaurin formula, will be useful (for its proof see, e.g., [Ral65],
pp. 131-133, and [DR75], pp. 106-111).

Property 9.3 Let f ∈ C2k+2([a, b]), for k ≥ 0, and let us approximate
α0 =

∫ b
a f(x)dx by the composite trapezoidal rule (9.14). Letting hm =

(b− a)/m for m ≥ 1,

I1,m(f) = α0 +
k∑

i=1

B2i

(2i)!
h2i
m

(
f (2i−1)(b)− f (2i−1)(a)

)

+
B2k+2

(2k + 2)!
h2k+2
m (b− a)f (2k+2)(η),

(9.36)

where η ∈ (a, b) and B2j = (−1)j−1

[
+∞∑

n=1

2/(2nπ)2j
]

(2j)!, for j ≥ 1, are

the Bernoulli numbers.
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Equation (9.36) is a special case of (9.33) where h = h2
m and A(h) =

I1,m(f); notice that only even powers of the parameter h appear in the
expansion.

The Richardson extrapolation algorithm (9.34) applied to (9.36) gives

Am,0 = A(δmh), m = 0, . . . , n,

Am,q+1 =
Am,q − δ2(q+1)Am−1,q

1− δ2(q+1) , q = 0, . . . , n− 1,

m = q + 1, . . . , n.

(9.37)

Setting h = b− a and δ = 1/2 into (9.37) and denoting by T (hs) = I1,s(f)
the composite trapezoidal formula (9.14) over s = 2m subintervals of width
hs = (b− a)/2m, for m ≥ 0, the algorithm (9.37) becomes

Am,0 = T ((b− a)/2m), m = 0, . . . , n,

Am,q+1 =
4q+1Am,q −Am−1,q

4q+1 − 1
, q = 0, . . . , n− 1,

m = q + 1, . . . , n.

This is the Romberg numerical integration algorithm. Recalling (9.35), the
following convergence result holds for Romberg integration

Am,n =
b∫

a

f(x)dx + O(h2(n+1)
s ), n ≥ 0.

Example 9.7 Table 9.10 shows the results obtained by running Program 76 to
compute the quantity α0 in the two cases α(1)

0 =
∫ π

0 ex cos(x)dx = −(eπ + 1)/2
and α(2)

0 =
∫ 1
0

√
xdx = 2/3.

The maximum size n has been set equal to 9. In the second and third columns
we show the modules of the absolute errors E(r)

k = |α(r)
0 −A(r)

k+1,k+1|, for r = 1, 2
and k = 0, . . . , 6.

The convergence to zero is much faster for E(1)
k than for E(2)

k . Indeed, the first
integrand function is infinitely differentiable whereas the second is only continu-
ous. •

k E(1)
k E(2)

k k E(1)
k E(2)

k

0 22.71 0.1670 4 8.923 · 10−7 1.074 · 10−3

1 0.4775 2.860 · 10−2 5 6.850 · 10−11 3.790 · 10−4

2 5.926 · 10−2 8.910 · 10−3 6 5.330 · 10−14 1.340 · 10−4

3 7.410 · 10−5 3.060 · 10−3 7 0 4.734 · 10−5

TABLE 9.10. Romberg integration for the approximate evaluation of∫ π

0 ex cos(x)dx (error E(1)
k ) and

∫ 1
0

√
xdx (error E(2)

k )

The Romberg algorithm is implemented in Program 76.
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Program 76 - romberg : Romberg integration

function [A]=romberg(a,b,n,fun);
for i=1:(n+1), A(i,1)=trapezc(a,b,2ˆ(i-1),fun); end;
for j=2:(n+1), for i=j:(n+1),
A(i,j)=(4ˆ(j-1)*A(i,j-1)-A(i-1,j-1))/(4ˆ(j-1)-1); end; end;

9.7 Automatic Integration

An automatic numerical integration program, or automatic integrator, is
a set of algorithms which yield an approximation of the integral I(f) =∫ b
a f(x)dx, within a given tolerance, εa, or relative tolerance, εr, prescribed

by the user.
With this aim, the program generates a sequence {Ik, Ek}, for k =

1, . . . , N , where Ik is the approximation of I(f) at the k-th step of the
computational process, Ek is an estimate of the error I(f) − Ik, and is N
a suitable fixed integer.

The sequence terminates at the s-th level, with s ≤ N , such that the
automatic integrator fulfills the following requirement on the accuracy

max
{
εa, εr|Ĩ(f)|

}
≥ |Es|(1 |I(f)− Is|), (9.38)

where Ĩ(f) is a reasonable guess of the integral I(f) provided as an input
datum by the user. Otherwise, the integrator returns the last computed
approximation IN , together with a suitable error message that warns the
user of the algorithm’s failure to converge.
Ideally, an automatic integrator should:

(a) provide a reliable criterion for determining |Es| that allows for moni-
toring the convergence check (9.38);

(b) ensure an efficient implementation, which minimizes the number of
functional evaluations for yielding the desired approximation Is.

In computational practice, for each k ≥ 1, moving from level k to level
k + 1 of the automatic integration process can be done according to two
different strategies, which we define as non adaptive or adaptive.

In the non adaptive case, the law of distribution of the quadrature nodes
is fixed a priori and the quality of the estimate Ik is refined by increas-
ing the number of nodes corresponding to each level of the computational
process. An example of an automatic integrator that is based on such a
procedure is provided by the composite Newton-Cotes formulae on m and
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2m subintervals, respectively, at levels k and k+ 1, as described in Section
9.7.1.

In the adaptive case, the positions of the nodes is not set a priori, but at
each level k of the process they depend on the information that has been
stored during the previous k− 1 levels. An adaptive automatic integration
algorithm is performed by partitioning the interval [a, b] into successive
subdivisions which are characterized by a nonuniform density of the nodes,
this density being typically higher in a neighborhood of strong gradients
or singularities of f . An example of an adaptive integrator based on the
Cavalieri-Simpson formula is described in Section 9.7.2.

9.7.1 Non Adaptive Integration Algorithms
In this section, we employ the composite Newton-Cotes formulae. Our aim
is to devise a criterion for estimating the absolute error |I(f) − Ik| by
using Richardson extrapolation. From (9.26) and (9.27) it turns out that,
for m ≥ 1 and n ≥ 0, In,m(f) has order of infinitesimal equal to Hn+p,
with p = 2 for n even and p = 1 for n odd, where m, n and H = (b− a)/m
are the number of partitions of [a, b], the number of quadrature nodes over
each subinterval and the constant length of each subinterval, respectively.
By doubling the value of m (i.e., halving the stepsize H) and proceeding
by extrapolation, we get

I(f)− In,2m(f) 1 1
2n+p

[I(f)− In,m(f)] . (9.39)

The use of the symbol 1 instead of = is due to the fact that the point ξ
or η, where the derivative in (9.26) and (9.27) must be evaluated, changes
when passing from m to 2m subintervals. Solving (9.39) with respect to
I(f) yields the following absolute error estimate for In,2m(f)

I(f)− In,2m(f) 1 In,2m(f)− In,m(f)
2n+p − 1

. (9.40)

If the composite Simpson rule is considered (i.e., n = 2), (9.40) predicts a
reduction of the absolute error by a factor of 15 when passing from m to 2m
subintervals. Notice also that only 2m−1 extra functional evaluations are
needed to compute the new approximation I1,2m(f) starting from I1,m(f).
Relation (9.40) is an instance of an a posteriori error estimate (see Chapter
2, Section 2.3). It is based on the combined use of an a priori estimate (in
this case, (9.26) or (9.27)) and of two evaluations of the quantity to be ap-
proximated (the integral I(f)) for two different values of the discretization
parameter (that is, H = (b− a)/m).
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Example 9.8 Let us employ the a posteriori estimate (9.40) in the case of the
composite Simpson formula (n = p = 2), for the approximation of the integral

π∫

0

(ex/2 + cos 4x)dx = 2(eπ − 1) 0 7.621,

where we require the absolute error to be less than 10−4. For k = 0, 1, . . . , set
hk = (b−a)/2k and denote by I2,m(k)(f) the integral of f which is computed using
the composite Simpson formula on a grid of size hk with m(k) = 2k intervals. We
can thus assume as a conservative estimate of the quadrature error the following
quantity

|Ek| = |I(f)− I2,m(k)(f)| 0 1
10

|I2,2m(k)(f)− I2,m(k)(f)| = |Ek|, k ≥ 1.

(9.41)

Table 9.11 shows the sequence of the estimated errors |Ek| and of the correspond-
ing absolute errors |Ek| that have been actually made by the numerical integration
process. Notice that, when convergence has been achieved, the error estimated
by (9.41) is definitely higher than the actual error, due to the conservative choice
above. •

k |Ek| |Ek| k |Ek| |Ek|
0 3.156 2 0.10 4.52 · 10−5

1 0.42 1.047 3 5.8 · 10−6 2 · 10−9

TABLE 9.11. Non adaptive automatic Simpson rule for the approximation of∫ π

0 (ex/2 + cos 4x)dx

An alternative approach for fulfilling the constraints (a) and (b) con-
sists of employing a nested sequence of special Gaussian quadratures Ik(f)
(see Chapter 10), having increasing degree of exactness for k = 1, . . . , N .
These formulae are constructed in such a way that, denoting by Snk =
{x1, . . . , xnk} the set of quadrature nodes relative to quadrature Ik(f),
Snk ⊂ Snk+1 for any k = 1, . . . , N − 1. As a result, for k ≥ 1, the formula
at the k + 1-th level employs all the nodes of the formula at level k and
this makes nested formulae quite effective for computer implementation.

As an example, we recall the Gauss-Kronrod formulae with 10, 21, 43
and 87 points, that are available in [PdKÜK83] (in this case, N = 4). The
Gauss-Kronrod formulae have degree of exactness rnk (optimal) equal to
2nk−1, where nk is the number of nodes for each formula, with n1 = 10 and
nk+1 = 2nk+1 for k = 1, 2, 3. The criterion for devising an error estimate is
based on comparing the results given by two successive formulae Ink(f) and
Ink+1(f) with k = 1, 2, 3, and then terminating the computational process
at the level k such that (see also [DR75], p. 321)

|Ik+1 − Ik| ≤ max {εa, εr|Ik+1|} .
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9.7.2 Adaptive Integration Algorithms
The goal of an adaptive integrator is to yield an approximation of I(f)
within a fixed tolerance ε by a non uniform distribution of the integration
stepsize along the interval [a, b]. An optimal algorithm is able to adapt
automatically the choice of the steplength according to the behavior of the
integrand function, by increasing the density of the quadrature nodes where
the function exhibits stronger variations.

In view of describing the method, it is convenient to restrict our attention
to a generic subinterval [α,β] ⊆ [a, b]. Recalling the error estimates for the
Newton-Cotes formulae, it turns out that the evaluation of the derivatives
of f , up to a certain order, is needed to set a stepsize h such that a fixed
accuracy is ensured, say ε(β−α)/(b−a). This procedure, which is unfeasible
in practical computations, is carried out by an automatic integrator as
follows. We consider throughout this section the Cavalieri-Simpson formula
(9.15), although the method can be extended to other quadrature rules.

Set If (α,β) =
∫ β
α f(x)dx, h = h0 = (β − α)/2 and

Sf (α,β) = (h0/3) [f(α) + 4f(α+ h0) + f(β)] .

From (9.16) we get

If (α,β)− Sf (α,β) = −h5
0

90
f (4)(ξ), (9.42)

where ξ is a point in (α,β). To estimate the error If (α,β) − Sf (α,β)
without using explicitly the function f (4) we employ again the Cavalieri-
Simpson formula over the union of the two subintervals [α, (α+ β)/2] and
[(α+ β)/2,β], obtaining, for h = h0/2 = (β − α)/4

If (α,β)− Sf,2(α,β) = − (h0/2)5

90

(
f (4)(ξ) + f (4)(η)

)
,

where ξ ∈ (α, (α + β)/2), η ∈ ((α + β)/2,β) and Sf,2(α,β) = Sf (α, (α +
β)/2) + Sf ((α+ β)/2,β).

Let us now make the assumption that f (4)(ξ) 1 f (4)(η) (which is true,
in general, only if the function f (4) does not vary “too much” on [α,β]).
Then,

If (α,β)− Sf,2(α,β) 1 − 1
16

h5
0

90
f (4)(ξ), (9.43)

with a reduction of the error by a factor 16 with respect to (9.42), corre-
sponding to the choice of a steplength of doubled size. Comparing (9.42)
and (9.43), we get the estimate

h5
0

90
f (4)(ξ) 1 16

15
Ef (α,β),
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where Ef (α,β) = Sf (α,β)− Sf,2(α,β). Then, from (9.43), we have

|If (α,β)− Sf,2(α,β)| 1 |Ef (α,β)|
15

. (9.44)

We have thus obtained a formula that allows for easily computing the error
made by using composite Cavalieri-Simpson numerical integration on the
generic interval [α,β]. Relation (9.44), as well as (9.40), is another instance
of an a posteriori error estimate. It combines the use of an a priori es-
timate (in this case, (9.16)) and of two evaluations of the quantity to be
approximated (the integral I(f)) for two different values of the discretiza-
tion parameter h.

In the practice, it might be convenient to assume a more conservative
error estimate, precisely

|If (α,β)− Sf,2(α,β)| 1 |Ef (α,β)|/10.

Moreover, to ensure a global accuracy on [a, b] equal to the fixed tolerance
ε, it will suffice to enforce that the error Ef (α,β) satisfies on each single
subinterval [α,β] ⊆ [a, b] the following constraint

|Ef (α,β)|
10

≤ ε
β − α
b− a

. (9.45)

The adaptive automatic integration algorithm can be described as follows.
Denote by:

1. A: the active integration interval, i.e., the interval where the integral
is being computed;

2. S: the integration interval already examined, for which the error test
(9.45) has been successfully passed;

3. N : the integration interval yet to be examined.

At the beginning of the integration process we have N = [a, b], A = N
and S = ∅, while the situation at the generic step of the algorithm is
depicted in Figure 9.3. Set JS(f) 1

∫ α
a f(x)dx, with JS(f) = 0 at the

beginning of the process; if the algorithm successfully terminates, JS(f)
yields the desired approximation of I(f). We also denote by J(α,β)(f) the
approximate integral of f over the “active” interval [α,β]. This interval
is drawn in bold in Figure 9.3. At each step of the adaptive integration
method the following decisions are taken:

1. if the local error test (9.45) is passed, then:

(i) JS(f) is increased by J(α,β)(f), that is, JS(f) ← JS(f)+J(α,β)(f);
(ii) we let S ← S ∪ A, A = N (corresponding to the path (I) in

Figure 9.3), β = b.
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FIGURE 9.3. Distribution of the integration intervals at the generic step of the
adaptive algorithm and updating of the integration grid

2. If the local error test (9.45) fails, then:

(j) A is halved, and the new active interval is set to A = [α,α′] with
α′ = (α+ β)/2 (corresponding to the path (II) in Figure 9.3);

(jj) we let N ← N ∪ [α′,β], β ← α′;
(jjj) a new error estimate is provided.

In order to prevent the algorithm from generating too small stepsizes, it
is convenient to monitor the width of A and warn the user, in case of
an excessive reduction of the steplength, about the presence of a possible
singularity in the integrand function (see Section 9.8).

Example 9.9 Let us employ Cavalieri-Simpson adaptive integration for com-
puting the integral

I(f) =
4∫

−3

tan−1(10x)dx

= 4tan−1(40) + 3tan−1(−30)− (1/20) log(16/9) 0 1.54201193.

Running Program 77 with tol = 10−4 and hmin = 10−3 yields an approximation
of the integral with an absolute error of 2.104 · 10−5. The algorithm performs
77 functional evaluations, corresponding to partitioning the interval [a, b] into
38 nonuniform subintervals. We notice that the corresponding composite formula
with uniform stepsize would have required 128 subintervals with an absolute error
of 2.413 · 10−5.

In Figure 9.4 (left) we show, together with the plot of the integrand function,
the distribution of the quadrature nodes as a function of x, while on the right
the integration step density (piecewise constant) ∆h(x) is shown, defined as the
inverse of the step size h over each active interval A. Notice the high value attained
by ∆h at x = 0, where the derivative of the integrand function is maximum. •

The adaptive algorithm described above is implemented in Program 77.
Among the input parameters, hmin is the minimum admissible value of
the integration steplength. In output the program returns the approximate
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FIGURE 9.4. Distribution of quadrature nodes (left); density of the integration
stepsize in the approximation of the integral of Example 9.9 (right)

value of the integral integ, the total number of functional evaluations nfv
and the set of integration points xfv.

Program 77 - simpadpt : Adaptive Cavalieri-Simpson formula

function [integ,xfv,nfv]=simpadpt(a,b,tol,fun,hmin);
integ=0; level=0; i=1; alfa(i)=a; beta(i)=b;
step=(beta(i)-alfa(i))/4; nfv=0;
for k=1:5, x=a+(k-1)*step; f(i,k)=eval(fun); nfv=nfv+1; end
while (i > 0),
S=0; S2=0; h=(beta(i)-alfa(i))/2; S=(h/3)*(f(i,1)+4*f(i,3)+f(i,5));
h=h/2; S2=(h/3)*(f(i,1)+4*f(i,2)+f(i,3));
S2=S2+(h/3)*(f(i,3)+4*f(i,4)+f(i,5));
tolrv=tol*(beta(i)-alfa(i))/(b-a); errrv=abs(S-S2)/10;
if (errrv > tolrv)
i=i+1; alfa(i)=alfa(i-1); beta(i)=(alfa(i-1)+beta(i-1))/2;
f(i,1)=f(i-1,1);f(i,3)=f(i-1,2);f(i,5)=f(i-1,3);len=abs(beta(i)-alfa(i));
if (len >= hmin),
if (len <= 11*hmin)
disp(’ Steplength close to hmin ’),
str=sprintf(’The approximate integral is %12.7e’,integ);disp(str),end;
step=len/4; x=alfa(i)+step; f(i,2)=eval(fun);
nfv=nfv+1; x=beta(i)-step; f(i,4)=eval(fun); nfv=nfv+1;
else, xfv=xfv’; disp(’ Too small steplength ’)
str=sprintf(’The approximate integral is %12.7e’,integ);
disp(str), return

end, else
integ=integ+S2; level=level+1; if (level==1),
for k=1:5, xfv(k)=alfa(i)+(k-1)*h; end; ist=5;
else, for k=1:4, xfv(ist+k)=alfa(i)+k*h; end; ist=ist+4; end;
if (beta(i)==b), xfv=xfv’;
str=sprintf(’The approximate integral is %12.7e’,integ);
disp(str), return, end; i=i-1; alfa(i)=beta(i+1);
f(i,1)=f(i+1,5); f(i,3)=f(i,4); step=abs(beta(i)-alfa(i))/4;
x=alfa(i)+step; f(i,2)=eval(fun); nfv=nfv+1; x=beta(i)-step;
f(i,4)=eval(fun); nfv=nfv+1;
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end
end

9.8 Singular Integrals

In this section we extend our analysis to deal with singular integrals, arising
when f has finite jumps or is even infinite at some point. Besides, we
will consider the case of integrals of bounded functions over unbounded
intervals. We briefly address the most relevant numerical techniques for
properly handling these integrals.

9.8.1 Integrals of Functions with Finite Jump Discontinuities
Let c be a known point within [a, b] and assume that f is a continuous and
bounded function in [a, c) and (c, b], with finite jump f(c+)− f(c−). Since

I(f) =
∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx, (9.46)

any integration formula of the previous sections can be used on [a, c−] and
[c+, b] to furnish an approximation of I(f). We proceed similarly if f admits
a finite number of jump discontinuities within [a, b].

When the position of the discontinuity points of f is not known a priori,
a preliminary analysis of the graph of the function should be carried out.
Alternatively, one can resort to an adaptive integrator that is able to detect
the presence of discontinuities when the integration steplength falls below
a given tolerance (see Section 9.7.2).

9.8.2 Integrals of Infinite Functions
Let us deal with the case in which limx→a+ f(x) = ∞; similar consider-
ations hold when f is infinite as x → b−, while the case of a point of
singularity c internal to the interval [a, b] can be recast to one of the pre-
vious two cases owing to (9.46). Assume that the integrand function is of
the form

f(x) =
φ(x)

(x− a)µ
, 0 ≤ µ < 1,

where φ is a function whose absolute value is bounded by M . Then

|I(f)| ≤M lim
t→a+

b∫

t

1
(x− a)µ

dx = M
(b− a)1−µ

1− µ
.
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Suppose we wish to approximate I(f) up to a fixed tolerance δ. For this, let
us describe the following two methods (for further details, see also [IK66],
Section 7.6, and [DR75], Section 2.12 and Appendix 1).

Method 1. For any ε such that 0 < ε < (b − a), we write the singular
integral as I(f) = I1 + I2, where

I1 =
a+ε∫

a

φ(x)
(x− a)µ

dx, I2 =
b∫

a+ε

φ(x)
(x− a)µ

dx.

The computation of I2 is not troublesome. After replacing φ by its p-th
order Taylor’s expansion around x = a, we obtain

φ(x) = Φp(x) +
(x− a)p+1

(p + 1)!
φ(p+1)(ξ(x)), p ≥ 0 (9.47)

where Φp(x) =
∑p

k=0 φ
(k)(a)(x− a)k/k!. Then

I1 = ε1−µ
p∑

k=0

εkφ(k)(a)
k!(k + 1− µ)

+
1

(p + 1)!

a+ε∫

a

(x− a)p+1−µφ(p+1)(ξ(x))dx.

Replacing I1 by the finite sum, the corresponding error E1 can be bounded
as

|E1| ≤
εp+2−µ

(p + 1)!(p + 2− µ)
max

a≤x≤a+ε
|φ(p+1)(x)|, p ≥ 0. (9.48)

For fixed p, the right side of (9.48) is an increasing function of ε. On the
other hand, taking ε < 1 and assuming that the successive derivatives of φ
do not grow too much as p increases, the same function is decreasing as p
grows.

Let us next approximate I2 using a composite Newton-Cotes formula
with m subintervals and n quadrature nodes for each subinterval, n being
an even integer. Recalling (9.26) and aiming at equidistributing the error
δ between I1 and I2, it turns out that

|E2| ≤M(n+2)(ε)
b− a− ε
(n + 2)!

|Mn|
nn+3

(
b− a− ε

m

)n+2

= δ/2, (9.49)

where
M(n+2)(ε) = max

a+ε≤x≤b

∣∣∣∣
dn+2

dxn+2

(
φ(x)

(x− a)µ

)∣∣∣∣ .

The value of the constant M(n+2)(ε) grows rapidly as ε tends to zero; as
a consequence, (9.49) might require such a large number of subintervals
mε = m(ε) to make the method at hand of little practical use.
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Example 9.10 Consider the singular integral (known as the Fresnel integral)

I(f) =

π/2∫

0

cos(x)√
x

dx. (9.50)

Expanding the integrand function in a Taylor’s series around the origin and
applying the theorem of integration by series, we get

I(f) =
∞∑

k=0

(−1)k

(2k)!
1

(2k + 1/2)
(π/2)2k+1/2.

Truncating the series at the first 10 terms, we obtain an approximate value of
the integral equal to 1.9549.

Using the composite Cavalieri-Simpson formula, the a priori estimate (9.49)
yields, as ε tends to zero and letting n = 2, |M2| = 4/15,

mε 0
[
0.018

δ

(π
2
− ε

)5
ε−9/2

]1/4

.

For δ = 10−4, taking ε = 10−2, it turns out that 1140 (uniform) subintervals are
needed, while for ε = 10−4 and ε = 10−6 the number of subintervals is 2 · 105

and 3.6 · 107, respectively.
As a comparison, running Program 77 (adaptive integration with Cavalieri-

Simpson formula) with a = ε = 10−10, hmin = 10−12 and tol = 10−4, we
get the approximate value 1.955 for the integral at the price of 1057 functional
evaluations, which correspond to 528 nonuniform subdivisions of the interval
[0,π/2]. •

Method 2. Using the Taylor expansion (9.47) we obtain

I(f) =
b∫

a

φ(x)− Φp(x)
(x− a)µ

dx +
b∫

a

Φp(x)
(x− a)µ

dx = I1 + I2.

Exact computation of I2 yields

I2 = (b− a)1−µ
p∑

k=0

(b− a)kφ(k)(a)
k!(k + 1− µ)

. (9.51)

The integral I1 is, for p ≥ 0

I1 =
b∫

a

(x− a)p+1−µφ
(p+1)(ξ(x))
(p + 1)!

dx =
b∫

a

g(x)dx. (9.52)

Unlike the case of method 1, the integrand function g does not blow up
at x = a, since its first p derivatives are finite at x = a. As a consequence,
assuming we approximate I1 using a composite Newton-Cotes formula, it is
possible to give an estimate of the quadrature error, provided that p ≥ n+2,
for n ≥ 0 even, or p ≥ n + 1, for n odd.
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Example 9.11 Consider again the singular Fresnel integral (9.50), and assume
we use the composite Cavalieri-Simpson formula for approximating I1. We will
take p = 4 in (9.51) and (9.52). Computing I2 yields the value (π/2)1/2(2 −
(1/5)(π/2)2 + (1/108)(π/2)4) 0 1.9588. Applying the error estimate (9.26) with
n = 2 shows that only 2 subdivisions of [0,π/2] suffice for approximating I1 up
to an error δ = 10−4, obtaining the value I1 0 −0.0173. As a whole, method 2
returns for (9.50) the approximate value 1.9415. •

9.8.3 Integrals over Unbounded Intervals
Let f ∈ C0([a,+∞)); should it exist and be finite, the following limit

lim
t→+∞

t∫

a

f(x)dx

is taken as being the value of the singular integral

I(f) =
∫ ∞

a
f(x)dx = lim

t→+∞

t∫

a

f(x)dx. (9.53)

An analogous definition holds if f is continuous over (−∞, b], while for a
function f : R → R, integrable over any bounded interval, we let

∫ ∞

−∞
f(x)dx =

∫ c

−∞
f(x)dx +

∫ +∞

c
f(x)dx (9.54)

if c is any real number and the two singular integrals on the right hand side
of (9.54) are convergent. This definition is correct since the value of I(f)
does not depend on the choice of c.
A sufficient condition for f to be integrable over [a,+∞) is that

∃ρ > 0, such that lim
x→+∞

x1+ρf(x) = 0,

that is, we require f to be infinitesimal of order > 1 with respect to 1/x
as x→∞. For the numerical approximation of (9.53) up to a tolerance δ,
we consider the following methods, referring for further details to [DR75],
Chapter 3.

Method 1. To compute (9.53), we can split I(f) as I(f) = I1 + I2, where
I1 =

∫ c
a f(x)dx and I2 =

∫ ∞
c f(x)dx.

The end-point c, which can be taken arbitrarily, is chosen in such a way
that the contribution of I2 is negligible. Precisely, taking advantage of the
asymptotic behavior of f , c is selected to guarantee that I2 equals a fraction
of the fixed tolerance, say, I2 = δ/2.

Then, I1 will be computed up to an absolute error equal to δ/2. This
ensures that the global error in the computation of I1 + I2 is below the
tolerance δ.
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Example 9.12 Compute up to an error δ = 10−3 the integral

I(f) =
∞∫

0

cos2(x)e−xdx = 3/5.

For any given c > 0, we have I2 =
∞∫

c

cos2(x)e−xdx ≤
∫ ∞

c

e−xdx = e−c; re-

quiring that e−c = δ/2, one gets c 0 7.6. Then, assuming we use the compos-
ite trapezoidal formula for approximating I1, thanks to (9.27) with n = 1 and
M = max0≤x≤c |f ′′(x)| 0 1.04, we obtain m ≥

(
Mc3/(6δ)

)1/2 = 277.
Program 72 returns the value I1 0 0.599905, instead of the exact value I1 =

3/5− e−c(cos2(c)− (sin(2c) + 2 cos(2c))/5) 0 0.599842, with an absolute error of
about 6.27 · 10−5. The global numerical outcome is thus I1 + I2 0 0.600405, with
an absolute error with respect to I(f) equal to 4.05 · 10−4. •

Method 2. For any real number c, we let I(f) = I1 + I2, as for method 1,
then we introduce the change of variable x = 1/t in order to transform I2
into an integral over the bounded interval [0, 1/c]

I2 =

1/c∫

0

f(t)t−2dt =

1/c∫

0

g(t)dt. (9.55)

If g(t) is not singular at t = 0, (9.55) can be treated by any quadrature
formula introduced in this chapter. Otherwise, one can resort to the inte-
gration methods considered in Section 9.8.2.

Method 3. Gaussian interpolatory formulae are used, where the integra-
tion nodes are the zeros of Laguerre and Hermite orthogonal polynomials
(see Section 10.5).

9.9 Multidimensional Numerical Integration

Let Ω be a bounded domain in R2 with a sufficiently smooth boundary. We
consider the problem of approximating the integral I(f) =

∫
Ω f(x, y)dxdy,

where f is a continuous function in Ω. For this purpose, in Sections 9.9.1
and 9.9.2 we address two methods.

The first method applies when Ω is a normal domain with respect to a
coordinate axis. It is based on the reduction formula for double integrals
and consists of using one-dimensional quadratures along both coordinate
direction. The second method, which applies when Ω is a polygon, consists
of employing composite quadratures of low degree on a triangular decom-
position of the domain Ω. Section 9.9.3 briefly addresses the Monte Carlo
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method, which is particularly well-suited to integration in several dimen-
sions.

9.9.1 The Method of Reduction Formula
Let Ω be a normal domain with respect to the x axis, as drawn in Figure
9.5, and assume for the sake of simplicity that φ2(x) > φ1(x), ∀x ∈ [a, b].

FIGURE 9.5. Normal domain with respect to x axis

The reduction formula for double integrals gives (with obvious choice of
notation)

I(f) =
b∫

a

φ2(x)∫

φ1(x)

f(x, y)dydx =
b∫

a

Ff (x)dx. (9.56)

The integral I(Ff ) =
∫ b
a Ff (x)dx can be approximated by a composite

quadrature rule using Mx subintervals {Jk, k = 1, . . . ,Mx}, of width H =
(b − a)/Mx, and in each subinterval n(k)

x + 1 nodes {xk
i , i = 0, . . . , n(k)

x }.
Thus, in the x direction we can write

Icnx
(f) =

Mx∑

k=1

n(k)
x∑

i=0

αk
i Ff (xk

i ),

where the coefficients αk
i are the quadrature weights on each subinterval Jk.

For each node xk
i , the approximate evaluation of the integral Ff (xk

i ) is then
carried out by a composite quadrature using My subintervals {Jm, m =
1, . . . ,My}, of width hk

i = (φ2(xk
i ) − φ1(xk

i ))/My and in each subinterval
n(m)
y + 1 nodes {yi,kj,m, j = 0, . . . , n(m)

y }.
In the particular case Mx = My = M , n(k)

x = n(m)
y = 0, for k,m =

1, . . . ,M , the resulting quadrature formula is the midpoint reduction for-
mula

Ic0,0(f) = H
M∑

k=1

hk
0

M∑

m=1

f(xk
0 , y

0,k
0,m),
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where H = (b − a)/M , xk
0 = a + (k − 1/2)H for k = 1, . . . ,M and

y0,k
0,m = φ1(xk

0) + (m− 1/2)hk
0 for m = 1, . . . ,M . With a similar procedure

the trapezoidal reduction formula can be constructed along the coordinate
directions (in that case, n(k)

x = n(m)
y = 1, for k,m = 1, . . . ,M).

The efficiency of the approach can obviously be increased by employing
the adaptive method described in Section 9.7.2 to suitably allocate the
quadrature nodes xk

i and yi,kj,m according to the variations of f over the
domain Ω. The use of the reduction formulae above becomes less and less
convenient as the dimension d of the domain Ω ⊂ Rd gets larger, due to
the large increase in the computational effort. Indeed, if any simple integral
requires N functional evaluations, the overall cost would be equal to Nd.

The midpoint and trapezoidal reduction formulae for approximating the
integral (9.56) are implemented in Programs 78 and 79. For the sake of
simplicity, we set Mx = My = M . The variables phi1 and phi2 contain
the expressions of the functions φ1 and φ2 which delimitate the integration
domain.

Program 78 - redmidpt : Midpoint reduction formula

function inte=redmidpt(a,b,phi1,phi2,m,fun)
H=(b-a)/m; xx=[a+H/2:H:b]; dim=max(size(xx));
for i=1:dim, x=xx(i); d=eval(phi2); c=eval(phi1); h=(d-c)/m;
y=[c+h/2:h:d]; w=eval(fun); psi(i)=h*sum(w(1:m)); end;
inte=H*sum(psi(1:m));

Program 79 - redtrap : Trapezoidal reduction formula

function inte=redtrap(a,b,phi1,phi2,m,fun)
H=(b-a)/m; xx=[a:H:b]; dim=max(size(xx));
for i=1:dim, x=xx(i); d=eval(phi2); c=eval(phi1); h=(d-c)/m;
y=[c:h:d]; w=eval(fun); psi(i)=h*(0.5*w(1)+sum(w(2:m))+0.5*w(m+1));
end; inte=H*(0.5*psi(1)+sum(psi(2:m))+0.5*psi(m+1));

9.9.2 Two-Dimensional Composite Quadratures
In this section we extend to the two-dimensional case the composite inter-
polatory quadratures that have been considered in Section 9.4. We assume
that Ω is a convex polygon on which we introduce a triangulation Th of NT

triangles or elements, such that Ω =
⋃

T∈Th

T , where the parameter h > 0 is

the maximum edge-length in Th (see Section 8.5.2).
Exactly as happens in the one-dimensional case, interpolatory composite
quadrature rules on triangles can be devised by replacing

∫
Ω f(x, y)dxdy

with
∫
ΩΠ

k
hf(x, y)dxdy, where, for k ≥ 0, Πk

hf is the composite interpolat-
ing polynomial of f on the triangulation Th introduced in Section 8.5.2.



9.9 Multidimensional Numerical Integration 405

For an efficient evaluation of this last integral, we employ the property of
additivity which, combined with (8.38), leads to the following interpolatory
composite rule

Ick(f) =
∫

Ω

Πk
hf(x, y)dxdy =

∑

T∈Th

∫

T

Πk
T f(x, y)dxdy =

∑

T∈Th

ITk (f)

=
∑

T∈Th

dk−1∑

j=0

f(z̃Tj )
∫

T

lTj (x, y)dxdy =
∑

T∈Th

dk−1∑

j=0

αT
j f(z̃Tj ).

(9.57)

The coefficients α(j)
T and the points z̃(j)

T are called the local weights and
nodes of the quadrature formula (9.57), respectively.

The weights α(j)
T can be computed on the reference triangle T̂ of vertices

(0, 0), (1, 0) and (0, 1), as follows

α(j)
T =

∫

T

lj,T (x, y)dxdy = 2|T |
∫

T̂

l̂j(x̂, ŷ)dx̂dŷ, j = 0, . . . , dk − 1,

where |T | is the area of T . If k = 0, we get α(0)
T = |T |, while if k = 1 we

have α(j)
T = |T |/3, for j = 0, 1, 2.

Denoting respectively by a(j)
T and aT =

∑3
j=1(a

(j)
T )/3, for j = 1, 2, 3, the

vertices and the center of gravity of the triangle T ∈ Th, the following
formulae are obtained.

Composite midpoint formula

Ic0(f) =
∑

T∈Th

|T |f(aT ). (9.58)

Composite trapezoidal formula

Ic1(f) =
1
3

∑

T∈Th

|T |
3∑

j=1

f(a(j)
T ). (9.59)

In view of the analysis of the quadrature error Ec
k(f) = I(f) − Ick(f), we

introduce the following definition.

Definition 9.1 The quadrature formula (9.57) has degree of exactness
equal to n, with n ≥ 0, if I T̂k (p) =

∫
T̂ pdxdy for any p ∈ Pn(T̂ ), where

Pn(T̂ ) is defined in (8.35). !

The following result can be proved (see [IK66], pp. 361–362).
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Property 9.4 Assume that the quadrature rule (9.57) has degree of exact-
ness on Ω equal to n, with n ≥ 0, and that its weights are all nonnegative.
Then, there exists a positive constant Kn, independent of h, such that

|Ec
k(f)| ≤ Knh

n+1|Ω|Mn+1,

for any function f ∈ Cn+1(Ω), where Mn+1 is the maximum value of the
modules of the derivatives of order n + 1 of f and |Ω| is the area of Ω.

The composite formulae (9.58) and (9.59) both have degrees of exactness
equal to 1; then, due to Property 9.4, their order of infinitesimal with
respect to h is equal to 2.
An alternative family of quadrature rules on triangles is provided by the so-
called symmetric formulae. These are Gaussian formulae with n nodes and
high degree of exactness, and exhibit the feature that the quadrature nodes
occupy symmetric positions with respect to all corners of the reference
triangle T̂ or, as happens for Gauss-Radau formulae, with respect to the
straight line ŷ = x̂.
Considering the generic triangle T ∈ Th and denoting by aT

(j), j = 1, 2, 3,
the midpoints of the edges of T , two examples of symmetric formulae,
having degree of exactness equal to 2 and 3, respectively, are the following

I3(f) =
|T |
3

3∑

j=1

f(aT
(j)), n = 3,

I7(f) =
|T |
60



3
3∑

i=1

f(a(i)
T ) + 8

3∑

j=1

f(aT
(j)) + 27f(aT )



 , n = 7.

For a description and analysis of symmetric formulae for triangles, see
[Dun85], while we refer to [Kea86] and [Dun86] for their extension to tetra-
hedra and cubes.

The composite quadrature rules (9.58) and (9.59) are implemented in
Programs 80 and 81 for the approximate evaluation of the integral of f(x, y)
over a single triangle T ∈ Th. To compute the integral over Ω it suffices
to sum the result provided by the program over each triangle of Th. The
coordinates of the vertices of the triangle T are stored in the arrays xv and
yv.

Program 80 - midptr2d : Midpoint rule on a triangle

function inte=midptr2d(xv,yv,fun)
y12=yv(1)-yv(2); y23=yv(2)-yv(3); y31=yv(3)-yv(1);
areat=0.5*abs(xv(1)*y23+xv(2)*y31+xv(3)*y12);
x=sum(xv)/3; y=sum(yv)/3; inte=areat*eval(fun);

Program 81 - traptr2d : Trapezoidal rule on a triangle
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function inte=traptr2d(xv,yv,fun)
y12=yv(1)-yv(2); y23=yv(2)-yv(3); y31=yv(3)-yv(1);
areat=0.5*abs(xv(1)*y23+xv(2)*y31+xv(3)*y12); inte=0;
for i=1:3, x=xv(i); y=yv(i); inte=inte+eval(fun); end;
inte=inte*areat/3;

9.9.3 Monte Carlo Methods for Numerical Integration
Numerical integration methods based on Monte Carlo techniques are a valid
tool for approximating multidimensional integrals when the space dimen-
sion of Rn gets large. These methods differ from the approaches considered
thus far, since the choice of quadrature nodes is done statistically accord-
ing to the values attained by random variables having a known probability
distribution.

The basic idea of the method is to interpret the integral as a statistic
mean value

∫

Ω

f(x)dx = |Ω|
∫

Rn

|Ω|−1χΩ(x)f(x)dx = |Ω|µ(f),

where x = (x1, x2, . . . , xn)T and |Ω| denotes the n-dimensional volume of
Ω, χΩ(x) is the characteristic function of the set Ω, equal to 1 for x ∈ Ω and
to 0 elsewhere, while µ(f) is the mean value of the function f(X), where
X is a random variable with uniform probability density |Ω|−1χΩ over Rn.

We recall that the random variable X ∈ Rn (or, more properly, random
vector) is an n-tuple of real numbers X1(ζ), . . . , Xn(ζ) assigned to every
outcome ζ of a random experiment (see [Pap87], Chapter 4).

Having fixed a vector x ∈ Rn, the probability P{X ≤ x} of the random
event {X1 ≤ x1, . . . , Xn ≤ xn} is given by

P{X ≤ x} =
∫ x1

−∞
. . .

∫ xn

−∞
f(X1, . . . , Xn)dX1 . . . dXn

where f(X) = f(X1, . . . , Xn) is the probability density of the random vari-
able X ∈ Rn, such that

f(X1, . . . , Xn) ≥ 0,
∫

Rn

f(X1, . . . , Xn)dX = 1.

The numerical computation of the mean value µ(f) is carried out by taking
N independent samples x1, . . . ,xN ∈ Rn with probability density |Ω|−1χΩ
and evaluating their average

fN =
1
N

N∑

i=1

f(xi) = IN (f). (9.60)
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From a statistical standpoint, the samples x1, . . . ,xN can be regarded as
the realizations of a sequence of N random variables {X1, . . . , XN}, mu-
tually independent and each with probability density |Ω|−1χΩ.

For such a sequence the strong law of large numbers ensures with prob-
ability 1 the convergence of the average IN (f) =

(∑N
i=1 f(Xi)

)
/N to

the mean value µ(f) as N → ∞. In computational practice the sequence
of samples x1, . . . ,xN is deterministically produced by a random-number
generator, giving rise to the so-called pseudo-random integration formulae.

The quadrature error EN (f) = µ(f) − IN (f) as a function of N can be
characterized through the variance

σ(IN (f)) =
√
µ (IN (f)− µ(f))2.

Interpreting again f as a function of the random variable X, distributed
with uniform probability density |Ω|−1 in Ω ⊆ Rn and variance σ(f), we
have

σ(IN (f)) =
σ(f)√
N

, (9.61)

from which, as N → ∞, a convergence rate of O(N−1/2) follows for the
statistical estimate of the error σ(IN (f)). Such convergence rate does not
depend on the dimension n of the integration domain, and this is a most
relevant feature of the Monte Carlo method. However, it is worth noting
that the convergence rate is independent of the regularity of f ; thus, un-
like interpolatory quadratures, Monte Carlo methods do not yield more
accurate results when dealing with smooth integrands.

The estimate (9.61) is extremely weak and in practice one does often
obtain poorly accurate results. A more efficient implementation of Monte
Carlo methods is based on composite approach or semi-analytical methods;
an example of these techniques is provided in [ NAG95], where a composite
Monte Carlo method is employed for the computation of integrals over
hypercubes in Rn.

9.10 Applications

We consider in the next sections the computation of two integrals suggested
by applications in geometry and the mechanics of rigid bodies.

9.10.1 Computation of an Ellipsoid Surface
Let E be the ellipsoid obtained by rotating the ellipse in Figure 9.6 around
the x axis, where the radius ρ is described as a function of the axial coor-



9.10 Applications 409

x )ρ

1/β- 1/β

(

x

E

FIGURE 9.6. Section of the ellipsoid

dinate by the equation

ρ2(x) = α2(1− β2x2), − 1
β
≤ x ≤ 1

β
,

α and β being given constants, assigned in such a way that α2β2 < 1.
We set the following values for the parameters: α2 = (3 − 2

√
2)/100 and

β2 = 100. Letting K2 = β2
√

1− α2β2, f(x) =
√

1−K2x2 and θ =
cos−1(K/β), the computation of the surface of E requires evaluating the
integral

I(f) = 4πα

1/β∫

0

f(x)dx =
2πα
K

[(π/2− θ) + sin(2θ)/2] . (9.62)

Notice that f ′(1/β) = −100; this prompts us to use a numerical adaptive
formula able to provide a nonuniform distribution of quadrature nodes,
with a possible refinement of these nodes around x = 1/β.
Table 9.12 summarizes the results obtained using the composite midpoint,
trapezoidal and Cavalieri-Simpson rules (respectively denoted by (MP),
(TR) and (CS)), which are compared with Romberg integration (RO) and
with the adaptive Cavalieri-Simpson quadrature introduced in Section 9.7.2
and denoted by (AD).

In the table, m is the number of subintervals, while Err and flops denote
the absolute quadrature error and the number of floating-point operations
required by each algorithm, respectively. In the case of the AD method,
we have run Program 77 taking hmin=10−5 and tol=10−8, while for the
Romberg method we have used Program 76 with n=9.
The results demonstrate the advantage of using the composite adaptive
Cavalieri-Simpson formula, both in terms of computational efficiency and
accuracy, as can be seen in the plots in Figure 9.7 which allow to check
the successful working of the adaptivity procedure. In Figure 9.7 (left),
we show, together with the graph of f , the nonuniform distribution of
the quadrature nodes on the x axis, while in Figure 9.7 (right) we plot
the logarithmic graph of the integration step density (piecewise constant)
∆h(x), defined as the inverse of the value of the stepsize h on each active
interval A (see Section 9.7.2).
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Notice the high value of ∆h at x = 1/β, where the derivative of the
integrand function is maximum.

(PM) (TR) (CS) (RO) (AD)
m 4000 5600 250 50
Err 3.24e− 10 3.30e− 10 2.98e− 10 3.58e− 11 3.18e− 10
flops 20007 29013 2519 5772 3540

TABLE 9.12. Methods for approximating I(f) = 4πα
∫ 1/β

0

√
1−K2x2dx, with

α2 = (3− 2
√

2)/100, β = 10 and K2 =
√

β2(1− α2β2)
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FIGURE 9.7. Distribution of quadrature nodes (left); integration stepsize density
in the approximation of integral (9.62) (right)

9.10.2 Computation of the Wind Action on a Sailboat Mast
Let us consider the sailboat schematically drawn in Figure 9.8 (left) and
subject to the action of the wind force. The mast, of length L, is denoted by
the straight line AB, while one of the two shrouds (strings for the side stiff-
ening of the mast) is represented by the straight line BO. Any infinitesimal
element of the sail transmits to the corresponding element of length dx of
the mast a force of magnitude equal to f(x)dx. The change of f along with
the height x, measured from the point A (basis of the mast), is expressed
by the following law

f(x) =
αx

x + β
e−γx,

where α, β and γ are given constants.
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The resultant R of the force f is defined as

R =
L∫

0

f(x)dx ≡ I(f), (9.63)

and is applied at a point at distance equal to b (to be determined) from
the basis of the mast.

dx

wind
direction

mast

shroud

T
A

O

dx

B

f
L

AO

V

B

T

M

H

b

R

FIGURE 9.8. Schematic representation of a sailboat (left); forces acting on the
mast (right)

Computing R and the distance b, given by b = I(xf)/I(f), is crucial for the
structural design of the mast and shroud sections. Indeed, once the values
of R and b are known, it is possible to analyze the hyperstatic structure
mast-shroud (using for instance the method of forces), thus allowing for the
computation of the reactions V , H and M at the basis of the mast and the
traction T that is transmitted by the shroud, and are drawn in Figure 9.8
(right). Then, the internal actions in the structure can be found, as well as
the maximum stresses arising in the mast AB and in the shroud BO, from
which, assuming that the safety verifications are satisfied, one can finally
design the geometrical parameters of the sections of AB and BO.
For the approximate computation of R we have considered the compos-
ite midpoint, trapezoidal and Cavalieri-Simpson rules, denoted henceforth
by (MP), (TR) and (CS), and, for a comparison, the adaptive Cavalieri-
Simpson quadrature formula introduced in Section 9.7.2 and denoted by
(AD). Since a closed-form expression for the integral (9.63) is not available,
the composite rules have been applied taking mk = 2k uniform partitions
of [0, L], with k = 0, . . . , 15.

We have assumed in the numerical experiments α = 50, β = 5/3 and
γ = 1/4 and we have run Program 77 taking tol=10−4 and hmin=10−3.
The sequence of integrals computed using the composite formulae has been
stopped at k = 12 (corresponding to mk = 212 = 4096) since the remaining
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FIGURE 9.9. Relative errors in the approximate computation of the integral∫ L

0 (αxe−γx)/(x + β)dx

elements, in the case of formula CS, differ among them only up to the last
significant figure. Therefore, we have assumed as the exact value of I(f)
the outcome I(CS)

12 = 100.0613683179612 provided by formula CS.
We report in Figure 9.9 the logarithmic plots of the relative error |I(CS)

12 −
Ik|/I12, for k = 0, . . . , 7, Ik being the generic element of the sequence for
the three considered formulae. As a comparison, we also display the graph
of the relative error in the case of formula AD, applied on a number of
(nonuniform) partitions equivalent to that of the composite rules.
Notice how, for the same number of partitions, formula AD is more accu-
rate, with a relative error of 2.06 · 10−7 obtained using 37 (nonuniform)
partitions of [0, L]. Methods PM and TR achieve a comparable accuracy
employing 2048 and 4096 uniform subintervals, respectively, while formula
CS requires about 64 partitions. The effectiveness of the adaptivity pro-
cedure is demonstrated by the plots in Figure 9.10, which show, together
with the graph of f , the distribution of the quadrature nodes (left) and the
function ∆h(x) (right) that expresses the (piecewise constant) density of
the integration stepsize h, defined as the inverse of the value of h over each
active interval A (see Section 9.7.2).

Notice also the high value of ∆h at x = 0, where the derivatives of f are
maximum.

9.11 Exercises
1. Let E0(f) and E1(f) be the quadrature errors in (9.6) and (9.12). Prove

that |E1(f)| 0 2|E0(f)|.

2. Check that the error estimates for the midpoint, trapezoidal and Cavalieri-
Simpson formulae, given respectively by (9.6), (9.12) and (9.16), are special
instances of (9.19) or (9.20). In particular, show that M0 = 2/3, K1 =
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FIGURE 9.10. Distribution of quadrature nodes (left); integration step density
in the approximation of the integral

∫ L

0 (αxe−γx)/(x + β)dx (right)

−1/6 and M2 = −4/15 and determine, using the definition, the degree of
exactness r of each formula.
[Hint: find r such that In(xk) =

∫ b

a
xkdx, for k = 0, . . . , r, and In(xj) $=∫ b

a
xjdx, for j > r.]

3. Let In(f) =
∑n

k=0 αkf(xk) be a Lagrange quadrature formula on n + 1
nodes. Compute the degree of exactness r of the formulae:

(a) I2(f) = (2/3)[2f(−1/2)− f(0) + 2f(1/2)],

(b) I4(f) = (1/4)[f(−1) + 3f(−1/3) + 3f(1/3) + f(1)].

Which is the order of infinitesimal p for (a) and (b)?
[Solution: r = 3 and p = 5 for both I2(f) and I4(f).]

4. Compute df [x0, . . . , xn, x]/dx by checking (9.22).
[Hint: proceed by computing directly the derivative at x as an incremental
ratio, in the case where only one node x0 exists, then upgrade progressively
the order of the divided difference.]

5. Let Iw(f) =
∫ 1
0 w(x)f(x)dx with w(x) =

√
x, and consider the quadrature

formula Q(f) = af(x1). Find a and x1 in such a way that Q has maximum
degree of exactness r.
[Solution: a = 2/3, x1 = 3/5 and r = 1.]

6. Let us consider the quadrature formula Q(f) = α1f(0) +α2f(1) +α3f
′(0)

for the approximation of I(f) =
∫ 1
0 f(x)dx, where f ∈ C1([0, 1]). Determine

the coefficients αj , for j = 1, 2, 3 in such a way that Q has degree of
exactness r = 2.
[Solution: α1 = 2/3, α2 = 1/3 and α3 = 1/6.]

7. Apply the midpoint, trapezoidal and Cavalieri-Simpson composite rules to
approximate the integral ∫ 1

−1
|x|exdx,

and discuss their convergence as a function of the size H of the subintervals.
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8. Consider the integral I(f) =
∫ 1
0 exdx and estimate the minimum number m

of subintervals that is needed for computing I(f) up to an absolute error
≤ 5 · 10−4 using the composite trapezoidal (TR) and Cavalieri-Simpson
(CS) rules. Evaluate in both cases the absolute error Err that is actually
made.
[Solution: for TR, we have m = 17 and Err = 4.95 · 10−4, while for CS,
m = 2 and Err = 3.70 · 10−5.]

9. Consider the corrected trapezoidal formula (9.30) and check that |Ecorr
1 (f)| 0

4|E2(f)|, where Ecorr
1 (f) and E2(f) are defined in (9.31) and (9.16), re-

spectively.

10. Compute, with an error less than 10−4, the following integrals:

(a)
∫ ∞
0 sin(x)/(1 + x4)dx;

(b)
∫ ∞
0 e−x(1 + x)−5dx;

(c)
∫ ∞
−∞ cos(x)e−x2

dx.

11. Use the reduction midpoint and trapezoidal formulae for computing the
double integral I(f) =

∫
Ω

y
(1 + xy)

dxdy over the domain Ω = (0, 1)2. Run

Programs 78 and 79 with M = 2i, for i = 0, . . . , 10 and plot in log-scale
the absolute error in the two cases as a function of M . Which method is
the most accurate? How many functional evaluations are needed to get an
(absolute) accuracy of the order of 10−6?
[Solution: the exact integral is I(f) = log(4)− 1, and almost 2002 = 40000
functional evaluations are needed.]



10
Orthogonal Polynomials in
Approximation Theory

Trigonometric polynomials, as well as other orthogonal polynomials like
Legendre’s and Chebyshev’s, are widely employed in approximation theory.

This chapter addresses the most relevant properties of orthogonal poly-
nomials, and introduces the transforms associated with them, in particular
the discrete Fourier transform and the FFT, but also the Zeta and Wavelet
transforms.

Application to interpolation, least-squares approximation, numerical dif-
ferentiation and Gaussian integration are addressed.

10.1 Approximation of Functions by Generalized
Fourier Series

Let w = w(x) be a weight function on the interval (−1, 1), i.e., a nonneg-
ative integrable function in (−1, 1). Let us denote by {pk, k = 0, 1, . . . } a
system of algebraic polynomials, with pk of degree equal to k for each k,
mutually orthogonal on the interval (−1, 1) with respect to w. This means
that

1∫

−1

pk(x)pm(x)w(x)dx = 0 if k '= m.
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Set (f, g)w =
∫ 1
−1 f(x)g(x)w(x)dx and ‖f‖w = (f, f)1/2w ; (·, ·)w and ‖ · ‖w

are respectively the scalar product and the norm for the function space

L2
w = L2

w(−1, 1) =
{
f : (−1, 1) → R,

∫ 1

−1
f2(x)w(x)dx <∞

}
. (10.1)

For any function f ∈ L2
w the series

Sf =
+∞∑

k=0

f̂kpk, with f̂k =
(f, pk)w
‖pk‖2w

,

is called the generalized Fourier series of f , and f̂k is the k-th Fourier
coefficient. As is well-known, Sf converges in average (or in the sense of
L2
w) to f . This means that, letting for any integer n

fn(x) =
n∑

k=0

f̂kpk(x) (10.2)

(fn ∈ Pn is the truncation of order n of the generalized Fourier series of
f), the following convergence result holds

lim
n→+∞

‖f − fn‖w = 0.

Thanks to Parseval’s equality, we have

‖f‖2w =
+∞∑

k=0

f̂2
k‖pk‖2w

and, for any n, ‖f−fn‖2w =
∑+∞

k=n+1 f̂
2
k‖pk‖2w is the square of the remainder

of the generalized Fourier series.
The polynomial fn ∈ Pn satisfies the following minimization property

‖f − fn‖w = min
q∈Pn

‖f − q‖w. (10.3)

Indeed, since f − fn =
∑+∞

k=n+1 f̂kpk, the property of orthogonality of
polynomials {pk} implies (f − fn, q)w = 0 ∀q ∈ Pn. Then, the Cauchy-
Schwarz inequality (8.29) yields

‖f − fn‖2w = (f − fn, f − fn)w = (f − fn, f − q)w + (f − fn, q − fn)w

= (f − fn, f − q)w ≤ ‖f − fn‖w‖f − q‖w, ∀q ∈ Pn,

and (10.3) follows since q is arbitrary in Pn. In such a case, we say that fn
is the orthogonal projection of f over Pn in the sense of L2

w. It is therefore
interesting to compute the coefficients f̂k of fn. As will be seen in later
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sections, this is usually done by suitably approximating the integrals that
appear in the definition of f̂k. By doing so, one gets the so-called discrete
coefficients f̃k of f , and, as a consequence, the new polynomial

f∗
n(x) =

n∑

k=0

f̃kpk(x) (10.4)

which is called the discrete truncation of order n of the Fourier series of f .
Typically,

f̃k =
(f, pk)n
‖pk‖2n

, (10.5)

where, for any pair of continuous functions f and g, (f, g)n is the approxi-
mation of the scalar product (f, g)w and ‖g‖n =

√
(g, g)n is the seminorm

associated with (·, ·)w. In a manner analogous to what was done for fn, it
can be checked that

‖f − f∗
n‖n = min

q∈Pn

‖f − q‖n (10.6)

and we say that f∗
n is the approximation to f in Pn in the least-squares

sense (the reason for using this name will be made clear later on).
We conclude this section by recalling that, for any family of monic orthog-

onal polynomials {pk}, the following recursive three-term formula holds (for
the proof, see for instance [Gau96])

{
pk+1(x) = (x− αk)pk(x)− βkpk−1(x) k ≥ 0,

p−1(x) = 0, p0(x) = 1,
(10.7)

where

αk =
(xpk, pk)w
(pk, pk)w

, βk+1 =
(pk+1, pk+1)w

(pk, pk)w
, k ≥ 0. (10.8)

Since p−1 = 0, the coefficient β0 is arbitrary and is chosen according to
the particular family of orthogonal polynomials at hand. The recursive
three-term relation is generally quite stable and can thus be conveniently
employed in the numerical computation of orthogonal polynomials, as will
be seen in Section 10.6.
In the forthcoming sections we introduce two relevant families of orthogonal
polynomials.

10.1.1 The Chebyshev Polynomials
Consider the Chebyshev weight function w(x) = (1−x2)−1/2 on the interval
(−1, 1), and, according to (10.1), introduce the space of square-integrable
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functions with respect to the weight w

L2
w(−1, 1) =

{
f : (−1, 1) → R :

∫ 1

−1
f2(x)(1− x2)−1/2dx <∞

}
.

A scalar product and a norm for this space are defined as

(f, g)w =
1∫

−1

f(x)g(x)(1− x2)−1/2dx,

‖f‖w =






1∫

−1

f2(x)(1− x2)−1/2dx






1/2

.

(10.9)

The Chebyshev polynomials are defined as follows

Tk(x) = cos kθ, θ = arccosx, k = 0, 1, 2, . . . (10.10)

They can be recursively generated by the following formula (a consequence
of (10.7), see [DR75], pp. 25-26)






Tk+1(x) = 2xTk(x)− Tk−1(x) k = 1, 2, . . .

T0(x) = 1, T1(x) = x.
(10.11)

In particular, for any k ≥ 0, we notice that Tk ∈ Pk, i.e., Tk(x) is an alge-
braic polynomial of degree k with respect to x. Using well-known trigono-
metric relations, we have

(Tk, Tn)w = 0 if k '= n, (Tn, Tn)w =

{
c0 = π if n = 0,

cn = π/2 if n '= 0,

which expresses the orthogonality of the Chebyshev polynomials with re-
spect to the scalar product (·, ·)w. Therefore, the Chebyshev series of a
function f ∈ L2

w takes the form

Cf =
∞∑

k=0

f̂kTk, with f̂k =
1
ck

1∫

−1

f(x)Tk(x)(1− x2)−1/2dx.

Notice that ‖Tn‖∞ = 1 for every n and the following minimax property
holds

‖21−nTn‖∞ ≤ min
p∈P1

n

‖p‖∞,

where P1
n = {p(x) =

∑n
k=0 akx

k, an = 1} denotes the subset of polynomials
of degree n with leading coefficient equal to 1.
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10.1.2 The Legendre Polynomials
The Legendre polynomials are orthogonal polynomials over the interval
(−1, 1) with respect to the weight function w(x) = 1. For these polynomials,
L2
w is the usual L2(−1, 1) space introduced in (8.25), while (·, ·)w and ‖ ·‖w

coincide with the scalar product and norm in L2(−1, 1), respectively given
by

(f, g) =
1∫

−1

f(x)g(x) dx, ‖f‖L2(−1,1) =




1∫

−1

f2(x) dx





1
2

.

The Legendre polynomials are defined as

Lk(x) =
1
2k

[k/2]∑

l=0

(−1)l
(

k
l

) (
2k − 2l

k

)
xk−2l k = 0, 1, . . . (10.12)

where [k/2] is the integer part of k/2, or, recursively, through the three-
term relation






Lk+1(x) =
2k + 1
k + 1

xLk(x)− k

k + 1
Lk−1(x) k = 1, 2 . . .

L0(x) = 1, L1(x) = x.

For every k = 0, 1 . . . , Lk ∈ Pk and (Lk, Lm) = δkm(k + 1/2)−1 for k,m =
0, 1, 2, . . . . For any function f ∈ L2(−1, 1), its Legendre series takes the
following form

Lf =
∞∑

k=0

f̂kLk, with f̂k =
(
k +

1
2

)−1 1∫

−1

f(x)Lk(x)dx.

Remark 10.1 (The Jacobi polynomials) The polynomials previously
introduced belong to the wider family of Jacobi polynomials {Jαβ

k , k =
0, . . . , n}, that are orthogonal with respect to the weight w(x) = (1 −
x)α(1 + x)β , for α,β > −1. Indeed, setting α = β = 0 we recover the
Legendre polynomials, while choosing α = β = −1/2 gives the Chebyshev
polynomials. !

10.2 Gaussian Integration and Interpolation

Orthogonal polynomials play a crucial role in devising quadrature formulae
with maximal degrees of exactness. Let x0, . . . , xn be n + 1 given distinct
points in the interval [−1, 1]. For the approximation of the weighted integral
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Iw(f) =
∫ 1
−1 f(x)w(x)dx, being f ∈ C0([−1, 1]), we consider quadrature

rules of the type

In,w(f) =
n∑

i=0

αif(xi) (10.13)

where αi are coefficients to be suitably determined. Obviously, both nodes
and weights depend on n, however this dependence will be understood.
Denoting by

En,w(f) = Iw(f)− In,w(f)

the error between the exact integral and its approximation (10.13), if
En,w(p) = 0 for any p ∈ Pr (for a suitable r ≥ 0) we shall say that for-
mula (10.13) has degree of exactness r with respect to the weight w. This
definition generalizes the one given for ordinary integration with weight
w = 1.

Clearly, we can get a degree of exactness equal to (at least) n taking

In,w(f) =
1∫

−1

Πnf(x)w(x)dx

where Πnf ∈ Pn is the Lagrange interpolating polynomial of the function
f at the nodes {xi, i = 0, . . . , n}, given by (8.4). Therefore, (10.13) has
degree of exactness at least equal to n taking

αi =
1∫

−1

li(x)w(x)dx, i = 0, . . . , n, (10.14)

where li ∈ Pn is the i-th characteristic Lagrange polynomial such that
li(xj) = δij , for i, j = 0, . . . , n.

The question that arises is whether suitable choices of the nodes exist
such that the degree of exactness is greater than n, say, equal to r = n+m
for some m > 0. The answer to this question is furnished by the following
theorem, due to Jacobi [Jac26].

Theorem 10.1 For a given m > 0, the quadrature formula (10.13) has
degree of exactness n+m iff it is of interpolatory type and the nodal poly-
nomial ωn+1 (8.6) associated with the nodes {xi} is such that

1∫

−1

ωn+1(x)p(x)w(x)dx = 0, ∀p ∈ Pm−1. (10.15)

Proof. Let us prove that these conditions are sufficient. If f ∈ Pn+m then
there exist a quotient πm−1 ∈ Pm−1 and a remainder qn ∈ Pn, such that f =
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ωn+1πm−1 + qn. Since the degree of exactness of an interpolatory formula with
n + 1 nodes is equal to n (at least), we get

n∑

i=0

αiqn(xi) =
1∫

−1

qn(x)w(x)dx =
1∫

−1

f(x)w(x)dx−
1∫

−1

ωn+1(x)πm−1(x)w(x)dx.

As a consequence of (10.15), the last integral is null, thus

1∫

−1

f(x)w(x)dx =
n∑

i=0

αiqn(xi) =
n∑

i=0

αif(xi).

Since f is arbitrary, we conclude that En,w(f) = 0 for any f ∈ Pn+m. Proving
that the conditions are also necessary is an exercise left to the reader. !

Corollary 10.1 The maximum degree of exactness of the quadrature for-
mula (10.13) is 2n + 1.

Proof. If this would not be true, one could take m ≥ n + 2 in the previous
theorem. This, in turn, would allow us to choose p = ωn+1 in (10.15) and come
to the conclusion that ωn+1 is identically zero, which is absurd. !

Setting m = n + 1 (the maximum admissible value), from (10.15) we get
that the nodal polynomial ωn+1 satisfies the relation

1∫

−1

ωn+1(x)p(x)w(x)dx = 0, ∀p ∈ Pn.

Since ωn+1 is a polynomial of degree n + 1 orthogonal to all the polyno-
mials of lower degree, we conclude that ωn+1 is the only monic polynomial
multiple of pn+1 (recall that {pk} is the system of orthogonal polynomials
introduced in Section 10.1). In particular, its roots {xj} coincide with those
of pn+1, that is

pn+1(xj) = 0, j = 0, . . . , n. (10.16)

The abscissae {xj} are the Gauss nodes associated with the weight func-
tion w(x). We can thus conclude that the quadrature formula (10.13) with
coefficients and nodes given by (10.14) and (10.16), respectively, has degree
of exactness 2n + 1, the maximum value that can be achieved using inter-
polatory quadrature formulae with n + 1 nodes, and is called the Gauss
quadrature formula.

Its weights are all positive and the nodes are internal to the interval
(−1, 1) (see, for instance, [CHQZ88], p. 56). However, it is often useful to
also include the end points of the interval among the quadrature nodes. By



422 10. Orthogonal Polynomials in Approximation Theory

doing so, the Gauss formula with the highest degree of exactness is the one
that employs as nodes the n + 1 roots of the polynomial

ωn+1(x) = pn+1(x) + apn(x) + bpn−1(x), (10.17)

where the constants a and b are selected in such a way that ωn+1(−1) =
ωn+1(1) = 0.

Denoting these roots by x0 = −1, x1, . . . , xn = 1, the coefficients {αi, i =
0, . . . , n} can then be obtained from the usual formulae (10.14), that is

αi =
1∫

−1

li(x)w(x)dx, i = 0, . . . , n,

where li ∈ Pn is the i-th characteristic Lagrange polynomial such that
li(xj) = δij , for i, j = 0, . . . , n. The quadrature formula

IGL
n,w(f) =

n∑

i=0

αif(xi) (10.18)

is called the Gauss-Lobatto formula with n + 1 nodes, and has degree of
exactness 2n − 1. Indeed, for any f ∈ P2n−1, there exist a polynomial
πn−2 ∈ Pn−2 and a remainder qn ∈ Pn such that f = ωn+1πn−2 + qn.

The quadrature formula (10.18) has degree of exactness at least equal to
n (being interpolatory with n + 1 distinct nodes), thus we get

n∑

j=0

αjqn(xj) =
1∫

−1

qn(x)w(x)dx =
1∫

−1

f(x)w(x)dx−
1∫

−1

ωn+1(x)πn−2(x)w(x)dx.

From (10.17) we conclude that ω̄n+1 is orthogonal to all the polynomials
of degree ≤ n− 2, so that the last integral is null. Moreover, since f(xj) =
qn(xj) for j = 0, . . . , n, we conclude that

1∫

−1

f(x)w(x)dx =
n∑

i=0

αif(xi), ∀f ∈ P2n−1.

Denoting by ΠGL
n,wf the polynomial of degree n that interpolates f at the

nodes {xj , j = 0, . . . , n}, we get

ΠGL
n,wf(x) =

n∑

i=0

f(xi)li(x) (10.19)

and thus IGL
n,w(f) =

∫ 1
−1Π

GL
n,wf(x)w(x)dx.
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Remark 10.2 In the special case where the Gauss-Lobatto quadrature is
considered with respect to the Jacobi weight w(x) = (1 − x)α(1 − x)β ,
with α,β > −1, the internal nodes x1, . . . , xn−1 can be identified as the
roots of the polynomial (J (α,β)

n )′, that is, the extremants of the n-th Jacobi
polynomial J (α,β)

n (see [CHQZ88], pp. 57-58). !

The following convergence result holds for Gaussian integration (see [Atk89],
Chapter 5)

lim
n→+∞

∣∣∣∣∣∣

1∫

−1

f(x)w(x)dx−
n∑

j=0

αjf(xj)

∣∣∣∣∣∣
= 0, ∀f ∈ C0([−1, 1]).

A similar result also holds for Gauss-Lobatto integration. If the integrand
function is not only continuous, but also differentiable up to the order
p ≥ 1, we shall see that Gaussian integration converges with an order of
infinitesimal with respect to 1/n that is larger when p is greater. In the
forthcoming sections, the previous results will be specified in the cases of
the Chebyshev and Legendre polynomials.

Remark 10.3 (Integration over an arbitrary interval) A quadrature
formula with nodes ξj and coefficients βj , j = 0, . . . , n over the interval
[−1, 1] can be mapped on any interval [a, b]. Indeed, let ϕ : [−1, 1] → [a, b]
be the affine map x = ϕ(ξ) = a+b

2 ξ + b−a
2 . Then

b∫

a

f(x)dx =
a + b

2

1∫

−1

(f ◦ ϕ)(ξ)dξ.

Therefore, we can employ on the interval [a, b] the quadrature formula with
nodes xj = ϕ(ξj) and weights αj = a+b

2 βj . Notice that this formula main-
tains on the interval [a, b] the same degree of exactness of the generating
formula over [−1, 1]. Indeed, assuming that

1∫

−1

p(ξ)dξ =
n∑

j=0

p(ξj)βj

for any polynomial p of degree r over [−1, 1] (for a suitable integer r), for
any polynomial q of the same degree on [a, b] we get

n∑

j=0

q(xj)αj =
a + b

2

n∑

j=0

(q ◦ ϕ)(ξj)βj =
a + b

2

1∫

−1

(q ◦ ϕ)(ξ)dξ =
b∫

a

q(x)dx,

having recalled that (q ◦ ϕ)(ξ) is a polynomial of degree r on [−1, 1]. !
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10.3 Chebyshev Integration and Interpolation

If Gaussian quadratures are considered with respect to the Chebyshev
weight w(x) = (1− x2)−1/2, Gauss nodes and coefficients are given by

xj = − cos
(2j + 1)π
2(n + 1)

, αj =
π

n + 1
, 0 ≤ j ≤ n, (10.20)

while Gauss-Lobatto nodes and weights are

xj = − cos
πj

n
, αj =

π

djn
, 0 ≤ j ≤ n, n ≥ 1, (10.21)

where d0 = dn = 2 and dj = 1 for j = 1, . . . , n− 1. Notice that the Gauss
nodes (10.20) are, for a fixed n ≥ 0, the zeros of the Chebyshev polynomial
Tn+1 ∈ Pn+1, while, for n ≥ 1, the internal nodes {x̄j , j = 1, . . . , n− 1}
are the zeros of T ′

n, as anticipated in Remark 10.2.
Denoting by ΠGL

n,wf the polynomial of degree n + 1 that interpolates f
at the nodes (10.21), it can be shown that the interpolation error can be
bounded as

‖f −ΠGL
n,wf‖w ≤ Cn−s‖f‖s,w, for s ≥ 1, (10.22)

where ‖ · ‖w is the norm in L2
w defined in (10.9), provided that for some

s ≥ 1 the function f has derivatives f (k) of order k = 0, . . . , s in L2
w. In

such a case

‖f‖s,w =

(
s∑

k=0

‖f (k)‖2w

) 1
2

. (10.23)

Here and in the following, C is a constant independent of n that can assume
different values at different places. In particular, for any continuous function
f the following pointwise error estimate can be derived (see Exercise 3)

‖f(x)−ΠGL
n,wf(x)‖∞ ≤ Cn1/2−s‖f‖s,w. (10.24)

Thus, ΠGL
n,wf converges pointwise to f as n→∞, for any f ∈ C1([−1, 1]).

The same kind of results (10.22) and (10.24) hold if ΠGL
n,wf is replaced with

the polynomial ΠG
n f of degree n that interpolates f at the n+1 Gauss nodes

xj in (10.20). (For the proof of these results see, for instance, [CHQZ88],
p. 298, or [QV94], p. 112). We have also the following result (see [Riv74],
p.13)

‖f −ΠG
n f‖∞ ≤ (1 + Λn)E∗

n(f), with Λn ≤
2
π

log(n + 1) + 1, (10.25)

where ∀n, E∗
n(f) = inf

p∈Pn

‖f − p‖∞ is the best approximation error for f

in Pn and Λn is the Lebesgue constant associated with the Chebyshev



10.3 Chebyshev Integration and Interpolation 425

nodes (10.20). As far as the numerical integration error is concerned, let
us consider, for instance, the Gauss-Lobatto quadrature rule (10.18) with
nodes and weights given in (10.21). First of all, notice that

1∫

−1

f(x)(1− x2)−1/2dx = lim
n→∞

IGL
n,w(f)

for any function f whose left integral is finite (see [Sze67], p. 342). If,
moreover, ‖f‖s,w is finite for some s ≥ 1, we have

∣∣∣∣∣∣

1∫

−1

f(x)(1− x2)−1/2dx− IGL
n,w(f)

∣∣∣∣∣∣
≤ Cn−s‖f‖s,w. (10.26)

This result follows from the more general one

|(f, vn)w − (f, vn)n| ≤ Cn−s‖f‖s,w‖vn‖w, ∀vn ∈ Pn, (10.27)

where the so-called discrete scalar product has been introduced

(f, g)n =
n∑

j=0

αjf(xj)g(xj) = IGL
n,w(fg). (10.28)

Actually, (10.26) follows from (10.27) setting vn ≡ 1 and noticing that

‖vn‖w =
(∫ 1

−1(1− x2)−1/2dx
)1/2

=
√
π. Thanks to (10.26) we can thus

conclude that the (Chebyshev) Gauss-Lobatto formula has degree of ex-
actness 2n − 1 and order of accuracy (with respect to n−1) equal to s,
provided that ‖f‖s,w <∞. Therefore, the order of accuracy is only limited
by the regularity threshold s of the integrand function. Completely similar
considerations can be drawn for (Chebyshev) Gauss formulae with n + 1
nodes.
Let us finally determine the coefficients f̃k, k = 0, . . . , n, of the interpolat-
ing polynomial ΠGL

n,wf at the n + 1 Gauss-Lobatto nodes in the expansion
with respect to the Chebyshev polynomials (10.10)

ΠGL
n,wf(x) =

n∑

k=0

f̃kTk(x). (10.29)

Notice that ΠGL
n,wf coincides with the discrete truncation of the Chebyshev

series f∗
n defined in (10.4). Enforcing the equality ΠGL

n,wf(xj) = f(xj), j =
0, . . . , n, we find

f(xj) =
n∑

k=0

cos
(
kjπ

n

)
f̃k, j = 0, . . . , n. (10.30)
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Recalling the exactness of the Gauss-Lobatto quadrature, it can be checked
that (see Exercise 2)

f̃k =
2

ndk

n∑

j=0

1
dj

cos
(
kjπ

n

)
f(xj), k = 0, . . . , n. (10.31)

Relation (10.31) yields the discrete coefficients {f̃k, k = 0, . . . , n} in terms
of the nodal values {f(xj), j = 0, . . . , n}. For this reason it is called
the Chebyshev discrete transform (CDT) and, thanks to its trigonomet-
ric structure, it can be efficiently computed using the FFT algorithm (Fast
Fourier transform) with a number of floating-point operations of the order
of n log2 n (see Section 10.9.2). Of course, (10.30) is the inverse of the CDT,
and can be computed using the FFT.

10.4 Legendre Integration and Interpolation

As previously noticed, the Legendre weight is w(x) ≡ 1. For n ≥ 0, the
Gauss nodes and the related coefficients are given by

xj zeros of Ln+1(x), αj =
2

(1− x2
j )[L′

n+1(xj)]2
, j = 0, . . . , n, (10.32)

while the Gauss-Lobatto ones are, for n ≥ 1

x0 = −1, xn = 1, xj zeros of L′
n(x), j = 1, . . . , n− 1 (10.33)

αj =
2

n(n + 1)
1

[Ln(xj)]2
, j = 0, . . . , n (10.34)

where Ln is the n-th Legendre polynomial defined in (10.12). It can be
checked that, for a suitable constant C independent of n,

2
n(n + 1)

≤ αj ≤
C

n
, ∀j = 0, . . . , n

(see [BM92], p. 76). Then, letting ΠGL
n f be the polynomial of degree n that

interpolates f at the n+1 nodes xj given by (10.33), it can be proved that
it fulfills the same error estimates as those reported in (10.22) and (10.24)
in the case of the corresponding Chebyshev polynomial.

Of course, the norm ‖ ·‖w must here be replaced by the norm ‖ ·‖L2(−1,1),
while ‖f‖s,w becomes

‖f‖s =

(
s∑

k=0

‖f (k)‖2L2(−1,1)

) 1
2

. (10.35)
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The same kinds of results are ensured if ΠGL
n f is replaced by the polynomial

of degree n that interpolates f at the n + 1 nodes xj given by (10.32).
Referring to the discrete scalar product defined in (10.28), but taking

now the nodes and coefficients given by (10.33) and (10.34), we see that
(·, ·)n is an approximation of the usual scalar product (·, ·) of L2(−1, 1).
Actually, the equivalent relation to (10.27) now reads

|(f, vn)− (f, vn)n| ≤ Cn−s‖f‖s‖vn‖L2(−1,1), ∀vn ∈ Pn (10.36)

and holds for any s ≥ 1 such that ‖f‖s <∞. In particular, setting vn ≡ 1,
we get ‖vn‖ =

√
2, and from (10.36) it follows that

∣∣∣∣∣∣

1∫

−1

f(x)dx− IGL
n (f)

∣∣∣∣∣∣
≤ Cn−s‖f‖s (10.37)

which demonstrates a convergence of the Gauss-Legendre-Lobatto quadra-
ture formula to the exact integral of f with order of accuracy s with respect
to n−1 provided that ‖f‖s < ∞. A similar result holds for the Gauss-
Legendre quadrature formulae.

Example 10.1 Consider the approximate evaluation of the integral of f(x) =
|x|α+ 3

5 over [−1, 1] for α = 0, 1, 2. Notice that f has “piecewise” derivatives up
to order s = s(α) = α + 1 in L2(−1, 1). Figure 10.1 shows the behavior of the
error as a function of n for the Gauss-Legendre quadrature formula. According
to (10.37), the convergence rate of the formula increases by one when α increases
by one. •

10
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FIGURE 10.1. The quadrature error in logarithmic scale as a function of n in the
case of a function with the first s derivatives in L2(−1, 1) for s = 1 (solid line),
s = 2 (dashed line), s = 3 (dotted line)
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The interpolating polynomial at the nodes (10.33) is given by

ΠGL
n f(x) =

n∑

k=0

f̃kLk(x). (10.38)

Notice that also in this case ΠGL
n f coincides with the discrete truncation

of the Legendre series f∗
n defined in (10.4). Proceeding as in the previous

section, we get

f(xj) =
n∑

k=0

f̃kLk(xj), j = 0, . . . , n, (10.39)

and also

f̃k =






2k + 1
n(n + 1)

n∑

j=0

Lk(xj)
1

L2
n(xj)

f(xj), k = 0, . . . , n− 1,

1
n + 1

n∑

j=0

1
Ln(xj)

f(xj), k = n

(10.40)

(see Exercise 6). Formulae (10.40) and (10.39) provide, respectively, the
discrete Legendre transform (DLT) and its inverse.

10.5 Gaussian Integration over Unbounded
Intervals

We consider integration on both half and on the whole of real axis. In both
cases we use interpolatory Gaussian formulae whose nodes are the zeros of
Laguerre and Hermite orthogonal polynomials, respectively.

The Laguerre polynomials. These are algebraic polynomials, orthogonal
on the interval [0,+∞) with respect to the weight function w(x) = e−x.
They are defined by

Ln(x) = ex
dn

dxn
(e−xxn), n ≥ 0,

and satisfy the following three-term recursive relation
{

Ln+1(x) = (2n + 1− x)Ln(x)− n2Ln−1(x) n ≥ 0,

L−1 = 0, L0 = 1.

For any function f , define ϕ(x) = f(x)ex. Then, I(f) =
∫ ∞
0 f(x)dx =∫ ∞

0 e−xϕ(x)dx, so that it suffices to apply to this last integral the Gauss-
Laguerre quadratures, to get, for n ≥ 1 and f ∈ C2n([0,+∞))

I(f) =
n∑

k=1

αkϕ(xk) +
(n!)2

(2n)!
ϕ(2n)(ξ), 0 < ξ < +∞, (10.41)
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where the nodes xk, for k = 1, . . . , n, are the zeros of Ln and the weights
are αk = (n!)2xk/[Ln+1(xk)]2. From (10.41), one concludes that Gauss-
Laguerre formulae are exact for functions f of the type ϕe−x, where ϕ ∈
P2n−1. In a generalized sense, we can then state that they have optimal
degrees of exactness equal to 2n− 1.

Example 10.2 Using a Gauss-Laguerre quadrature formula with n = 12 to com-
pute the integral in Example 9.12 we obtain the value 0.5997 with an absolute
error with respect to exact integration equal to 2.96 · 10−4. For the sake of com-
parison, the composite trapezoidal formula would require 277 nodes to obtain the
same accuracy. •

The Hermite polynomials. These are orthogonal polynomials on the
real line with respect to the weight function w(x) = e−x2

. They are defined
by

Hn(x) = (−1)nex
2 dn

dxn
(e−x2

), n ≥ 0.

Hermite polynomials can be recursively generated as
{

Hn+1(x) = 2xHn(x)− 2nHn−1(x) n ≥ 0,

H−1 = 0, H0 = 1.

As in the previous case, letting ϕ(x) = f(x)ex
2
, we have I(f) =

∫ ∞
−∞ f(x)dx =

∫ ∞
−∞ e−x2

ϕ(x)dx. Applying to this last integral the Gauss-Hermite quadra-
tures we obtain, for n ≥ 1 and f ∈ C2n(R)

I(f) =
∞∫

−∞

e−x2
ϕ(x)dx =

n∑

k=1

αkϕ(xk) +
(n!)

√
π

2n(2n)!
ϕ(2n)(ξ), ξ ∈ R,

(10.42)

where the nodes xk, for k = 1, . . . , n, are the zeros of Hn and the weights
are αk = 2n+1n!

√
π/[Hn+1(xk)]2. As for Gauss-Laguerre quadratures, the

Gauss-Hermite rules also are exact for functions f of the form ϕe−x2
, where

ϕ ∈ P2n−1; therefore, they have optimal degrees of exactness equal to 2n−1.
More details on the subject can be found in [DR75], pp. 173-174.

10.6 Programs for the Implementation of Gaussian
Quadratures

Programs 82, 83 and 84 compute the coefficients {αk} and {βk}, introduced
in (10.8), in the cases of the Legendre, Laguerre and Hermite polynomials.
These programs are then called by Program 85 for the computation of nodes
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and weights (10.32), in the case of the Gauss-Legendre formulae, and by
Programs 86, 87 for computing nodes and weights in the Gauss-Laguerre
and Gauss-Hermite quadrature rules (10.41) and (10.42). All the codings
reported in this section are excerpts from the library ORTHPOL [Gau94].

Program 82 - coeflege : Coefficients of Legendre polynomials

function [a, b] = coeflege(n)
if (n <= 1), disp(’ n must be > 1 ’); return; end
for k=1:n, a(k)=0; b(k)=0; end; b(1)=2;
for k=2:n, b(k)=1/(4-1/(k-1)ˆ2); end

Program 83 - coeflagu : Coefficients of Laguerre polynomials

function [a, b] = coeflagu(n)
if (n <= 1), disp(’ n must be > 1 ’); return; end
a=zeros(n,1); b=zeros(n,1); a(1)=1; b(1)=1;
for k=2:n, a(k)=2*(k-1)+1; b(k)=(k-1)ˆ2; end

Program 84 - coefherm : Coefficients of Hermite polynomials

function [a, b] = coefherm(n)
if (n <= 1), disp(’ n must be > 1 ’); return; end
a=zeros(n,1); b=zeros(n,1); b(1)=sqrt(4.*atan(1.));
for k=2:n, b(k)=0.5*(k-1); end

Program 85 - zplege : Coefficients of Gauss-Legendre formulae

function [x,w]=zplege(n)
if (n <= 1), disp(’ n must be > 1 ’); return; end
[a,b]=coeflege(n);
JacM=diag(a)+diag(sqrt(b(2:n)),1)+diag(sqrt(b(2:n)),-1);
[w,x]=eig(JacM); x=diag(x); scal=2; w=w(1,:)’.ˆ2*scal;
[x,ind]=sort(x); w=w(ind);

Program 86 - zplagu : Coefficients of Gauss-Laguerre formulae

function [x,w]=zplagu(n)
if (n <= 1), disp(’ n must be > 1 ’); return; end
[a,b]=coeflagu(n);
JacM=diag(a)+diag(sqrt(b(2:n)),1)+diag(sqrt(b(2:n)),-1);
[w,x]=eig(JacM); x=diag(x); w=w(1,:)’.ˆ2;

Program 87 - zpherm : Coefficients of Gauss-Hermite formulae

function [x,w]=zpherm(n)
if (n <= 1), disp(’ n must be > 1 ’); return; end
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[a,b]=coefherm(n);
JacM=diag(a)+diag(sqrt(b(2:n)),1)+diag(sqrt(b(2:n)),-1);
[w,x]=eig(JacM); x=diag(x); scal=sqrt(pi); w=w(1,:)’.ˆ2*scal;
[x,ind]=sort(x); w=w(ind);

10.7 Approximation of a Function in the
Least-Squares Sense

Given a function f ∈ L2(a, b), we look for a polynomial rn of degree ≤ n
that satisfies

‖f − rn‖w = min
pn∈Pn

‖f − pn‖w,

where w is a fixed weight function in (a, b). Should it exist, rn is called a
least-squares polynomial. The name derives from the fact that, if w ≡ 1, rn
is the polynomial that minimizes the mean-square error E = ‖f−rn‖L2(a,b)
(see Exercise 8).

As seen in Section 10.1, rn coincides with the truncation fn of order
n of the Fourier series (see (10.2) and (10.3)). Depending on the choice
of the weight w(x), different least-squares polynomials arise with different
convergence properties.

Analogous to Section 10.1, we can introduce the discrete truncation f∗
n

(10.4) of the Chebyshev series (setting pk = Tk) or the Legendre series
(setting pk = Lk). If the discrete scalar product induced by the Gauss-
Lobatto quadrature rule (10.28) is used in (10.5) then the f̃k’s coincide with
the coefficients of the expansion of the interpolating polynomial ΠGL

n,wf (see
(10.29) in the Chebyshev case, or (10.38) in the Legendre case).

Consequently, f∗
n = ΠGL

n,wf , i.e., the discrete truncation of the (Cheby-
shev or Legendre) series of f turns out to coincide with the interpolating
polynomial at the n+ 1 Gauss-Lobatto nodes. In particular, in such a case
(10.6) is trivially satisfied, since ‖f − f∗

n‖n = 0.

10.7.1 Discrete Least-Squares Approximation
Several applications require representing in a synthetic way, using elemen-
tary functions, a large set of data that are available at a discrete level, for
instance, the results of experimental measurements. This approximation
process, often referred to as data fitting, can be satisfactorily solved using
the discrete least-squares technique that can be formulated as follows.

Assume we are given m + 1 pairs of data

{(xi, yi), i = 0, . . . ,m} (10.43)
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where yi may represent, for instance, the value of a physical quantity mea-
sured at the position xi. We assume that all the abscissae are distinct.

We look for a polynomial pn(x) =
n∑

i=0

aiϕi(x) such that

m∑

j=0

wj |pn(xj)− yj |2 ≤
m∑

j=0

wj |qn(xj)− yj |2 ∀qn ∈ Pn, (10.44)

for suitable coefficients wj > 0. If n = m the polynomial pn clearly co-
incides with the interpolating polynomial of degree n at the nodes {xi}.
Problem (10.44) is called a discrete least-squares problem since a discrete
scalar product is involved, and is the discrete counterpart of the contin-
uous least-squares problem. The solution pn is therefore referred to as a
least-squares polynomial. Notice that

|||q||| =






m∑

j=0

wj [q(xj)]2






1/2

(10.45)

is an essentially strict seminorm on Pn (see, Exercise 7). By definition
a discrete norm (or seminorm) ‖ · ‖∗ is essentially strict if ‖f + g‖∗ =
‖f‖∗ + ‖g‖∗ implies there exist nonnull α, β such that αf(xi)+βg(xi) = 0
for i = 0, . . . ,m. Since ||| · ||| is an essentially strict seminorm, problem
(10.44) admits a unique solution (see, [IK66], Section 3.5). Proceeding as
in Section 3.13, we find

n∑

k=0

ak

m∑

j=0

wjϕk(xj)ϕi(xj) =
m∑

j=0

wjyjϕi(xj), ∀i = 0, . . . , n,

which is called a system of normal equations, and can be conveniently
written in the form

BTBa = BTy, (10.46)

where B is the rectangular matrix (m+1)×(n+1) of entries bij = ϕj(xi), i =
0, . . . ,m, j = 0, . . . , n, a ∈ Rn+1 is the vector of the unknown coefficients
and y ∈ Rm+1 is the vector of data.

Notice that the system of normal equations obtained in (10.46) is of
the same nature as that introduced in Section 3.13 in the case of over-
determined systems. Actually, if wj = 1 for j = 0, . . . ,m, the above system
can be regarded as the solution in the least-squares sense of the system

n∑

k=0

akϕk(xi) = yi, i = 0, 1, . . . ,m,
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which would not admit a solution in the classical sense, since the number of
rows is greater than the number of columns. In the case n = 1, the solution
to (10.44) is a linear function, called linear regression for the data fitting
of (10.43). The associated system of normal equations is

1∑

k=0

m∑

j=0

wjϕi(xj)ϕk(xj)ak =
m∑

j=0

wjϕi(xj)yj , i = 0, 1.

Setting (f, g)m =
m∑

j=0

f(xj)g(xj) the previous system becomes

{
(ϕ0,ϕ0)ma0 + (ϕ1,ϕ0)ma1 = (y,ϕ0)m,

(ϕ0,ϕ1)ma0 + (ϕ1,ϕ1)ma1 = (y,ϕ1)m,

where y(x) is a function that takes the value yi at the nodes xi, i =
0, . . . ,m. After some algebra, we get this explicit form for the coefficients

a0 =
(y,ϕ0)m(ϕ1,ϕ1)m − (y,ϕ1)m(ϕ1,ϕ0)m

(ϕ1,ϕ1)m(ϕ0,ϕ0)m − (ϕ0,ϕ1)2m
,

a1 =
(y,ϕ1)m(ϕ0,ϕ0)m − (y,ϕ0)m(ϕ1,ϕ0)m

(ϕ1,ϕ1)m(ϕ0,ϕ0)m − (ϕ0,ϕ1)2m
.

Example 10.3 As already seen in Example 8.2, small changes in the data can
give rise to large variations on the interpolating polynomial of a given function
f . This doesn’t happen for the least-squares polynomial where m is much larger
than n. As an example, consider the function f(x) = sin(2πx) in [−1, 1] and
evaluate it at the 22 equally spaced nodes xi = 2i/21, i = 0, . . . , 21, setting
fi = f(xi). Then, suppose to add to the data fi a random perturbation of the
order of 10−3 and denote by p5 and p̃5 the least-squares polynomials of degree
5 approximating the data fi and f̃i, respectively. The maximum norm of the
difference p5 − p̃5 over [−1, 1] is of the order of 10−3, i.e., it is of the same order
as the perturbation on the data. For comparison, the same difference in the case
of Lagrange interpolation is about equal to 2 as can be seen in Figure 10.2. •

10.8 The Polynomial of Best Approximation

Consider a function f ∈ C0([a, b]). A polynomial p∗n ∈ Pn is said to be the
polynomial of best approximation of f if it satisfies

‖f − p∗n‖∞ = min
pn∈Pn

‖f − pn‖∞, ∀pn ∈ Pn (10.47)

where ‖g‖∞ = maxa≤x≤b |g(x)|. This problem is referred to as a minimax
approximation, as we are looking for the minimum error measured in the
maximum norm.
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FIGURE 10.2. The perturbed data (circles), the associated least-squares polyno-
mial of degree 5 (solid line) and the Lagrange interpolating polynomial (dashed
line)

Property 10.1 (Chebyshev equioscillation theorem) For any n ≥ 0,
the polynomial of best approximation p∗n of f exists and is unique. More-
over, in [a, b] there exist n + 2 points x0 < x1 < . . . < xn+1 such that

f(xj)− p∗n(xj) = σ(−1)jE∗
n(f), j = 0, . . . , n + 1

with σ = 1 or σ = −1 depending on f and n, and E∗
n(f) = ‖f − p∗n‖∞.

(For the proof, see [Dav63], Chapter 7). As a consequence, there exist n+1
points x̃0 < x̃1 < . . . < x̃n, with xk < x̃k < xk+1 for k = 0, . . . , n, to be
determined in [a, b] such that

p∗n(x̃j) = f(x̃j), j = 0, 1, . . . , n,

so that the best approximation polynomial is a polynomial of degree n that
interpolates f at n + 1 unknown nodes.

The following result yields an estimate of E∗
n(f) without explicitly com-

puting p∗n (we refer for the proof to [Atk89], Chapter 4).

Property 10.2 (de la Vallée-Poussin theorem) Let n ≥ 0 and let x0 <
x1 < . . . < xn+1 be n + 2 points in [a, b]. If there exists a polynomial qn of
degree ≤ n such that

f(xj)− qn(xj) = (−1)jej j = 0, 1, . . . , n + 1

where all ej have the same sign and are non null, then

min
0≤j≤n+1

|ej | ≤ E∗
n(f).

We can now relate E∗
n(f) with the interpolation error. Indeed,

‖f −Πnf‖∞ ≤ ‖f − p∗n‖∞ + ‖p∗n −Πnf‖∞.
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On the other hand, using the Lagrange representation of p∗n we get

‖p∗n −Πnf‖∞ = ‖
n∑

i=0

(p∗n(xi)− f(xi))li‖∞ ≤ ‖p∗n − f‖∞‖
n∑

i=0

|li|‖∞,

from which it follows

‖f −Πnf‖∞ ≤ (1 + Λn)E∗
n(f),

where Λn is the Lebesgue constant (8.11) associated with the nodes {xi}.
Thanks to (10.25) we can conclude that the Lagrange interpolating poly-
nomial on the Chebyshev nodes is a good approximation of p∗n. The above
results yield a characterization of the best approximation polynomial, but
do not provide a constructive way for generating it. However, starting from
the Chebyshev equioscillation theorem, it is possible to devise an algorithm,
called the Remes algorithm, that is able to construct an arbitrarily good
approximation of the polynomial p∗n (see [Atk89], Section 4.7).

10.9 Fourier Trigonometric Polynomials

Let us apply the theory developed in the previous sections to a particular
family of orthogonal polynomials which are no longer algebraic polynomials
but rather trigonometric. The Fourier polynomials on (0, 2π) are defined
as

ϕk(x) = eikx, k = 0,±1,±2, . . .

where i is the imaginary unit. These are complex-valued periodic functions
with period equal to 2π. We shall use the notation L2(0, 2π) to denote the
complex-valued functions that are square integrable over (0, 2π). Therefore

L2(0, 2π) =
{
f : (0, 2π) → C such that

∫ 2π

0
|f(x)|2dx <∞

}

with scalar product and norm defined respectively by

(f, g) =
∫ 2π
0 f(x)g(x)dx, ‖f‖L2(0,2π) =

√
(f, f).

If f ∈ L2(0, 2π), its Fourier series is

Ff =
∞∑

k=−∞
f̂kϕk, with f̂k =

1
2π

2π∫

0

f(x)e−ikxdx =
1
2π

(f,ϕk). (10.48)

If f is complex-valued we set f(x) = α(x) + iβ(x) for x ∈ [0, 2π], where
α(x) is the real part of f and β(x) is the imaginary one. Recalling that
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e−ikx = cos(kx)− i sin(kx) and letting

ak =
1
2π

2π∫

0

[α(x) cos(kx) + β(x) sin(kx)] dx

bk =
1
2π

2π∫

0

[−α(x) sin(kx) + β(x) cos(kx)] dx,

the Fourier coefficients of the function f can be written as

f̂k = ak + ibk ∀k = 0,±1,±2, . . . . (10.49)

We shall assume henceforth that f is a real-valued function; in such a case
f̂−k = f̂k for any k.

Let N be an even positive integer. Analogously to what was done in
Section 10.1, we call the truncation of order N of the Fourier series the
function

f∗
N (x) =

N
2 −1∑

k=−N
2

f̂ke
ikx.

The use of capital N instead of small n is to conform with the notation usu-
ally adopted in the analysis of discrete Fourier series (see [Bri74], [Wal91]).
To simplify the notations we also introduce an index shift so that

f∗
N (x) =

N−1∑

k=0

f̂ke
i(k−N

2 )x,

where now

f̂k =
1
2π

2π∫

0

f(x)e−i(k−N/2)xdx =
1
2π

(f, ϕ̃k), k = 0, . . . , N − 1 (10.50)

and ϕ̃k = e−i(k−N/2)x. Denoting by

SN = span{ϕ̃k, 0 ≤ k ≤ N − 1},

if f ∈ L2(0, 2π) its truncation of order N satisfies the following optimal
approximation property in the least-squares sense

‖f − f∗
N‖L2(0,2π) = min

g∈SN

‖f − g‖L2(0,2π).

Set h = 2π/N and xj = jh, for j = 0, . . . , N − 1, and introduce the
following discrete scalar product

(f, g)N = h
N−1∑

j=0

f(xj)g(xj). (10.51)
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Replacing (f, ϕ̃k) in (10.50) with (f, ϕ̃k)N , we get the discrete Fourier
coefficients of the function f

f̃k =
1
N

N−1∑

j=0

f(xj)e−ikjheijπ =
1
N

N−1∑

j=0

f(xj)W
(k−N

2 )j
N (10.52)

for k = 0, . . . , N − 1, where

WN = exp
(
−i2π

N

)

is the principal root of order N of unity. According to (10.4), the trigono-
metric polynomial

ΠF
Nf(x) =

N−1∑

k=0

f̃ke
i(k−N

2 )x (10.53)

is called the discrete Fourier series of order N of f .

Lemma 10.1 The following property holds

(ϕl,ϕj)N = h
N−1∑

k=0

e−ik(l−j)h = 2πδjl, 0 ≤ l, j ≤ N − 1, (10.54)

where δjl is the Kronecker symbol.

Proof. For l = j the result is immediate. Thus, assume l $= j; we have that

N−1∑

k=0

e−ik(l−j)h =
1−

(
e−i(l−j)h

)N

1− e−i(l−j)h = 0.

Indeed, the numerator is 1 − (cos(2π(l − j))− i sin(2π(l − j))) = 1 − 1 = 0,
while the denominator cannot vanish. Actually, it vanishes iff (j − l)h = 2π, i.e.,
j − l = N , which is impossible. !

Thanks to Lemma 10.1, the trigonometric polynomial ΠF
Nf is the Fourier

interpolate of f at the nodes xj , that is

ΠF
Nf(xj) = f(xj), j = 0, 1, . . . , N − 1.

Indeed, using (10.52) and (10.54) in (10.53) it follows that

ΠF
Nf(xj) =

N−1∑

k=0

f̃ke
ikjhe−ijhN

2 =
N−1∑

l=0

f(xl)

[
1
N

N−1∑

k=0

e−ik(l−j)h

]

= f(xj).
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Therefore, looking at the first and last equality, we get

f(xj) =
N−1∑

k=0

f̃ke
ik(j−N

2 )h =
N−1∑

k=0

f̃kW
−(j−N

2 )k
N , j = 0, . . . , N − 1. (10.55)

The mapping {f(xj)} → {f̃k} described by (10.52) is called the Discrete
Fourier Transform (DFT), while the mapping (10.55) from {f̃k} to {f(xj)}
is called the inverse transform (IDFT). Both DFT and IDFT can be written
in matrix form as {f̃k} = T{f(xj)} and {f(xj)} = C{f̃k} where T ∈
CN×N , C denotes the inverse of T and

Tkj =
1
N

W
(k−N

2 )j
N , k, j = 0, . . . , N − 1,

Cjk = W
−(j−N

2 )k
N , j, k = 0, . . . , N − 1.

A naive implementation of the matrix-vector computation in the DFT and
IDFT would require N2 operations. Using the FFT (Fast Fourier Trans-
form) algorithm only O(N log2 N) flops are needed, provided that N is a
power of 2, as will be explained in Section 10.9.2.

The function ΠF
Nf ∈ SN introduced in (10.53) is the solution of the

minimization problem ‖f − ΠF
Nf‖N ≤ ‖f − g‖N for any g ∈ SN , where

‖ · ‖N = (·, ·)1/2N is a discrete norm for SN . In the case where f is periodic
with all its derivatives up to order s (s ≥ 1), an error estimate analogous
to that for Chebyshev and Legendre interpolation holds

‖f −ΠF
Nf‖L2(0,2π) ≤ CN−s‖f‖s

and also
max

0≤x≤2π
|f(x)−ΠF

Nf(x)| ≤ CN1/2−s‖f‖s.

In a similar manner, we also have

|(f, vN )− (f, vN )N | ≤ CN−s‖f‖s‖vN‖

for any vN ∈ SN , and in particular, setting vN = 1 we have the following
error for the quadrature formula (10.51)

∣∣∣∣∣∣

2π∫

0

f(x)dx− h
N−1∑

j=0

f(xj)

∣∣∣∣∣∣
≤ CN−s‖f‖s

(see for the proof [CHQZ88], Chapter 2).

Notice that h
N−1∑

j=0

f(xj) is nothing else than the composite trapezoidal

rule for approximating the integral
∫ 2π
0 f(x)dx. Therefore, such a formula
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turns out to be extremely accurate when dealing with periodic and smooth
integrands.

Programs 88 and 89 provide an implementation of the DFT and IDFT. The
input parameter f is a string containing the function f to be transformed
while fc is a vector of size N containing the values f̃k.

Program 88 - dft : Discrete Fourier transform

function fc = dft(N,f)
h = 2*pi/N; x=[0:h:2*pi*(1-1/N)]; fx = eval(f); wn = exp(-i*h);
for k=0:N-1,

s = 0;
for j=0:N-1

s = s + fx(j+1)*wnˆ((k-N/2)*j);
end
fc (k+1) = s/N;

end

Program 89 - idft : Inverse discrete Fourier transform

function fv = idft(N,fc)
h = 2*pi/N; wn = exp(-i*h);
for k=0:N-1

s = 0;
for j=0:N-1

s = s + fc(j+1)*wnˆ(-k*(j-N/2));
end
fv (k+1) = s;

end

10.9.1 The Gibbs Phenomenon
Consider the discontinuous function f(x) = x/π for x ∈ [0,π] and equal to
x/π−2 for x ∈ (π, 2π], and compute its DFT using Program 88. The inter-
polate ΠF

Nf is shown in Figure 10.3 (above) for N = 8, 16, 32. Notice the
spurious oscillations around the point of discontinuity of f whose maximum
amplitude, however, tends to a finite limit. The arising of these oscillations
is known as Gibbs phenomenon and is typical of functions with isolated
jump discontinuities; it affects the behavior of the truncated Fourier series
not only in the neighborhood of the discontinuity but also over the entire
interval, as can be clearly seen in the figure. The convergence rate of the
truncated series for functions with jump discontinuities is linear in N−1 at
every given non-singular point of the interval of definition of the function
(see [CHQZ88], Section 2.1.4).
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FIGURE 10.3. Above: Fourier interpolate of the sawtooth function (thick solid
line) for N = 8 (dash-dotted line), 16 (dashed line) and 32 (thin solid line).
Below: the same informations are plotted in the case of the Lanczos smoothing

Since the Gibbs phenomenon is related to the slow decay of the Fourier
coefficients of a discontinuous function, smoothing procedures can be prof-
itably employed to attenuate the higher-order Fourier coefficients. This can
be done by multiplying each coefficient f̃k by a factor σk such that σk is a
decreasing function of k. An example is provided by the Lanczos smoothing

σk =
sin(2(k −N/2)(π/N))

2(k −N/2)(π/N)
, k = 0, . . . , N − 1. (10.56)

The effect of applying the Lanczos smoothing to the computation of the
DFT of the above function f is represented in Figure 10.3 (below), which
shows that the oscillations have almost completely disappeared.

For a deeper analysis of this subject we refer to [CHQZ88], Chapter 2.

10.9.2 The Fast Fourier Transform
As pointed out in the previous section, computing the discrete Fourier
transform (DFT) or its inverse (IDFT) as a matrix-vector product, would
require N2 operations. In this section we illustrate the basic steps of the
Cooley-Tukey algorithm [CT65], commonly known as Fast Fourier Trans-
form (FFT). The computation of a DFT of order N is split into DFTs of
order p0, . . . , pm, where {pi} are the prime factors of N . If N is a power of
2, the computational cost has the order of N log2 N flops.

A recursive algorithm to compute the DFT when N is a power of 2
is described in the following. Let f = (fi)T , i = 0, . . . , N − 1 and set

p(x) = 1
N

N−1∑

j=0

fjx
j . Then, computing the DFT of the vector f amounts to
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evaluating p(W k−N
2

N ) for k = 0, . . . , N−1. Let us introduce the polynomials

pe(x) =
1
N

[
f0 + f2x + . . . + fN−2x

N
2 −1

]
,

po(x) =
1
N

[
f1 + f3x + . . . + fN−1x

N
2 −1

]
.

Notice that
p(x) = pe(x2) + xpo(x2)

from which it follows that the computation of the DFT of f can be carried
out by evaluating the polynomials pe and po at the points W

2(k−N
2 )

N , k =
0, . . . , N − 1. Since

W
2(k−N

2 )
N = W 2k−N

N = exp
(
−i 2πk

N/2

)
exp(i2π) = W k

N/2,

it turns out that we must evaluate pe and po at the principal roots of unity
of order N/2. In this manner the DFT of order N is rewritten in terms
of two DFTs of order N/2; of course, we can recursively apply again this
procedure to po and pe. The process is terminated when the degree of the
last generated polynomials is equal to one.

In Program 90 we propose a simple implementation of the FFT recursive
algorithm. The input parameters are the vector f containing the NN values
fk, where NN is a power of 2.

Program 90 - fftrec : FFT algorithm in the recursive version

function [fftv]=fftrec(f,NN)
N = length(f); w = exp(-2*pi*sqrt(-1)/N);
if N == 2
fftv = f(1)+w.ˆ[-NN/2:NN-1-NN/2]*f(2);

else
a1 = f(1:2:N); b1 = f(2:2:N);
a2 = fftrec(a1,NN); b2 = fftrec(b1,NN);
for k=-NN/2:NN-1-NN/2
fftv(k+1+NN/2) = a2(k+1+NN/2) + b2(k+1+NN/2)*wˆk;

end
end

Remark 10.4 A FFT procedure can also be set up when N is not a power
of 2. The simplest approach consists of adding some zero samples to the
original sequence {fi} in such a way to obtain a total number of Ñ = 2p
values. This technique, however, does not necessarily yield the correct re-
sult. Therefore, an effective alternative is based on partitioning the Fourier
matrix C into subblocks of smaller size. Practical FFT implementations
can handle both strategies (see, for instance, the fft package available in
MATLAB). !
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10.10 Approximation of Function Derivatives

A problem which is often encountered in numerical analysis is the ap-
proximation of the derivative of a function f(x) on a given interval [a, b].
A natural approach to it consists of introducing in [a, b] n + 1 nodes
{xk, k = 0, . . . , n}, with x0 = a, xn = b and xk+1 = xk+h, k = 0, . . . , n−1
where h = (b− a)/n. Then, we approximate f ′(xi) using the nodal values
f(xk) as

h
m∑

k=−m

αkui−k =
m′∑

k=−m′

βkf(xi−k), (10.57)

where {αk}, {βk} ∈ R are m+m′ + 1 coefficients to be determined and uk

is the desired approximation to f ′(xk).
A non negligible issue in the choice of scheme (10.57) is the computa-

tional efficiency. Regarding this concern, it is worth noting that, if m '= 0,
determining the values {ui} requires the solution of a linear system.

The set of nodes which are involved in constructing the derivative of f at
a certain node, is called a stencil. The band of the matrix associated with
system (10.57) increases as the stencil gets larger.

10.10.1 Classical Finite Difference Methods
The simplest way to generate a formula like (10.57) consists of resorting to
the definition of the derivative. If f ′(xi) exists, then

f ′(xi) = lim
h→0+

f(xi + h)− f(xi)
h

. (10.58)

Replacing the limit with the incremental ratio, with h finite, yields the
approximation

uFD
i =

f(xi+1)− f(xi)
h

, 0 ≤ i ≤ n− 1. (10.59)

Relation (10.59) is a special instance of (10.57) setting m = 0, α0 = 1,
m′ = 1, β−1 = 1, β0 = −1, β1 = 0.
The right side of (10.59) is called the forward finite difference and the
approximation that is being used corresponds to replacing f ′(xi) with
the slope of the straight line passing through the points (xi, f(xi)) and
(xi+1, f(xi+1)), as shown in Figure 10.4.

To estimate the error that is made, it suffices to expand f in Taylor’s
series, obtaining

f(xi+1) = f(xi) + hf ′(xi) +
h2

2
f ′′(ξi) with ξi ∈ (xi, xi+1).
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We assume henceforth that f has the required regularity, so that

f ′(xi)− uFD
i = −h

2
f ′′(ξi). (10.60)

f(xi)

f(xi−1)
f(xi+1)

xi−1 xi xi+1

FIGURE 10.4. Finite difference approximation of f ′(xi): backward (solid line),
forward (pointed line) and centred (dashed line)

Obviously, instead of (10.58) we could employ a centred incremental
ratio, obtaining the following approximation

uCD
i =

f(xi+1)− f(xi−1)
2h

, 1 ≤ i ≤ n− 1. (10.61)

Scheme (10.61) is a special instance of (10.57) setting m = 0, α0 = 1,
m′ = 1, β−1 = 1/2, β0 = 0, β1 = −1/2.

The right side of (10.61) is called the centred finite difference and geometri-
cally amounts to replacing f ′(xi) with the slope of the straight line passing
through the points (xi−1, f(xi−1)) and (xi+1, f(xi+1)) (see Figure 10.4).
Resorting again to Taylor’s series, we get

f ′(xi)− uCD
i = −h2

6
f ′′′(ξi). (10.62)

Formula (10.61) thus provides a second-order approximation to f ′(xi) with
respect to h.

Finally, with a similar procedure, we can derive a backward finite differ-
ence scheme, where

uBD
i =

f(xi)− f(xi−1)
h

, 1 ≤ i ≤ n, (10.63)
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which is affected by the following error

f ′(xi)− uBD
i =

h

2
f ′′(ξi). (10.64)

The values of the parameters in (10.57) are m = 0, α0 = 1, m′ = 1 and
β−1 = 0, β0 = 1, β1 = −1.

Higher-order schemes, as well as finite difference approximations of higher-
order derivatives of f , can be constructed using Taylor’s expansions of
higher order. A remarkable example is the approximation of f ′′; if f ∈
C4([a, b]) we easily get

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2

−h2

24

(
f (4)(xi + θih) + f (4)(xi − ωih)

)
, 0 < θi,ωi < 1.

The following centred finite difference scheme can thus be derived

u′′
i =

f(xi+1)− 2f(xi) + f(xi−1)
h2 , 1 ≤ i ≤ n− 1 (10.65)

which is affected by the error

f ′′(xi)− u′′
i = −h2

24

(
f (4)(xi + θih) + f (4)(xi − ωih)

)
. (10.66)

Formula (10.65) provides a second-order approximation to f ′′(xi) with re-
spect to h.

10.10.2 Compact Finite Differences
More accurate approximations are provided by using the following formula
(which we call compact differences)

αui−1 + ui + αui+1 =
β

2h
(fi+1 − fi−1) +

γ

4h
(fi+2 − fi−2) (10.67)

for i = 2, . . . , n− 1. We have set, for brevity, fi = f(xi).
The coefficients α, β and γ are to be determined in such a way that the

relations (10.67) yield values ui that approximate f ′(xi) up to the highest
order with respect to h. For this purpose, the coefficients are selected in
such a way as to minimize the consistency error (see Section 2.2)

σi(h) = αf (1)
i−1 + f (1)

i − αf (1)
i+1

−
(
β

2h
(fi+1 − fi−1) +

γ

4h
(fi+2 − fi−2)

) (10.68)



10.10 Approximation of Function Derivatives 445

which comes from “forcing” f to satisfy the numerical scheme (10.67). For
brevity, we set f (k)

i = f (k)(xi), k = 1, 2, . . . .
Precisely, assuming that f ∈ C5([a, b]) and expanding it in a Taylor’s

series around xi, we find

fi±1 = fi ± hf (1)
i + h2

2 f (2)
i ± h3

6 f (3)
i + h4

24 f
(4)
i ± h5

120f
(5)
i + O(h6),

f (1)
i±1 = f (1)

i ± hf (2)
i + h2

2 f (3)
i ± h3

6 f (4)
i + h4

24 f
(5)
i + O(h5).

Substituting into (10.68) we get

σi(h) = (2α+ 1)f (1)
i + α

h2

2
f (3)
i + α

h4

12
f (5)
i − (β + γ)f (1)

i

−h2

2

(
β

6
+

2γ
3

)
f (3)
i − h4

60

(
β

2
+ 8γ

)
f (5)
i + O(h6).

Second-order methods are obtained by equating to zero the coefficient of
f (1)
i , i.e., if 2α+1 = β+ γ, while we obtain schemes of order 4 by equating

to zero also the coefficient of f (3)
i , yielding 6α = β+4γ and finally, methods

of order 6 are obtained by setting to zero also the coefficient of f (5)
i , i.e.,

10α = β + 16γ.
The linear system formed by these last three equations has a nonsingular
matrix. Thus, there exists a unique scheme of order 6 that corresponds to
the following choice of the parameters

α = 1/3, β = 14/9, γ = 1/9, (10.69)

while there exist infinitely many methods of second and fourth order.
Among these infinite methods, a popular scheme has coefficients α = 1/4,
β = 3/2 and γ = 0. Schemes of higher order can be generated at the
expense of furtherly expanding the computational stencil.

Traditional finite difference schemes correspond to setting α = 0 and
allow for computing explicitly the approximant of the first derivative of f
at a node, in contrast with compact schemes which are required in any case
to solve a linear system of the form Au = Bf (where the notation has the
obvious meaning).
To make the system solvable, it is necessary to provide values to the vari-
ables ui with i < 0 and i > n. A particularly favorable instance is that
where f is a periodic function of period b − a, in which case ui+n = ui

for any i ∈ Z. In the nonperiodic case, system (10.67) must be supplied
by suitable relations at the nodes near the boundary of the approximation
interval. For example, the first derivative at x0 can be computed using the
relation

u0 + αu1 =
1
h

(Af1 + Bf2 + Cf3 + Df4),
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and requiring that

A = −3 + α+ 2D
2

, B = 2 + 3D, C = −1− α+ 6D
2

,

in order for the scheme to be at least second-order accurate (see [Lel92]
for the relations to enforce in the case of higher-order methods). Finally,
we notice that, for any given order of accuracy, compact schemes have a
stencil smaller than the one of standard finite differences.

Program 91 provides an implementation of the compact finite difference
schemes (10.67) for the approximation of the derivative of a given function f
which is assumed to be periodic on the interval [a, b). The input parameters
alpha, beta and gamma contain the coefficients of the scheme, a and b are
the endpoints of the interval, f is a string containing the expression of f
and n denotes the number of subintervals in which [a, b] is partitioned. The
output vectors u and x contain the computed approximate values ui and
the node coordinates. Notice that setting alpha=gamma=0 and beta=1 we
recover the centered finite difference approximation (10.61).

Program 91 - compdiff : Compact difference schemes

function [u, x] = compdiff(alpha,beta,gamma,a,b,n,f)
h=(b-a)/(n+1); x=[a:h:b]; fx = eval(f);
A = eye(n+2)+alpha*diag(ones(n+1,1),1)+alpha*diag(ones(n+1,1),-1);
rhs = 0.5*beta/h*(fx(4:n+1)-fx(2:n-1))+0.25*gamma/h*(fx(5:n+2)-fx(1:n-2));
if gamma == 0

rhs=[0.5*beta/h*(fx(3)-fx(1)), rhs, 0.5*beta/h*(fx(n+2)-fx(n))];
A(1,1:n+2) = zeros(1,n+2);
A(1,1) = 1; A(1,2)=alpha; A(1,n+1)=alpha;
rhs=[0.5*beta/h*(fx(2)-fx(n+1)), rhs];
A(n+2,1:n+2) = zeros(1,n+2);
A(n+2,n+2) = 1; A(n+2,n+1)=alpha; A(n+2,2)=alpha;
rhs=[rhs, 0.5*beta/h*(fx(2)-fx(n+1))];

else
rhs=[0.5*beta/h*(fx(3)-fx(1))+0.25*gamma/h*(fx(4)-fx(n+1)), rhs];
A(1,1:n+2) = zeros(1,n+2);
A(1,1) = 1; A(1,2)=alpha; A(1,n+1)=alpha;
rhs=[0.5*beta/h*(fx(2)-fx(n+1))+0.25*gamma/h*(fx(3)-fx(n)), rhs];
rhs=[rhs,0.5*beta/h*(fx(n+2)-fx(n))+0.25*gamma/h*(fx(2)-fx(n-1))];
A(n+2,1:n+2) = zeros(1,n+2);
A(n+2,n+2) = 1; A(n+2,n+1)=alpha; A(n+2,2)=alpha;
rhs=[rhs,0.5*beta/h*(fx(2)-fx(n+1))+0.25*gamma/h*(fx(3)-fx(n))];

end
u = A \ rhs’;
return

Example 10.4 Let us consider the approximate evaluation of the derivative of
the function f(x) = sin(x) on the interval [0, 2π]. Figure 10.5 shows the loga-
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rithm of the maximum nodal errors for the second-order centered finite differ-
ence scheme (10.61) and of the fourth and sixth-order compact difference schemes
introduced above, as a function of p = log(n). •
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FIGURE 10.5. Maximum nodal errors for the second-order centred finite differ-
ence scheme (solid line) and for the fourth (dashed line) and sixth-order (dotted
line) compact difference schemes as functions of p = log(n)

Another nice feature of compact schemes is that they maximize the range
of well-resolved waves as we are going to explain. Assume that f is a real
and periodic function on [0, 2π], that is, f(0) = f(2π). Using the same
notation as in Section 10.9, we let N be an even positive integer and set
h = 2π/N . Then replace f by its truncated Fourier series

f∗
N (x) =

N/2−1∑

k=−N/2

f̂ke
ikx.

Since the function f is real-valued, f̂k = ¯̂
f−k for k = 1, . . . , N/2 and

f̂0 = ¯̂
f0. For sake of convenience, introduce the normalized wave number

wk = kh = 2πk/N and perform a scaling of the coordinates setting s = x/h.
As a consequence, we get

f∗
N (x(s)) =

N/2−1∑

k=−N/2

f̂ke
iksh =

N/2−1∑

k=−N/2

f̂ke
iwks. (10.70)

Taking the first derivative of (10.70) with respect to s yields a function
whose Fourier coefficients are f̂ ′

k = iwkf̂k. We can thus estimate the ap-
proximation error on (f∗

N )′ by comparing the exact coefficients f̂ ′
k with the

corresponding ones obtained by an approximate derivative, in particular,
by comparing the exact wave number wk with the approximate one, say
wk,app.
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Let us neglect the subscript k and perform the comparison over the whole
interval [0,π) where wk is varying. It is clear that methods based on the
Fourier expansion have wapp = w if w '= π (wapp = 0 if w = π). The family
of schemes (10.67) is instead characterized by the wave number

wapp(z) =
a sin(z) + (b/2) sin(2z) + (c/3) sin(3z)

1 + 2α cos(z) + 2β cos(2z)
, z ∈ [0,π)

(see [Lel92]). Figure 10.6 displays a comparison among wave numbers of
several schemes, of compact and non compact type.

The range of values for which the wave number computed by the numer-
ical scheme adequately approximates the exact wave number, is the set of
well-resolved waves. As a consequence, if wmin is the smallest well-resolved
wave, the difference 1 − wmin/π represents the fraction of waves that are
unresolved by the numerical scheme. As can be seen in Figure 10.6, the
standard finite difference schemes approximate correctly the exact wave
number only for small wave numbers.
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FIGURE 10.6. Computed wave numbers for centred finite differences (10.61) (a)
and for compact schemes of fourth (b), sixth (c) and tenth (d) order, compared
with the exact wave number (the straight line). On the x axis the normalized
coordinate s is represented

10.10.3 Pseudo-Spectral Derivative
An alternative way for numerical differentiation consists of approximating
the first derivative of a function f with the exact first derivative of the
polynomial Πnf interpolating f at the nodes {x0, . . . , xn}.

Exactly as happens for Lagrange interpolation, using equally spaced
nodes does not yield stable approximations to the first derivative of f for
n large. For this reason, we limit ourselves to considering the case where
the nodes are nonuniformly distributed according to the Gauss-Lobatto-
Chebyshev formula.



10.10 Approximation of Function Derivatives 449

For simplicity, assume that I = [a, b] = [−1, 1] and for n ≥ 1, take in
I the Gauss-Lobatto-Chebyshev nodes as in (10.21). Then, consider the
Lagrange interpolating polynomial ΠGL

n,wf , introduced in Section 10.3. We
define the pseudo-spectral derivative of f ∈ C0(I) to be the derivative of
the polynomial ΠGL

n,wf

Dnf = (ΠGL
n,wf)′ ∈ Pn−1(I).

The error made in replacing f ′ with Dnf is of exponential type, that is, it
only depends on the smoothness of the function f . More precisely, there
exists a constant C > 0 independent of n such that

‖f ′ −Dnf‖w ≤ Cn1−m‖f‖m,w, (10.71)

for any m ≥ 2 such that the norm ‖f‖m,w, introduced in (10.23), is finite.
Recalling (10.19) and using (10.27) yields

(Dnf)(x̄i) =
n∑

j=0

f(x̄j)l̄′j(x̄i), i = 0, . . . , n, (10.72)

so that the pseudo-spectral derivative at the interpolation nodes can be
computed knowing only the nodal values of f and of l̄′j . These values can
be computed once for all and stored in a matrix D ∈ R(n+1)×(n+1): Dij =
l̄′j(x̄i) for i, j = 0, ..., n, called a pseudo-spectral differentiation matrix.

Relation (10.72) can thus be cast in matrix form as f ′ = Df , letting
f = [f(x̄i)] and f ′ = [(Dnf)(x̄i)] for i = 0, ..., n.
The entries of D have the following explicit form (see [CHQZ88], p. 69)

Dlj =






dl
dj

(−1)l+j

x̄l − x̄j
, l '= j,

−x̄j

2(1− x̄2
j )
, 1 ≤ l = j ≤ n− 1,

−2n2 + 1
6

, l = j = 0,

2n2 + 1
6

, l = j = n,

(10.73)

where the coefficients dl have been defined in Section 10.3 (see also Example
5.13 concerning the approximation of the multiple eigenvalue λ = 0 of D).
To compute the pseudo-spectral derivative of a function f over the generic
interval [a, b], we only have to resort to the change of variables considered
in Remark 10.3.

The second-order pseudo-spectral derivative can be computed as the
product of the matrix D and the vector f ′, that is, f ′′ = Df ′, or by di-
rectly applying matrix D2 to the vector f .
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10.11 Transforms and Their Applications

In this section we provide a short introduction to the most relevant integral
transforms and discuss their basic analytical and numerical properties.

10.11.1 The Fourier Transform
Definition 10.1 Let L1(R) denote the space of real or complex functions
defined on the real line such that

∞∫

−∞

|f(t)| dt < +∞.

For any f ∈ L1(R) its Fourier transform is a complex-valued function
F = F [f ] defined as

F (ν) =
∞∫

−∞

f(t)e−i2πνt dt.

!

Should the independent variable t denote time, then ν would have the
meaning of frequency. Thus, the Fourier transform is a mapping that to a
function of time (typically, real-valued) associates a complex-valued func-
tion of frequency.
The following result provides the conditions under which an inversion for-
mula exists that allows us to recover the function f from its Fourier trans-
form F (for the proof see [Rud83], p. 199).

Property 10.3 (inversion theorem) Let f be a given function in L1(R),
F ∈ L1(R) be its Fourier transform and g be the function defined by

g(t) =
∞∫

−∞

F (ν)ei2πνt dν, t ∈ R. (10.74)

Then g ∈ C0(R), with lim|x|→∞ g(x) = 0, and f(t) = g(t) almost every-
where in R (i.e., for any t unless possibly a set of zero measure).

The integral at right hand side of (10.74) is to be meant in the Cauchy
principal value sense, i.e., we let

∞∫

−∞

F (ν)ei2πνt dν = lim
a→∞

a∫

−a

F (ν)ei2πνt dν
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and we call it the inverse Fourier transform or inversion formula of the
Fourier transform. This mapping that associates to the complex function
F the generating function f will be denoted by F−1[F ], i.e., F = F [f ] iff
f = F−1[F ].
Let us briefly summarize the main properties of the Fourier transform and
its inverse.

1. F and F−1 are linear operators, i.e.

F [αf + βg] = αF [f ] + βF [g], ∀α,β ∈ C,

F−1[αF + βG] = αF−1[F ] + βF−1[G], ∀α,β ∈ C;
(10.75)

2. scaling: if α is any nonzero real number and fα is the function fα(t) =
f(αt), then

F [fα] =
1
|α|F

1
α

where F 1
α
(ν) = F (ν/α);

3. duality: let f(t) be a given function and F (ν) be its Fourier trans-
form. Then the function g(t) = F (−t) has a Fourier transform given
by f(ν). Thus, once an associated function-transform pair is found,
another dual pair is automatically generated. An application of this
property is provided by the pair r(t)-F [r] in Example 10.5;

4. parity: if f(t) is a real even function then F (ν) is real and even, while
if f(t) is a real and odd function then F (ν) is imaginary and odd.
This property allows one to work only with nonnegative frequencies;

5. convolution and product: for any given functions f, g ∈ L1(R), we
have

F [f ∗ g] = F [f ]F [g], F [fg] = F ∗G, (10.76)

where the convolution integral of two functions φ and ψ is given by

(φ ∗ ψ)(t) =
∞∫

−∞

φ(τ)ψ(t− τ) dτ. (10.77)

Example 10.5 We provide two examples of the computation of the Fourier
transforms of functions that are typically encountered in signal processing.
Let us first consider the square wave (or rectangular) function r(t) defined as

r(t) =

{
A if − T

2 ≤ t ≤ T
2 ,

0 otherwise,
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where T and A are two given positive numbers. Its Fourier transform F [r] is the
function

F (ν) =

T/2∫

−T/2

Ae−i2πνt dt = AT
sin(πνT )

πνT
, ν ∈ R

where AT is the area of the rectangular function.
Let us consider the sawtooth function

s(t) =






2At
T

if − T
2 ≤ t ≤ T

2 ,

0 otherwise,

whose DFT is shown in Figure 10.3 and whose Fourier transform F [s] is the
function

F (ν) = i
AT
πνT

[
cos(πνT )− sin(πνT )

πνT

]
, ν ∈ R

and is purely imaginary since s is an odd real function. Notice also that the
functions r and s have a finite support whereas their transforms have an infinite
support (see Figure 10.7). In signal theory this corresponds to saying that the
transform has an infinite bandwidth. •
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FIGURE 10.7. Fourier transforms of the rectangular (left) and the sawtooth
(right) functions

Example 10.6 The Fourier transform of a sinusoidal function is of paramount
interest in signal and communication systems. To start with, consider the constant
function f(t) = A for a given A ∈ R. Since it has an infinite time duration its
Fourier transform F [A] is the function

F (ν) = lim
a→∞

a∫

−a

Ae−i2πνt dt = A lim
a→∞

sin(2πνa)
πν

,

where the integral above is again the Cauchy principal value of the corresponding
integral over (−∞,∞). It can be proved that the limit exists and is unique in the
sense of distributions (see Section 12.4) yielding

F (ν) = Aδ(ν), (10.78)
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where δ is the so-called Dirac mass, i.e., a distribution that satisfies
∫ ∞

−∞
δ(ξ)φ(ξ) dξ = φ(0) (10.79)

for any function φ continuous at the origin. From (10.78) we see that the trans-
form of a function with infinite time duration has a finite bandwidth.

Let us now consider the computation of the Fourier transform of the function
f(t) = A cos(2πν0t) where ν0 is a fixed frequency. Recalling Euler’s formula

cos(θ) =
eiθ + e−iθ

2
, θ ∈ R,

and applying (10.78) twice we get

F [A cos(2πν0t)] =
A
2
δ(ν − ν0) +

A
2
δ(ν + ν0),

which shows that the spectrum of a sinusoidal function with frequency ν0 is
centred around ±ν0 (notice that the transform is even and real since the same
holds for the function f(t)). •

It is worth noting that in real-life there do not exist functions (i.e. signals)
with infinite duration or bandwidth. Actually, if f(t) is a function whose
value may be considered as “negligible” outside of some interval (ta, tb),
then we can assume that the effective duration of f is the length ∆t =
tb − ta. In a similar manner, if F (ν) is the Fourier transform of f and
it happens that F (ν) may be considered as “negligible” outside of some
interval (νa, νb), then the effective bandwidth of f is ∆ν = νb−νa. Referring
to Figure 10.7, we clearly see that the effective bandwidth of the rectangular
function can be taken as (−10, 10).

10.11.2 (Physical) Linear Systems and Fourier Transform
Mathematically speaking, a physical linear system (LS) can be regarded
as a linear operator S that enjoys the linearity property (10.75). Denoting
by i(t) and u(t) an admissible input function for S and its corresponding
output function respectively, the LS can be represented as u(t) = S(i(t))
or S : i → u. A special category of LS are the so-called shift invariant (or
time-invariant) linear systems (ILS) which satisfy the property

S(i(t− t0)) = u(t− t0), ∀t0 ∈ R

and for any admissible input function i.
Let S be an ILS system and let f and g be two admissible input functions

for S with w = S(g). An immediate consequence of the linearity and shift-
invariance is that

S((f ∗ g)(t)) = (f ∗ S(g))(t) = (f ∗ w)(t) (10.80)
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where ∗ is the convolution operator defined in (10.77).
Assume we take as input function the impulse function δ(t) introduced in

the previous section and denote by h(t) = S(δ(t)) the corresponding output
through S (usually referred to as the system impulse response function).
Property (10.79) implies that for any function φ, (φ ∗ δ)(t) = φ(t), so that,
recalling (10.80) and taking φ(t) = i(t) we have

u(t) = S(i(t)) = S(i ∗ δ)(t) = (i ∗ S(δ))(t) = (i ∗ h)(t).

Thus, S can be completely described through its impulse response function.
Equivalently, we can pass to the frequency domain by means of the first
relation in (10.76) obtaining

U(ν) = I(ν)H(ν), (10.81)

where I, U and H are the Fourier transforms of i(t), u(t) and h(t), respec-
tively; H is the so-called system transfer function.

Relation (10.81) plays a central role in the analysis of linear time-invariant
systems as it is simpler to deal with the system transfer function than with
the corresponding impulse response function, as demonstrated in the fol-
lowing example.

Example 10.7 (ideal low-pass filter) An ideal low-pass filter is an ILS char-
acterized by the transfer function

H(ν) =
{

1, if |ν| ≤ ν0/2,
0, otherwise.

Using the duality property, the impulse response function F−1[H] is

h(t) = ν0
sin(πν0t)

πν0t
.

Given an input signal i(t) with Fourier transform I(ν), the corresponding output
u(t) has a spectrum given by (10.81)

I(ν)H(ν) =
{

I(ν), if |ν| ≤ ν0/2,
0 otherwise.

The effect of the filter is to cut off the input frequencies that lie outside the
window |ν| ≤ ν0/2. •

The input/output functions i(t) and u(t) usually denote signals and
the linear system described by H(ν) is typically a communication system.
Therefore, as pointed out at the end of Section 10.11.1, we are legitimated
in assuming that both i(t) and u(t) have a finite effective duration. In
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particular, referring to i(t) we suppose i(t) = 0 if t '∈ [0, T0). Then, the
computation of the Fourier transform of i(t) yields

I(ν) =
T0∫

0

i(t)e−i2πνt dt.

Letting ∆t = T0/n for n ≥ 1 and approximating the integral above by the
composite trapezoidal formula (9.14), we get

Ĩ(ν) = ∆t
n−1∑

k=0

i(k∆t)e−i2πνk∆t.

It can be proved (see, e.g., [Pap62]) that Ĩ(ν)/∆t is the Fourier transform
of the so-called sampled signal

is(t) =
∞∑

k=−∞
i(k∆t)δ(t− k∆t),

where δ(t − k∆t) is the Dirac mass at k∆t. Then, using the convolution
and the duality properties of the Fourier transform, we get

Ĩ(ν) =
∞∑

j=−∞
I

(
ν − j

∆t

)
, (10.82)

which amounts to replacing I(ν) by its periodic repetition with period
1/∆t. Let J∆t = [− 1

2∆t ,
1

2∆t ]; then, it suffices to compute (10.82) for ν ∈
J∆t. This can be done numerically by introducing a uniform discretization
of J∆t with frequency step ν0 = 1/(m∆t) for m ≥ 1. By doing so, the
computation of Ĩ(ν) requires evaluating the following m+1 discrete Fourier
transforms (DFT)

Ĩ(jν0) = ∆t
n−1∑

k=0

i(k∆t)e−i2πjν0k∆t, j = −m
2 , . . . ,

m
2 .

For an efficient computation of each DFT in the formula above it is crucial
to use the FFT algorithm described in Section 10.9.2.

10.11.3 The Laplace Transform
The Laplace transform can be employed to solve ordinary differential equa-
tions with constant coefficients as well as partial differential equations.

Definition 10.2 Let f ∈ L1
loc([0,∞)) i.e., f ∈ L1([0, T ]) for any T > 0.

Let s = σ + iω be a complex variable. The Laplace integral of f is defined



456 10. Orthogonal Polynomials in Approximation Theory

as

∞∫

0

f(t)e−st dt = lim
T→∞

T∫

0

f(t)e−st dt.

If this integral exists for some s, it turns out to be a function of s; then,
the Laplace transform L[f ] of f is the function

L(s) =
∞∫

0

f(t)e−st dt.

!

The following relation between Laplace and Fourier transforms holds

L(s) = F (e−σtf̃(t)),

where f̃(t) = f(t) if t ≥ 0 while f̃(t) = 0 if t < 0.

Example 10.8 The Laplace transform of the unit step function f(t) = 1 if t > 0,
f(t) = 0 otherwise, is given by

L(s) =
∞∫

0

e−st dt =
1
s
.

We notice that the Laplace integral exists if σ > 0. •

In Example 10.8 the convergence region of the Laplace integral is the half-
plane {Re(s) > 0} of the complex field. This property is quite general, as
stated by the following result.

Property 10.4 If the Laplace transform exists for s = s̄ then it exists
for all s with Re(s) > Re(s̄). Moreover, let E be the set of the real parts
of s such that the Laplace integral exists and denote by λ the infimum of
E. If λ happens to be finite, the Laplace integral exists in the half-plane
Re(s) > λ. If λ = −∞ then it exists for all s ∈ C; λ is called the abscissa
of convergence.

We recall that the Laplace transform enjoys properties completely analo-
gous to those of the Fourier transform. The inverse Laplace transform is
denoted formally as L−1 and is such that

f(t) = L−1[L(s)].
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Example 10.9 Let us consider the ordinary differential equation y′(t)+ay(t) =
g(t) with y(0) = y0. Multiplying by est, integrating between 0 and∞ and passing
to the Laplace transform, yields

sY (s)− y0 + aY (s) = G(s). (10.83)

Should G(s) be easily computable, (10.83) would furnish Y (s) and then, by ap-
plying the inverse Laplace transform, the generating function y(t). For instance,
if g(t) is the unit step function, we obtain

y(t) = L−1
{

1
a

[
1
s
− 1

s + a

]
+

y0

s + a

}
=

1
a
(1− e−at) + y0e

−at.

•

For an extensive presentation and analysis of the Laplace transform see,
e.g., [Tit37]. In the next section we describe a discrete version of the Laplace
transform, known as the Z-transform.

10.11.4 The Z-Transform
Definition 10.3 Let f be a given function, defined for any t ≥ 0, and
∆t > 0 be a given time step. The function

Z(z) =
∞∑

n=0

f(n∆t)z−n, z ∈ C (10.84)

is called the Z-transform of the sequence {f(n∆t)} and is denoted by
Z[f(n∆t)]. !

The parameter ∆t is the sampling time step of the sequence of samples
f(n∆t). The infinite sum (10.84) converges if

|z| > R = lim sup
n→∞

n
√
|f(n∆t)|.

It is possible to deduce the Z-transform from the Laplace transform as
follows. Denoting by f0(t) the piecewise constant function such that f0(t) =
f(n∆t) for t ∈ (n∆t, (n + 1)∆t), the Laplace transform L[f0] of f0 is the
function

L(s) =
∞∫

0

f0(t)e−st dt =
∞∑

n=0

(n+1)∆t∫

n∆t

e−stf(n∆t) dt

=
∞∑

n=0

f(n∆t)
e−ns∆t − e−(n+1)s∆t

s
=

(
1− e−s∆t

s

) ∞∑

n=0

f(n∆t)e−ns∆t.
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The discrete Laplace transform Zd[f0] of f0 is the function

Zd(s) =
∞∑

n=0

f(n∆t)e−ns∆t.

Then, the Z-transform of the sequence {f(n∆t), n = 0, . . . ,∞} coincides
with the discrete Laplace transform of f0 up to the change of variable
z = e−s∆t. The Z-transform enjoys similar properties (linearity, scaling,
convolution and product) to those already seen in the continuous case.
The inverse Z-transform is denoted by Z−1 and is defined as

f(n∆t) = Z−1[Z(z)].

The practical computation of Z−1 can be carried out by resorting to classi-
cal techniques of complex analysis (for example, using the Laurent formula
or the Cauchy theorem for residual integral evaluation) coupled with an
extensive use of tables (see, e.g., [Pou96]).

10.12 The Wavelet Transform

This technique, originally developed in the area of signal processing, has
successively been extended to many different branches of approximation
theory, including the solution of differential equations. It is based on the
so-called wavelets, which are functions generated by an elementary wavelet
through traslations and dilations. We shall limit ourselves to a brief intro-
duction of univariate wavelets and their transform in both the continuous
and discrete cases referring to [DL92], [Dau88] and to the references cited
therein for a detailed presentation and analysis.

10.12.1 The Continuous Wavelet Transform
Any function

hs,τ (t) =
1√
s
h

(
t− τ
s

)
, t ∈ R (10.85)

that is obtained from a reference function h ∈ L2(R) by means of traslations
by a traslation factor τ and dilations by a positive scaling factor s is called
a wavelet. The function h is called an elementary wavelet.
Its Fourier transform, written in terms of ω = 2πν, is

Hs,τ (ω) =
√
sH(sω)e−iωτ , (10.86)

where i denotes the imaginary unit and H(ω) is the Fourier transform of
the elementary wavelet. A dilation t/s (s > 1) in the real domain produces
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therefore a contraction sω in the frequency domain. Therefore, the factor
1/s plays the role of the frequency ν in the Fourier transform (see Section
10.11.1). In wavelets theory s is usually referred to as the scale. Formula
(10.86) is known as the filter of the wavelet transform.

Definition 10.4 Given a function f ∈ L2(R), its continuous wavelet trans-
form Wf = W[f ] is a decomposition of f(t) onto a wavelet basis {hs,τ (t)},
that is

Wf (s, τ) =
∞∫

−∞

f(t)h̄s,τ (t) dt, (10.87)

where the overline bar denotes complex conjugate. !
When t denotes the time-variable, the wavelet transform of f(t) is a func-
tion of the two variables s (scale) and τ (time shift); as such, it is a repre-
sentation of f in the time-scale space and is usually referred to as time-scale
joint representation of f . The time-scale representation is the analogue of
the time-frequency representation introduced in the Fourier analysis. This
latter representation has an intrinsic limitation: the product of the res-
olution in time ∆t and the resolution in frequency ∆ω must satisfy the
following constraint (Heisenberg inequality)

∆t∆ω ≥ 1
2

(10.88)

which is the counterpart of the Heisenberg uncertainty principle in quantum
mechanics. This inequality states that a signal cannot be represented as
a point in the time-frequency space. We can only determine its position
within a rectangle of area ∆t∆ω in the time-frequency space.

The wavelet transform (10.87) can be rewritten in terms of the Fourier
transform F (ω) of f as

Wf (s, τ) =
√
s

2π

∞∫

−∞

F (ω)H̄(sω)eiωτ dω,

which shows that the wavelets transform is a bank of wavelet filters char-
acterized by different scales. More precisely, if the scale is small the wavelet
is concentrated in time and the wavelet transform provides a detailed de-
scription of f(t) (which is the signal). Conversely, if the scale is large, the
wavelet transform is able to resolve only the large-scale details of f . Thus,
the wavelet transform can be regarded as a bank of multiresolution filters.

The theoretical properties of this transform do not depend on the partic-
ular elementary wavelet that is considered. Hence, specific bases of wavelets
can be derived for specific applications. Some examples of elementary wave-
lets are reported below.
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Example 10.10 (Haar wavelets) These functions can be obtained by choos-
ing as the elementary wavelet the Haar function defined as

h(x) =






1 if x ∈ (0, 1
2 ),

−1 if x ∈ ( 1
2 , 1),

0 otherwise.

Its Fourier transform is the complex-valued function

H(ω) = 4ie−iω/2
(
1− cos(

ω
2

)
)
/ω,

which has symmetric module with respect to the origin (see Figure 10.8). The
bases that are obtained from this wavelet are not used in practice due to their
ineffective localization properties in the frequency domain. •
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−1.5
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−80 −60 −40 −20 0 20 40 60 80
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FIGURE 10.8. The Haar wavelet (left) and the module of its Fourier transform
(right)

Example 10.11 (Morlet wavelets) The Morlet wavelet is defined as follows
(see [MMG87])

h(x) = eiω0xe−x2/2.

Thus, it is a complex-valued function whose real part has a real positive Fourier
transform, symmetric with respect to the origin, given by

H(ω) =
√
π

[
e−(ω−ω0)2/2 + e−(ω+ω0)2/2

]
.

•

We point out that the presence of the dilation factor allows for the wavelets
to easily handle possible discontinuities or singularities in f . Indeed, using
the multi-resolution analysis, the signal, properly divided into frequency
bandwidths, can be processed at each frequency by suitably tuning up the
scale factor of the wavelets.
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FIGURE 10.9. The real part of the Morlet wavelet (left) and the real part of the
corresponding Fourier transforms (right) for ω0 = 1 (solid line), ω0 = 2.5 (dashed
line) and ω0 = 5 (dotted line)

Recalling what was already pointed out in Section 10.11.1, the time lo-
calization of the wavelet gives rise to a filter with infinite bandwidth. In
particular, defining the bandwidth ∆ω of the wavelet filter as

∆ω =




∞∫

−∞

ω2|H(ω)|2 dω/

∞∫

−∞

|H(ω)|2 dω




2

,

then the bandwidth of the wavelet filter with scale equal to s is

∆ωs =




∞∫

−∞

ω2|H(sω)|2 dω/

∞∫

−∞

|H(sω)|2 dω




2

=
1
s
∆ω.

Consequently, the quality factor Q of the wavelet filter, defined as the in-
verse of the bandwidth of the filter, is independent of s since

Q =
1/s
∆ωs

= ∆ω

provided that (10.88) holds. At low frequencies, corresponding to large
values of s, the wavelet filter has a small bandwidth and a large temporal
width (called window) with a low resolution. Conversely, at high frequencies
the filter has a large bandwidth and a small temporal window with a high
resolution. Thus, the resolution furnished by the wavelet analysis increases
with the frequency of the signal. This property of adaptivity makes the
wavelets a crucial tool in the analysis of unsteady signals or signals with
fast transients for which the standard Fourier analysis turns out to be
ineffective.

10.12.2 Discrete and Orthonormal Wavelets
The continuous wavelet transform maps a function of one variable into a bi-
dimensional representation in the time-scale domain. In many applications
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this description is excessively rich. Resorting to the discrete wavelets is
an attempt to represent a function using a finite (and small) number of
parameters.

A discrete wavelet is a continuous wavelet that is generated by using
discrete scale and translation factors. For s0 > 1, denote by s = sj0 the
scale factors; the dilation factors usually depend on the scale factors by
setting τ = kτ0s

j
0, τ0 ∈ R. The corresponding discrete wavelet is

hj,k(t) = s−j/2
0 h(s−j

0 (t− kτ0s
j
0)) = s−j/2

0 h(s−j
0 t− kτ0).

The scale factor sj0 corresponds to the magnification or the resolution of
the observation, while the translation factor τ0 is the location where the
observations are made. If one looks at very small details, the magnification
must be large, which corresponds to large negative index j. In this case the
step of translation is small and the wavelet is very concentrated around the
observation point. For large and positive j, the wavelet is spread out and
large translation steps are used.

The behavior of the discrete wavelets depends on the steps s0 and τ0.
When s0 is close to 1 and τ0 is small, the discrete wavelets are close to the
continuous ones. For a fixed scale s0 the localization points of the discrete
wavelets along the scale axis are logarithmic as log s = j log s0. The choice
s0 = 2 corresponds to the dyadic sampling in frequency. The discrete time-
step is τ0sj0 and, typically, τ0 = 1. Hence, the time-sampling step is a
function of the scale and along the time axis the localization points of the
wavelet depend on the scale.

For a given function f ∈ L1(R), the corresponding discrete wavelet trans-
form is

Wf (j, k) =
∞∫

−∞

f(t)h̄j,k(t) dt.

It is possible to introduce an orthonormal wavelet basis using discrete di-
lation and traslation factors, i.e.

∞∫

−∞

hi,j h̄k,l(t) dt = δikδjl, ∀i, j, k, l ∈ Z.

With an orthogonal wavelet basis, an arbitrary function f can be recon-
structed by the expansion

f(t) = A
∑

j,k∈Z

Wf (j, k)hj,k(t),

where A is a constant that does not depend on f .
As of the computational standpoint, the wavelet discrete transform can

be implemented at even a cheaper cost than the FFT algorithm for com-
puting the Fourier transform.
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10.13 Applications

In this section we apply the theory of orthogonal polynomials to solve two
problems arising in quantum physics. In the first example we deal with
Gauss-Laguerre quadratures, while in the second case the Fourier analysis
and the FFT are considered.

10.13.1 Numerical Computation of Blackbody Radiation
The monochromatic energy density E(ν) of blackbody radiation as a func-
tion of frequency ν is expressed by the following law

E(ν) =
8πh
c3

ν3

ehν/KBT − 1
,

where h is the Planck constant, c is the speed of light, KB is the Boltz-
mann constant and T is the absolute temperature of the blackbody (see,
for instance, [AF83]).

To compute the total density of monochromatic energy that is emitted
by the blackbody (that is, the emitted energy per unit volume) we must
evaluate the integral

E =
∞∫

0

E(ν)dν = αT 4

∞∫

0

x3

ex − 1
dx,

where x = hν/KBT and α = (8πK4
B)/(ch)3 1 1.16 · 10−16 [J ][K−4][m−3].

We also let f(x) = x3/(ex − 1) and I(f) =
∫ ∞
0 f(x)dx.

To approximate I(f) up to a previously fixed absolute error ≤ δ, we com-
pare method 1. introduced in Section 9.8.3 with Gauss-Laguerre quadra-
tures.
In the case of method 1. we proceed as follows. For any a > 0 we let
I(f) =

∫ a
0 f(x)dx +

∫ ∞
a f(x)dx and try to find a function φ such that

∞∫

a

f(x)dx ≤
∞∫

a

φ(x)dx ≤ δ

2
, (10.89)

the integral
∫ ∞
a φ(x)dx being “easy” to compute. Once the value of a

has been found such that (10.89) is fulfilled, we compute the integral
I1(f) =

∫ a
0 f(x)dx using for instance the adaptive Cavalieri-Simpson for-

mula introduced in Section 9.7.2 and denoted in the following by AD.
A natural choice of a bounding function for f is φ(x) = Kx3e−x, for a
suitable constant K > 1. Thus, we have K ≥ ex/(ex − 1), for any x > 0,
that is, letting x = a, K = ea/(ea−1). Substituting back into (10.89) yields

∞∫

a

f(x)dx ≤ a3 + 3a2 + 6a + 6
ea − 1

= η(a) ≤ δ

2
.
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FIGURE 10.10. Distribution of quadrature nodes and graph of the integrand
function

Letting δ = 10−3, we see that (10.89) is satisfied by taking a 1 16. Pro-
gram 77 for computing I1(f) with the AD method, setting hmin=10−3 and
tol=5 · 10−4, yields the approximate value I1 1 6.4934 with a number of
(nonuniform) partitions equal to 25.

The distribution of the quadrature nodes produced by the adaptive algo-
rithm is plotted in Figure 10.10. Globally, using method 1. yields an approx-
imation of I(f) equal to 6.4984. Table 10.1 shows, for sake of comparison,
some approximate values of I(f) obtained using the Gauss-Laguerre formu-
lae with the number of nodes varying between 2 to 20. Notice that, taking
n = 4 nodes, the accuracy of the two computational procedures is roughly
equivalent.

n In(f)
2 6.413727469517582
3 6.481130171540022
4 6.494535639802632
5 6.494313365790864
10 6.493939967652101
15 6.493939402671590
20 6.493939402219742

TABLE 10.1. Approximate evaluation of I(f) =
∫ ∞
0 x3/(ex − 1)dx with

Gauss-Laguerre quadratures

10.13.2 Numerical Solution of Schrödinger Equation
Let us consider the following differential equation arising in quantum me-
chanics known as the Schrödinger equation

i
∂ψ

∂t
= − !

2m
∂2ψ

∂x2 , x ∈ R t > 0. (10.90)

The symbols i and ! denote the imaginary unit and the reduced Planck
constant, respectively. The complex-valued function ψ = ψ(x, t), the solu-
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tion of (10.90), is called a wave function and the quantity |ψ(x, t)|2 defines
the probability density in the space x of a free electron of mass m at time
t (see [FRL55]).
The corresponding Cauchy problem may represent a physical model for
describing the motion of an electron in a cell of an infinite lattice (for more
details see, e.g., [AF83]).

Consider the initial condition ψ(x, 0) = w(x), where w is the step func-
tion that takes the value 1/

√
2b for |x| ≤ b and is zero for |x| > b, with

b = a/5, and where 2a represents the inter-ionic distance in the lattice.
Therefore, we are searching for periodic solutions, with period equal to 2a.

Solving problem (10.90) can be carried out using Fourier analysis as
follows. We first write the Fourier series of w and ψ (for any t > 0)

w(x) =
N/2−1∑

k=−N/2

ŵke
iπkx/a, ŵk =

1
2a

a∫

−a

w(x)e−iπkx/adx,

ψ(x, t) =
N/2−1∑

k=−N/2

ψ̂k(t)eiπkx/a, ψ̂k(t) =
1
2a

a∫

−a

ψ(x, t)e−iπkx/adx.

(10.91)

Then, we substitute back (10.91) into (10.90), obtaining the following
Cauchy problem for the Fourier coefficients ψ̂k, for k = −N/2, . . . , N/2−1






ψ̂′
k(t) = −i !

2m

(
kπ

a

)2

ψ̂k(t),

ψ̂k(0) = ˜̂wk.

(10.92)

The coefficients { ˜̂wk} have been computed by regularizing the coefficients
{ŵk} of the step function w using the Lanczos smoothing (10.56) in order
to avoid the Gibbs phenomenon arising around the discontinuities of w (see
Section 10.9.1).
After solving (10.92), we finally get, recalling (10.91), the following expres-
sion for the wave function

ψN (x, t) =
N/2−1∑

k=−N/2

˜̂wke
−iEkt/!eiπkx/a, (10.93)

where the coefficients Ek = (k2π2!2)/(2ma2) represent, from the physical
standpoint, the energy levels that the electron may assume in its motion
within the potential well.
To compute the coefficients ŵk (and, as a consequence, ˜̂wk), we have used
the MATLAB intrinsic function fft (see Section 10.9.2), employing N =
26 = 64 points and letting a = 10

◦
A= 10−9[m]. Time analysis has been

carried out up to T = 10 [s], with time steps of 1 [s]; in all the reported
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FIGURE 10.11. Probability density |ψ(x, t)|2 at t = 0, 2, 5 [s], corresponding to
a step function as initial datum: solution without filtering (left), with Lanczos
filtering (right)

graphs, the x-axis is measured in [
◦
A], while the y-axes are respectively in

units of 105 [m−1/2] and 1010 [m−1].
In Figure 10.11 we draw the probability density |ψ(x, t)|2 at t = 0, 2

and 5 [s]. The result obtained without the regularizing procedure above is
shown on the left, while the same calculation with the “filtering” of the
Fourier coefficients is reported on the right. The second plot demonstrates
the smoothing effect on the solution by the regularization, at the price of
a slight enlargement of the step-like initial probability distribution.

Finally, it is interesting to apply Fourier analysis to solve problem (10.90)
starting from a smooth initial datum. For this, we choose an initial probabil-
ity density w of Gaussian form such that ‖w‖2 = 1. The solution |ψ(x, t)|2,
this time computed without regularization, is shown in Figure 10.12, at
t = 0, 2, 5, 7, 9[s]. Notice the absence of spurious oscillations with respect
to the previous case.
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FIGURE 10.12. Probability density |ψ(x, t)|2 at t = 0, 2, 5, 7, 9[s], corresponding
to an initial datum with Gaussian form
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10.14 Exercises
1. Prove the three-term relation (10.11).

[Hint: set x = cos(θ), for 0 ≤ θ ≤ π.]

2. Prove (10.31).
[Hint: first prove that ‖vn‖n = (vn, vn)1/2, ‖Tk‖n = ‖Tk‖w for k < n and
‖Tn‖2n = 2‖Tn‖2w (see [QV94], formula (4.3.16)). Then, the thesis follows
from (10.29) multiplying by Tl (l $= k) and taking (·, ·)n.]

3. Prove (10.24) after showing that ‖(f −ΠGL
n f)′‖ω ≤ Cn1−s‖f‖s,ω.

[Hint: use the Gagliardo-Nirenberg inequality

max
−1≤x≤1

|f(x)| ≤ ‖f‖1/2‖f ′‖1/2

valid for any f ∈ L2 with f ′ ∈ L2. Next, use the relation that has been just
shown to prove (10.24).]

4. Prove that the discrete seminorm ‖f‖n = (f, f)1/2n is a norm for Pn.

5. Compute weights and nodes of the following quadrature formulae

b∫

a

w(x)f(x)dx =
n∑

i=0

ωif(xi),

in such a way that the order is maximum, setting

ω(x) =
√
x, a = 0, b = 1, n = 1;

ω(x) = 2x2 + 1, a = −1, b = 1, n = 0;

ω(x) =
{

2 if 0 < x ≤ 1,
1 if − 1 ≤ x ≤ 0 a = −1, b = 1, n = 1.

[Solution: for ω(x) =
√
x, the nodes x1 = 5

9 + 2
9

√
10/7, x2 = 5

9 −
2
9

√
10/7

are obtained, from which the weights can be computed (order 3); for ω(x) =
2x2 + 1, we get x1 = 3/5 and ω1 = 5/3 (order 1); for ω(x) = 2x2 + 1, we
have x1 = 1

22 + 1
22

√
155, x2 = 1

22 −
1
22

√
155 (order 3).]

6. Prove (10.40).
[Hint: notice that (ΠGL

n f, Lj)n =
∑

k f
∗
k (Lk, Lj)n = . . . , distinguishing the

case j < n from the case j = n.]

7. Show that ||| · |||, defined in (10.45), is an essentially strict seminorm.
[Solution : use the Cauchy-Schwarz inequality (1.14) to check that the
triangular inequality is satisfied. This proves that ||| · ||| is a seminorm. The
second part of the exercise follows after a direct computation.]

8. Consider in an interval [a, b] the nodes

xj = a +
(
j − 1

2

) (
b− a
m

)
j = 1, 2, . . . ,m
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for m ≥ 1. They are the midpoints of m equally spaced intervals in [a, b].
Let f be a given function; prove that the least-squares polynomial rn with
respect to the weight w(x) = 1 minimizes the error average, defined as

E = lim
m→∞

{
1
m

m∑

j=1

[f(xj)− rn(xj)]2
}1/2

.

9. Consider the function

F (a0, a1, . . . , an) =
1∫

0

[

f(x)−
n∑

j=0

ajx
j

]2

dx

and determine the coefficients a0, a1, . . . , an in such a way that F is mini-
mized. Which kind of linear system is obtained?
[Hint: enforce the conditions ∂F/∂ai = 0 with i = 0, 1, . . . , n. The matrix
of the final linear system is the Hilbert matrix (see Example 3.2, Chapter
3) which is strongly ill-conditioned.]



11
Numerical Solution of Ordinary
Differential Equations

In this chapter we deal with the numerical solutions of the Cauchy problem
for ordinary differential equations (henceforth abbreviated by ODEs). After
a brief review of basic notions about ODEs, we introduce the most widely
used techniques for the numerical approximation of scalar equations. The
concepts of consistency, convergence, zero-stability and absolute stability
will be addressed. Then, we extend our analysis to systems of ODEs, with
emphasis on stiff problems.

11.1 The Cauchy Problem

The Cauchy problem (also known as the initial-value problem) consists of
finding the solution of an ODE, in the scalar or vector case, given suitable
initial conditions. In particular, in the scalar case, denoting by I an interval
of R containing the point t0, the Cauchy problem associated with a first
order ODE reads:

find a real-valued function y ∈ C1(I), such that
{

y′(t) = f(t, y(t)), t ∈ I,

y(t0) = y0,
(11.1)

where f(t, y) is a given real-valued function in the strip S = I×(−∞,+∞),
which is continuous with respect to both variables. Should f depend on t
only through y, the differential equation is called autonomous.
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Most of our analysis will be concerned with one single differential equa-
tion (scalar case). The extension to the case of systems of first-order ODEs
will be addressed in Section 11.9.
If f is continuous with respect to t, then the solution to (11.1) satisfies

y(t)− y0 =
t∫

t0

f(τ, y(τ))dτ. (11.2)

Conversely, if y is defined by (11.2), then it is continuous in I and y(t0) =
y0. Moreover, since y is a primitive of the continuous function f(·, y(·)),
y ∈ C1(I) and satisfies the differential equation y′(t) = f(t, y(t)).

Thus, if f is continuous the Cauchy problem (11.1) is equivalent to the
integral equation (11.2). We shall see later on how to take advantage of
this equivalence in the numerical methods.

Let us now recall two existence and uniqueness results for (11.1).

1. Local existence and uniqueness.
Suppose that f(t, y) is locally Lipschitz continuous at (t0, y0) with
respect to y, that is, there exist two neighborhoods, J ⊆ I of t0 of
width rJ , and Σ of y0 of width rΣ, and a constant L > 0, such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2| ∀t ∈ J, ∀y1, y2 ∈ Σ. (11.3)

Then, the Cauchy problem (11.1) admits a unique solution in a neigh-
borhood of t0 with radius r0 with 0 < r0 < min(rJ , rΣ/M, 1/L),
where M is the maximum of |f(t, y)| on J×Σ. This solution is called
the local solution.
Notice that condition (11.3) is automatically satisfied if f has con-
tinuous derivative with respect to y: indeed, in such a case it suffices
to choose L as the maximum of |∂f(t, y)/∂y| in J × Σ.

2. Global existence and uniqueness. The problem admits a unique
global solution if one can take J = I and Σ = R in (11.3), that is, if
f is uniformly Lipschitz continuous with respect to y.

In view of the stability analysis of the Cauchy problem, we consider the
following problem

{
z′(t) = f(t, z(t)) + δ(t), t ∈ I,

z(t0) = y0 + δ0,
(11.4)

where δ0 ∈ R and δ is a continuous function on I. Problem (11.4) is derived
from (11.1) by perturbing both the initial datum y0 and the source func-
tion f . Let us now characterize the sensitivity of the solution z to those
perturbations.
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Definition 11.1 ([Hah67], [Ste71] or [PS91]). Let I be a bounded set. The
Cauchy problem (11.1) is stable in the sense of Liapunov (or stable) on I
if, for any perturbation (δ0, δ(t)) satisfying

|δ0| < ε, |δ(t)| < ε ∀t ∈ I,

with ε > 0 sufficiently small to guarantee that the solution to the perturbed
problem (11.4) does exist, then

∃C > 0 independent of ε such that |y(t)− z(t)| < Cε, ∀t ∈ I.
(11.5)

If I has no upperly bound we say that (11.1) is asymptotically stable if, as
well as being Liapunov stable in any bounded interval I, the following limit
also holds

|y(t)− z(t)|→ 0, for t→ +∞. (11.6)

!
The requirement that the Cauchy problem is stable is equivalent to requir-
ing that it is well-posed in the sense stated in Chapter 2.

The uniform Lipschitz-continuity of f with respect to y suffices to ensure
the stability of the Cauchy problem. Indeed, letting w(t) = z(t)− y(t), we
have

w′(t) = f(t, z(t))− f(t, y(t)) + δ(t).
Therefore,

w(t) = δ0 +
t∫

t0

[f(s, z(s))− f(s, y(s))] ds +
t∫

t0

δ(s)ds, ∀t ∈ I.

Thanks to previous assumptions, it follows that

|w(t)| ≤ (1 + |t− t0|) ε+ L

t∫

t0

|w(s)|ds.

Applying the Gronwall lemma (which we include below for the reader’s
ease) yields

|w(t)| ≤ (1 + |t− t0|) εeL|t−t0|, ∀t ∈ I

and, thus, (11.5) with C = (1 + KI)eLKI where KI = maxt∈I |t− t0|.

Lemma 11.1 (Gronwall) Let p be an integrable function nonnegative on
the interval (t0, t0 + T ), and let g and ϕ be two continuous functions on
[t0, t0 + T ], g being nondecreasing. If ϕ satisfies the inequality

ϕ(t) ≤ g(t) +
t∫

t0

p(τ)ϕ(τ)dτ, ∀t ∈ [t0, t0 + T ],
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then

ϕ(t) ≤ g(t) exp




t∫

t0

p(τ)dτ



, ∀t ∈ [t0, t0 + T ].

For the proof, see, for instance, [QV94], Lemma 1.4.1.

The constant C that appears in (11.5) could be very large and, in general,
depends on the upper extreme of the interval I, as in the proof above.
For that reason, the property of asymptotic stability is more suitable for
describing the behavior of the dynamical system (11.1) as t → +∞ (see
[Arn73]).

As is well-known, only a restricted number of nonlinear ODEs can be
solved in closed form (see, for instance, [Arn73]). Moreover, even when
this is possible, it is not always a straightforward task to find an explicit
expression of the solution; for example, consider the (very simple) equation
y′ = (y− t)/(y+ t), whose solution is only implicitly defined by the relation
(1/2) log(t2 + y2) + tan−1(y/t) = C, where C is a constant depending on
the initial condition.

For this reason we are interested in numerical methods, since these can
be applied to any ODE under the sole condition that it admits a unique
solution.

11.2 One-Step Numerical Methods

Let us address the numerical approximation of the Cauchy problem (11.1).
Fix 0 < T < +∞ and let I = (t0, t0 + T ) be the integration interval and,
correspondingly, for h > 0, let tn = t0 + nh, with n = 0, 1, 2, . . . , Nh, be
the sequence of discretization nodes of I into subintervals In = [tn, tn+1].
The width h of such subintervals is called the discretization stepsize. Notice
that Nh is the maximum integer such that tNh ≤ t0 + T . Let uj be the
approximation at node tj of the exact solution y(tj); this solution will be
henceforth shortly denoted by yj . Similarly, fj denotes the value f(tj , uj).
We obviously set u0 = y0.

Definition 11.2 A numerical method for the approximation of problem
(11.1) is called a one-step method if ∀n ≥ 0, un+1 depends only on un.
Otherwise, the scheme is called a multistep method. !

For now, we focus our attention on one-step methods. Here are some of
them:
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1. forward Euler method

un+1 = un + hfn; (11.7)

2. backward Euler method

un+1 = un + hfn+1. (11.8)

In both cases, y′ is approximated through a finite difference: forward and
backward differences are used in (11.7) and (11.8), respectively. Both finite
differences are first-order approximations of the first derivative of y with
respect to h (see Section 10.10.1).

3. trapezoidal (or Crank-Nicolson) method

un+1 = un +
h

2
[fn + fn+1] . (11.9)

This method stems from approximating the integral on the right side of
(11.2) by the trapezoidal quadrature rule (9.11).

4. Heun method

un+1 = un +
h

2
[fn + f(tn+1, un + hfn)]. (11.10)

This method can be derived from the trapezoidal method substituting
f(tn+1, un + hf(tn, un)) for f(tn+1, un+1) in (11.9) (i.e., using the forward
Euler method to compute un+1).

In this last case, we notice that the aim is to transform an implicit method
into an explicit one. Addressing this concern, we recall the following.

Definition 11.3 (explicit and implicit methods) A method is called
explicit if un+1 can be computed directly in terms of (some of) the previous
values uk, k ≤ n. A method is said to be implicit if un+1 depends implicitly
on itself through f . !
Methods (11.7) and (11.10) are explicit, while (11.8) and (11.9) are implicit.
These latter require at each time step to solving a nonlinear problem if f
depends nonlinearly on the second argument.

A remarkable example of one-step methods are the Runge-Kutta meth-
ods, which will be analyzed in Section 11.8.

11.3 Analysis of One-Step Methods

Any one-step explicit method for the approximation of (11.1) can be cast
in the concise form

un+1 = un + hΦ(tn, un, fn;h), 0 ≤ n ≤ Nh − 1, u0 = y0, (11.11)
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where Φ(·, ·, ·; ·) is called an increment function. Letting as usual yn = y(tn),
analogously to (11.11) we can write

yn+1 = yn + hΦ(tn, yn, f(tn, yn);h) + εn+1, 0 ≤ n ≤ Nh − 1, (11.12)

where εn+1 is the residual arising at the point tn+1 when we pretend that
the exact solution “satisfies” the numerical scheme. Let us write the residual
as

εn+1 = hτn+1(h).

The quantity τn+1(h) is called the local truncation error (LTE) at the node
tn+1. We thus define the global truncation error to be the quantity

τ(h) = max
0≤n≤Nh−1

|τn+1(h)|

Notice that τ(h) depends on the solution y of the Cauchy problem (11.1).
The forward Euler’s method is a special instance of (11.11), where

Φ(tn, un, fn;h) = fn,

while to recover Heun’s method we must set

Φ(tn, un, fn;h) =
1
2

[fn + f(tn + h, un + hfn)] .

A one-step explicit scheme is fully characterized by its increment function
Φ. This function, in all the cases considered thus far, is such that

lim
h→0

Φ(tn, yn, f(tn, yn);h) = f(tn, yn), ∀tn ≥ t0 (11.13)

Property (11.13), together with the obvious relation yn+1− yn = hy′(tn)+
O(h2), ∀n ≥ 0, allows one to obtain from (11.12) that lim

h→0
τn(h) = 0,

0 ≤ n ≤ Nh − 1. In turn, this condition ensures that

lim
h→0

τ(h) = 0

which expresses the consistency of the numerical method (11.11) with the
Cauchy problem (11.1). In general, a method is said to be consistent if its
LTE is infinitesimal with respect to h. Moreover, a scheme has order p if,
∀t ∈ I, the solution y(t) of the Cauchy problem (11.1) fulfills the condition

τ(h) = O(hp) for h→ 0. (11.14)

Using Taylor expansions, as was done in Section 11.2, it can be proved that
the forward Euler method has order 1, while the Heun method has order 2
(see Exercises 1 and 2).
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11.3.1 The Zero-Stability
Let us formulate a requirement analogous to the one for Liapunov stability
(11.5), specifically for the numerical scheme. If (11.5) is satisfied with a
constant C independent of h, we shall say that the numerical problem is
zero-stable. Precisely:

Definition 11.4 (zero-stability of one-step methods) The numerical
method (11.11) for the approximation of problem (11.1) is zero-stable if

∃h0 > 0, ∃C > 0 : ∀h ∈ (0, h0], |z(h)
n − u(h)

n | ≤ Cε, 0 ≤ n ≤ Nh, (11.15)

where z(h)
n , u(h)

n are respectively the solutions of the problems




z(h)
n+1 = z(h)

n + h
[
Φ(tn, z

(h)
n , f(tn, z

(h)
n );h) + δn+1

]
,

z0 = y0 + δ0,
(11.16)





u(h)
n+1 = u(h)

n + hΦ(tn, u
(h)
n , f(tn, u

(h)
n );h),

u0 = y0,
(11.17)

for 0 ≤ n ≤ Nh − 1, under the assumption that |δk| ≤ ε, 0 ≤ k ≤ Nh. !

Zero-stability thus requires that, in a bounded interval, (11.15) holds for
any value h ≤ h0. This property deals, in particular, with the behavior
of the numerical method in the limit case h → 0 and this justifies the
name of zero-stability. This latter is therefore a distinguishing property of
the numerical method itself, not of the Cauchy problem (which, indeed,
is stable due to the uniform Lipschitz continuity of f). Property (11.15)
ensures that the numerical method has a weak sensitivity with respect to
small changes in the data and is thus stable in the sense of the general
definition given in Chapter 2.

Remark 11.1 The constant C in (11.15) is independent of h (and thus
of Nh), but it can depend on the width T of the integration interval I.
Actually, (11.15) does not exclude a priori the constant C from being an
unbounded function of T . !

The request that a numerical method be stable arises, before anything else,
from the need of keeping under control the (unavoidable) errors introduced
by the finite arithmetic of the computer. Indeed, if the numerical method
were not zero-stable, the rounding errors made on y0 as well as in the pro-
cess of computing f(tn, un) would make the computed solution completely
useless.
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Theorem 11.1 (Zero-stability) Consider the explicit one-step method
(11.11) for the numerical solution of the Cauchy problem (11.1). Assume
that the increment function Φ is Lipschitz continuous with respect to the
second argument, with constant Λ independent of h and of the nodes tj ∈
[t0, t0 + T ], that is

∃h0 > 0, ∃Λ > 0 : ∀h ∈ (0, h0]

|Φ(tn, u
(h)
n , f(tn, u

(h)
n );h)− Φ(tn, z

(h)
n , f(tn, z

(h)
n );h)|

≤ Λ|u(h)
n − z(h)

n |, 0 ≤ n ≤ Nh.

(11.18)

Then, method (11.11) is zero-stable.

Proof. Setting w(h)
j = z(h)

j −u(h)
j , by subtracting (11.17) from (11.16) we obtain,

for j = 0, . . . , Nh − 1,

w(h)
j+1 = w(h)

j + h
[
Φ(tj , z(h)

j , f(tj , z(h)
j );h)− Φ(tj , u(h)

j , f(tj , u(h)
j );h)

]
+ hδj+1.

Summing over j gives, for n = 1, . . . , Nh,

w(h)
n = w(h)

0

+h
n−1∑

j=0

δj+1 + h
n−1∑

j=0

(
Φ(tj , z(h)

j , f(tj , z(h)
j );h)− Φ(tj , u(h)

j , f(tj , u(h)
j );h)

)
,

so that, by (11.18)

|w(h)
n | ≤ |w0| + h

n−1∑

j=0

|δj+1| + hΛ
n−1∑

j=0

|w(h)
j |, 1 ≤ n ≤ Nh. (11.19)

Applying the discrete Gronwall lemma, given below, we obtain

|w(h)
n | ≤ (1 + hn) εenhΛ, 1 ≤ n ≤ Nh.

Then (11.15) follows from noticing that hn ≤ T and setting C = (1 + T ) eΛT . !

Notice that zero-stability implies the boundedness of the solution when f
is linear with respect to the second argument.

Lemma 11.2 (discrete Gronwall) Let kn be a nonnegative sequence and
ϕn a sequence such that






ϕ0 ≤ g0

ϕn ≤ g0 +
n−1∑

s=0

ps +
n−1∑

s=0

ksφs, n ≥ 1.
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If g0 ≥ 0 and pn ≥ 0 for any n ≥ 0, then

ϕn ≤
(

g0 +
n−1∑

s=0

ps

)

exp

(
n−1∑

s=0

ks

)

, n ≥ 1.

For the proof, see, for instance, [QV94], Lemma 1.4.2. In the specific case
of the Euler method, checking the property of zero-stability can be done
directly using the Lipschitz continuity of f (we refer the reader to the end
of Section 11.3.2). In the case of multistep methods, the analysis will lead to
the verification of a purely algebraic property, the so-called root condition
(see Section 11.6.3).

11.3.2 Convergence Analysis
Definition 11.5 A method is said to be convergent if

∀n = 0, . . . , Nh, |un − yn| ≤ C(h)

where C(h) is an infinitesimal with respect to h. In that case, it is said to
be convergent with order p if ∃C > 0 such that C(h) = Chp. !

We can prove the following theorem.

Theorem 11.2 (Convergence) Under the same assumptions as in The-
orem 11.1, we have

|yn − un| ≤ (|y0 − u0| + nhτ(h)) enhΛ, 1 ≤ n ≤ Nh. (11.20)

Therefore, if the consistency assumption (11.13) holds and |y0 − u0| → 0
as h → 0, then the method is convergent. Moreover, if |y0 − u0| = O(hp)
and the method has order p, then it is also convergent with order p.

Proof. Setting wj = yj − uj , subtracting (11.11) from (11.12) and proceed-
ing as in the proof of the previous theorem yields inequality (11.19), with the
understanding that

w0 = y0 − u0, and δj+1 = τj+1(h).

The estimate (11.20) is then obtained by applying again the discrete Gronwall
lemma. From the fact that nh ≤ T and τ(h) = O(hp), we can conclude that
|yn − un| ≤ Chp with C depending on T and Λ but not on h. !

A consistent and zero-stable method is thus convergent. This property is
known as the Lax-Richtmyer theorem or equivalence theorem (the converse:
“a convergent method is zero-stable” being obviously true). This theorem,
which is proven in [IK66], was already advocated in Section 2.2.1 and is a
central result in the analysis of numerical methods for ODEs (see [Dah56] or
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[Hen62] for linear multistep methods, [But66], [MNS74] for a wider classes
of methods). It will be considered again in Section 11.5 for the analysis of
multistep methods.

We carry out in detail the convergence analysis in the case of the forward
Euler method, without resorting to the discrete Gronwall lemma. In the
first part of the proof we assume that any operation is performed in exact
arithmetic and that u0 = y0.

Denote by en+1 = yn+1 − un+1 the error at node tn+1 with n = 0, 1, . . .
and notice that

en+1 = (yn+1 − u∗
n+1) + (u∗

n+1 − un+1), (11.21)

where u∗
n+1 = yn + hf(tn, yn) is the solution obtained after one step of

the forward Euler method starting from the initial datum yn (see Figure
11.1). The first addendum in (11.21) accounts for the consistency error, the
second one for the cumulation of these errors. Then

yn+1 − u∗
n+1 = hτn+1(h), u∗

n+1 − un+1 = en + h [f(tn, yn)− f(tn, un)] .

y(x)

yn

un

tn tn+1

un+1

u∗
n+1

yn+1

hτn+1
en+1

FIGURE 11.1. Geometrical interpretation of the local and global truncation er-
rors at node tn+1 for the forward Euler method

As a consequence,

|en+1| ≤ h|τn+1(h)| + |en| + h|f(tn, yn)− f(tn, un)| ≤ hτ(h) + (1 + hL)|en|,

L being the Lipschitz constant of f . By recursion on n, we find

|en+1| ≤ [1 + (1 + hL) + . . . + (1 + hL)n]hτ(h)

=
(1 + hL)n+1 − 1

L
τ(h) ≤ eL(tn+1−t0) − 1

L
τ(h).
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The last inequality follows from noticing that 1+hL ≤ ehL and (n+1)h =
tn+1 − t0.

On the other hand, if y ∈ C2(I), the LTE for the forward Euler method
is (see Section 10.10.1)

τn+1(h) =
h

2
y′′(ξ), ξ ∈ (tn, tn+1),

and thus, τ(h) ≤ (M/2)h, where M = maxξ∈I |y′′(ξ)|. In conclusion,

|en+1| ≤
eL(tn+1−t0) − 1

L

M

2
h, ∀n ≥ 0, (11.22)

from which it follows that the global error tends to zero with the same
order as the local truncation error.

If also the rounding errors are accounted for, we can assume that the
solution ūn+1, actually computed by the forward Euler method at time
tn+1, is such that

ū0 = y0 + ζ0, ūn+1 = ūn + hf(tn, ūn) + ζn+1, (11.23)

having denoted the rounding error by ζj , for j ≥ 0.
Problem (11.23) is an instance of (11.16), provided that we identify ζn+1

and ūn with hδn+1 and z(h)
n in (11.16), respectively. Combining Theorems

11.1 and 11.2 we get, instead of (11.22), the following error estimate

|yn+1 − ūn+1| ≤ eL(tn+1−t0)
[
|ζ0| +

1
L

(
M

2
h +

ζ

h

)]
,

where ζ = max1≤j≤n+1 |ζj |. The presence of rounding errors does not allow,
therefore, to conclude that as h → 0, the error goes to zero. Actually,
there exists an optimal (non null) value of h, hopt, for which the error is
minimized. For h < hopt, the rounding error dominates the truncation error
and the global error increases.

11.3.3 The Absolute Stability
The property of absolute stability is in some way specular to zero-stability,
as far as the roles played by h and I are concerned. Heuristically, we say that
a numerical method is absolutely stable if, for h fixed, un remains bounded
as tn → +∞. This property, thus, deals with the asymptotic behavior of
un, as opposed to a zero-stable method for which, for a fixed integration
interval, un remains bounded as h→ 0.
For a precise definition, consider the linear Cauchy problem (that from now
on, we shall refer to as the test problem)

{
y′(t) = λy(t), t > 0,

y(0) = 1,
(11.24)
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with λ ∈ C, whose solution is y(t) = eλt. Notice that lim
t→+∞

|y(t)| = 0 if

Re(λ) < 0.

Definition 11.6 A numerical method for approximating (11.24) is abso-
lutely stable if

|un| −→ 0 as tn −→ +∞. (11.25)

Let h be the discretization stepsize. The numerical solution un of (11.24)
obviously depends on h and λ. The region of absolute stability of the nu-
merical method is the subset of the complex plane

A = {z = hλ ∈ C : (11.25) is satisfied } . (11.26)

Thus, A is the set of the values of the product hλ for which the numerical
method furnishes solutions that decay to zero as tn tends to infinity. !

Let us check whether the one-step methods introduced previously are ab-
solutely stable.

1. Forward Euler method: applying (11.7) to problem (11.24) yields un+1 =
un + hλun for n ≥ 0, with u0 = 1. Proceeding recursively on n we get

un = (1 + hλ)n, n ≥ 0.

Therefore, condition (11.25) is satisfied iff |1 + hλ| < 1, that is, if hλ lies
within the unit circle with center at (−1, 0) (see Figure 11.3). This amounts
to requiring that

hλ ∈ C− and 0 < h < −2Re(λ)
|λ|2 (11.27)

where

C− = {z ∈ C : Re(z) < 0} .

Example 11.1 For the Cauchy problem y′(x) = −5y(x) for x > 0 and y(0) = 1,
condition (11.27) implies 0 < h < 2/5. Figure 11.2 (left) shows the behavior of
the computed solution for two values of h which do not fulfill this condition, while
on the right we show the solutions for two values of h that do. Notice that in this
second case the oscillations, if present, damp out as t grows. •

2. Backward Euler method: proceeding as before, we get this time

un =
1

(1− hλ)n
, n ≥ 0.

The absolute stability property (11.25) is satisfied for any value of hλ that
does not belong to the unit circle of center (1, 0) (see Figure 11.3, right).
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FIGURE 11.2. Left: computed solutions for h = 0.41 > 2/5 (dashed line) and
h = 2/5 (solid line). Notice how, in the limiting case h = 2/5, the oscillations
remain unmodified as t grows. Right: two solutions are reported for h = 0.39
(solid line) and h = 0.15 (dashed line)

Example 11.2 The numerical solution given by the backward Euler method in
the case of Example 11.1 does not exhibit any oscillation for any value of h. On
the other hand, the same method, if applied to the problem y′(t) = 5y(t) for t > 0
and with y(0) = 1, computes a solution that decays anyway to zero as t→∞ if
h > 2/5, despite the fact that the exact solution of the Cauchy problem tends to
infinity. •

3. Trapezoidal (or Crank-Nicolson) method: we get

un =
[(

1 +
1
2
λh

)
/

(
1− 1

2
λh

)]n

, n ≥ 0,

hence (11.25) is fulfilled for any hλ ∈ C−.

4. Heun’s method: applying (11.10) to problem (11.24) and proceeding
by recursion on n, we obtain

un =
[
1 + hλ+

(hλ)2

2

]n

, n ≥ 0.

As shown in Figure 11.3 the region of absolute stability of Heun’s method
is larger than the corresponding one of Euler’s method. However, its re-
striction to the real axis is the same.
We say that a method is A-stable if A ∩ C− = C−, i.e., if for Re(λ) < 0,
condition (11.25) is satisfied for all values of h.

The backward Euler and Crank-Nicolson methods are A-stable, while
the forward Euler and Heun methods are conditionally stable.

Remark 11.2 Notice that the implicit one-step methods examined so far
are unconditionally absolutely stable, while explicit schemes are condition-
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FIGURE 11.3. Regions of absolute stability for the forward (FE) and backward
Euler (BE) methods and for Heun’s method (H). Notice that the region of abso-
lute stability of the BE method lies outside the unit circle of center (1, 0) (shaded
area)

ally absolutely stable. This is, however, not a general rule: in fact, there ex-
ist implicit unstable or only conditionally stable schemes. On the contrary,
there are no explicit unconditionally absolutely stable schemes [Wid67]. !

11.4 Difference Equations

For any integer k ≥ 1, an equation of the form

un+k + αk−1un+k−1 + . . . + α0un = ϕn+k, n = 0, 1, . . . (11.28)

is called a linear difference equation of order k. The coefficients α0 '= 0,
α1, . . . ,αk−1 may or may not depend on n. If, for any n, the right side
ϕn+k is equal to zero, the equation is said homogeneous, while if the α′

js
are independent of n it is called linear difference equation with constant
coefficients.
Difference equations arise for instance in the discretization of ordinary dif-
ferential equations. Regarding this, we notice that all the numerical meth-
ods examined so far end up with equations like (11.28). More generally,
equations like (11.28) are encountered when quantities are defined through
linear recursive relations. Another relevant application is concerned with
the discretization of boundary value problems (see Chapter 12). For fur-
ther details on the subject, we refer to Chapters 2 and 5 of [BO78] and to
Chapter 6 of [Gau97].
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Any sequence {un, n = 0, 1, . . . } of values that satisfy (11.28) is called
a solution to the equation (11.28). Given k initial values u0, . . . , uk−1, it
is always possible to construct a solution of (11.28) by computing (sequen-
tially)

un+k = [ϕn+k − (αk−1un+k−1 + . . . + α0un)], n = 0, 1, . . .

However, our interest is to find an expression of the solution un+k which
depends only on the coefficients and on the initial values.

We start by considering the homogeneous case with constant coefficients,

un+k + αk−1un+k−1 + . . . + α0un = 0, n = 0, 1, . . . (11.29)

and associate with (11.29) the characteristic polynomial Π ∈ Pk defined as

Π(r) = rk + αk−1r
k−1 + . . . + α1r + α0. (11.30)

Denoting its roots by rj , j = 0, . . . , k − 1, any sequence of the form
{
rnj , n = 0, 1, . . .

}
, for j = 0, . . . , k − 1 (11.31)

is a solution of (11.29), since

rn+k
j + αk−1r

n+k−1
j + . . . + α0rnj

= rnj
(
rkj + αk−1r

k−1
j + . . . + α0

)
= rnj Π(rj) = 0.

We say that the k sequences defined in (11.31) are the fundamental solutions
of the homogeneous equation (11.29). Any sequence of the form

un = γ0r
n
0 + γ1r

n
1 + . . . + γk−1r

n
k−1, n = 0, 1, . . . (11.32)

is still a solution to (11.29), since it is a linear equation.
The coefficients γ0, . . . , γk−1 can be determined by imposing the k initial
conditions u0, . . . , uk−1. Moreover, it can be proved that if all the roots
of Π are simple, then all the solutions of (11.29) can be cast in the form
(11.32).

This last statement no longer holds if there are roots of Π with multi-
plicity greater than 1. If, for a certain j, the root rj has multiplicity m ≥ 2,
in order to obtain a system of fundamental solutions that generate all the
solutions of (11.29), it suffices to replace the corresponding fundamental
solution

{
rnj , n = 0, 1, . . .

}
with the m sequences

{
rnj , n = 0, 1, . . .

}
,

{
nrnj , n = 0, 1, . . .

}
, . . . ,

{
nm−1rnj , n = 0, 1, . . .

}
.

More generally, assuming that r0, . . . , rk′ are distinct roots of Π, with mul-
tiplicities equal to m0, . . . ,mk′ , respectively, we can write the solution of
(11.29) as

un =
k′∑

j=0

(mj−1∑

s=0

γsjn
s

)

rnj , n = 0, 1, . . . . (11.33)
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Notice that even in presence of complex conjugate roots one can still obtain
a real solution (see Exercise 3).

Example 11.3 For the difference equation un+2−un = 0, we have Π(r) = r2−1,
then r0 = −1 and r1 = 1, therefore the solution is given by un = γ00(−1)n + γ01.
In particular, enforcing the initial conditions u0 and u1 gives γ00 = (u0 − u1)/2,
γ01 = (u0 + u1)/2. •

Example 11.4 For the difference equation un+3 − 2un+2 − 7un+1 − 4un = 0,
Π(r) = r3 − 2r2 − 7r − 4. Its roots are r0 = −1 (with multiplicity 2), r1 = 4 and
the solution is un = (γ00 + nγ10)(−1)n + γ014n. Enforcing the initial conditions
we can compute the unknown coefficients as the solution of the following linear
system






γ00 + γ01 = u0,
−γ00 − γ10 + 4γ01 = u1,
γ00 + 2γ10 + 16γ01 = u2

that yields γ00 = (24u0 − 2u1 − u2)/25, γ10 = (u2 − 3u1 − 4u0)/5 and γ01 =
(2u1 + u0 + u2)/25. •

The expression (11.33) is of little practical use since it does not outline
the dependence of un on the k initial conditions. A more convenient rep-
resentation is obtained by introducing a new set

{
ψ(n)
j , n = 0, 1, . . .

}
of

fundamental solutions that satisfy

ψ(i)
j = δij , i, j = 0, 1, . . . , k − 1. (11.34)

Then, the solution of (11.29) subject to the initial conditions u0, . . . , uk−1
is given by

un =
k−1∑

j=0

ujψ
(n)
j , n = 0, 1, . . . . (11.35)

The new fundamental solutions
{
ψ(n)
j , n = 0, 1, . . .

}
can be represented in

terms of those in (11.31) as follows

ψ(n)
j =

k−1∑

m=0

βj,mrnm for j = 0, . . . , k − 1, n = 0, 1, . . . (11.36)

By requiring (11.34), we obtain the k linear systems

k−1∑

m=0

βj,mrim = δij , i, j = 0, . . . , k − 1,

whose matrix form is

Rbj = ej , j = 0, . . . , k − 1. (11.37)
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Here ej denotes the unit vector of Rk, R = (rim) = (rim) and bj =
(βj,0, . . . ,βj,k−1)T . If all r′js are simple roots of Π, the matrix R is nonsin-
gular (see Exercise 5).

The general case where Π has k′+1 distinct roots r0, . . . , rk′ with multi-
plicities m0, . . . ,mk′ respectively, can be dealt with by replacing in (11.36){
rnj , n = 0, 1, . . .

}
with

{
rnj n

s, n = 0, 1, . . .
}
, where j = 0, . . . , k′ and

s = 0, . . . ,mj − 1.

Example 11.5 We consider again the difference equation of Example 11.4. Here
we have {rn0 , nrn0 , rn1 , n = 0, 1, . . . } so that the matrix R becomes

R =




r0
0 0 r0

2
r1
0 r1

0 r1
2

r2
0 2r2

0 r2
2



 =




1 0 1

−1 −1 4
1 2 16



 .

Solving the three systems (11.37) yields

ψ(n)
0 =

24
25

(−1)n − 4
5
n(−1)n +

1
25

4n,

ψ(n)
1 = − 2

25
(−1)n − 3

5
n(−1)n +

2
25

4n,

ψ(n)
2 = − 1

25
(−1)n +

1
5
n(−1)n +

1
25

4n,

from which it can be checked that the solution un =
∑2

j=0 ujψ
(n)
j coincides with

the one already found in Example 11.4. •

Now we return to the case of nonconstant coefficients and consider the
following homogeneous equation

un+k +
k∑

j=1

αk−j(n)un+k−j = 0, n = 0, 1, . . . . (11.38)

The goal is to transform it into an ODE by means of a function F , called
the generating function of the equation (11.38). F depends on the real
variable t and is derived as follows. We require that the n-th coefficient
of the Taylor series of F around t = 0 can be written as γnun, for some
unknown constant γn, so that

F (t) =
∞∑

n=0

γnunt
n. (11.39)

The coefficients {γn} are unknown and must be determined in such a way
that

k∑

j=0

cjF
(k−j)(t) =

∞∑

n=0



un+k +
k∑

j=1

αk−j(n)un+k−j



 tn, (11.40)
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where cj are suitable unknown constants not depending on n. Note that
owing to (11.39) we obtain the ODE

k∑

j=0

cjF
(k−j)(t) = 0

to which we must add the initial conditions F (j)(0) = γjuj for j = 0, . . . , k−
1. Once F is available, it is simple to recover un through the definition of
F itself.

Example 11.6 Consider the difference equation

(n + 2)(n + 1)un+2 − 2(n + 1)un+1 − 3un = 0, n = 0, 1, . . . (11.41)

with the initial conditions u0 = u1 = 2. We look for a generating function of the
form (11.39). By term-to-term derivation of the series, we get

F ′(t) =
∞∑

n=0

γnnunt
n−1, F ′′(t) =

∞∑

n=0

γnn(n− 1)unt
n−2,

and, after some algebra, we find

F ′(t) =
∞∑

n=0

γnnunt
n−1 =

∞∑

n=0

γn+1(n + 1)un+1t
n,

F ′′(t) =
∞∑

n=0

γnn(n− 1)unt
n−2 =

∞∑

n=0

γn+2(n + 2)(n + 1)un+2t
n.

As a consequence, (11.40) becomes

∞∑

n=0

(n + 1)(n + 2)un+2t
n − 2

∞∑

n=0

(n + 1)un+1t
n − 3

∞∑

n=0

unt
n

= c0

∞∑

n=0

γn+2(n + 2)(n + 1)un+2t
n + c1

∞∑

n=0

γn+1(n + 1)un+1t
n + c2

∞∑

n=0

γnunt
n,

so that, equating both sides, we find

γn = 1 ∀n ≥ 0, c0 = 1, c1 = −2, c2 = −3.

We have thus associated with the difference equation the following ODE with
constant coefficients

F ′′(t)− 2F ′(t)− 3F (t) = 0,

with the initial condition F (0) = F ′(0) = 2. The n-th coefficient of the solution
F (t) = e3t + e−t is

1
n!

F (n)(0) =
1
n!

[(−1)n + 3n] ,

so that un = (1/n!) [(−1)n + 3n] is the solution of (11.41). •
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The nonhomogeneous case (11.28) can be tackled by searching for solutions
of the form

un = u(0)
n + u(ϕ)

n ,

where u(0)
n is the solution of the associated homogeneous equation and u(ϕ)

n

is a particular solution of the nonhomogeneous equation. Once the solution
of the homogeneous equation is available, a general technique to obtain
the solution of the nonhomogeneous equation is based on the method of
variation of parameters, combined with a reduction of the order of the
difference equation (see [BO78]).

In the special case of difference equations with constant coefficients, with
ϕn of the form cnQ(n), where c is a constant and Q is a polynomial of degree
p with respect to the variable n, a possible approach is that of undetermined
coefficients, where one looks for a particular solution that depends on some
undetermined constants and has a known form for some classes of right
sides ϕn. It suffices to look for a particular solution of the form

u(ϕ)
n = cn(bpnp + bp−1n

p−1 + . . . + b0),

where bp, . . . , b0 are constants to be determined in such a way that u(ϕ)
n is

actually a solution of (11.28).

Example 11.7 Consider the difference equation un+3−un+2+un+1−un = 2nn2.
The particular solution is of the form un = 2n(b2n2 + b1n+ b0). Substituting this
solution into the equation, we find 5b2n2+(36b2+5b1)n+(58b2+18b1+5b0) = n2,
from which, recalling the principle of identity for polynomials, one gets b2 = 1/5,
b1 = −36/25 and b0 = 358/125. •

Analogous to the homogeneous case, it is possible to express the solution
of (11.28) as

un =
k−1∑

j=0

ujψ
(n)
j +

n∑

l=k

ϕlψ
(n−l+k−1)
k−1 , n = 0, 1, . . . (11.42)

where we define ψ(i)
k−1 ≡ 0 for all i < 0 and ϕj ≡ 0 for all j < k.

11.5 Multistep Methods

Let us now introduce some examples of multistep methods (shortly, MS).

Definition 11.7 (q-steps methods) A q-step method (q ≥ 1) is one
which, ∀n ≥ q − 1, un+1 depends on un+1−q, but not on the values uk

with k < n + 1− q. !
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A well-known two-step explicit method can be obtained by using the
centered finite difference (10.61) to approximate the first order derivative
in (11.1). This yields the midpoint method

un+1 = un−1 + 2hfn, n ≥ 1 (11.43)

where u0 = y0, u1 is to be determined and fk denotes the value f(tk, uk).
An example of an implicit two-step scheme is the Simpson method, ob-

tained from (11.2) with t0 = tn−1 and t = tn+1 and by using the Cavalieri-
Simpson quadrature rule to approximate the integral of f

un+1 = un−1 +
h

3
[fn−1 + 4fn + fn+1], n ≥ 1 (11.44)

where u0 = y0, and u1 is to be determined.
From these examples, it is clear that a multistep method requires q initial

values u0, . . . , uq−1 for “taking off”. Since the Cauchy problem provides
only one datum (u0), one way to assign the remaining values consists of
resorting to explicit one-step methods of high order. An example is given by
Heun’s method (11.10), other examples are provided by the Runge-Kutta
methods, which will be introduced in Section 11.8.

In this section we deal with linear multistep methods

un+1 =
p∑

j=0

ajun−j + h
p∑

j=0

bjfn−j + hb−1fn+1, n = p, p + 1, . . . (11.45)

which are p + 1-step methods, p ≥ 0. For p = 0, we recover one-step
methods.

The coefficients aj , bj are real and fully identify the scheme; they are
such that ap '= 0 or bp '= 0. If b−1 '= 0 the scheme is implicit, otherwise it
is explicit.

We can reformulate (11.45) as follows

p+1∑

s=0

αsun+s = h
p+1∑

s=0

βsf(tn+s, un+s), n = 0, 1, . . . , Nh − (p + 1) (11.46)

having set αp+1 = 1, αs = −ap−s for s = 0, . . . , p and βs = bp−s for
s = 0, . . . , p+1. Relation (11.46) is a special instance of the linear difference
equation (11.28), where we set k = p+1 and ϕn+j = hβjf(tn+j , un+j), for
j = 0, . . . , p + 1.
Also for MS methods we can characterize consistency in terms of the local
truncation error, according to the following definition.

Definition 11.8 The local truncation error (LTE) τn+1(h) introduced by
the multistep method (11.45) at tn+1 (for n ≥ p) is defined through the
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following relation

hτn+1(h) = yn+1 −




p∑

j=0

ajyn−j + h
p∑

j=−1

bjy
′
n−j



 , n ≥ p, (11.47)

where yn−j = y(tn−j) and y′n−j = y′(tn−j) for j = −1, . . . , p. !

Analogous to one-step methods, the quantity hτn+1(h) is the residual gen-
erated at tn+1 if we pretend that the exact solution “satisfies” the numerical
scheme. Letting τ(h) = max

n
|τn(h)|, we have the following definition.

Definition 11.9 (Consistency) The multistep method (11.45) is consis-
tent if τ(h) → 0 as h→ 0. Moreover, if τ(h) = O(hq), for some q ≥ 1, then
the method is said to have order q. !

A more precise characterization of the LTE can be given by introducing the
following linear operator L associated with the linear MS method (11.45)

L[w(t);h] = w(t + h)−
p∑

j=0

ajw(t− jh)− h
p∑

j=−1

bjw
′(t− jh), (11.48)

where w ∈ C1(I) is an arbitrary function. Notice that the LTE is exactly
L[y(tn);h]. If we assume that w is sufficiently smooth and expand w(t−jh)
and w′(t− jh) about t− ph, we obtain

L[w(t);h] = C0w(t− ph) + C1hw
(1)(t− ph) + . . . + Ckh

kw(k)(t− ph) + . . .

Consequently, if the MS method has order q and y ∈ Cq+1(I), we obtain

τn+1(h) = Cq+1h
q+1y(q+1)(tn−p) + O(hq+2).

The term Cq+1hq+1y(q+1)(tn−p) is the so-called principal local truncation
error (PLTE) while Cq+1 is the error constant. The PLTE is widely em-
ployed in devising adaptive strategies for MS methods (see [Lam91], Chap-
ter 3).

Program 92 provides an implementation of the multistep method in the
form (11.45) for the solution of a Cauchy problem on the interval (t0, T ).
The input parameters are: the column vector a containing the p + 1 co-
efficients ai; the column vector b containing the p + 2 coefficients bi; the
discretization stepsize h; the vector of initial data u0 at the corresponding
time instants t0; the macros fun and dfun containing the functions f and
∂f/∂y. If the MS method is implicit, a tolerance tol and a maximum num-
ber of admissible iterations itmax must be provided. These two parameters
monitor the convergence of Newton’s method that is employed to solve the
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nonlinear equation (11.45) associated with the MS method. In output the
code returns the vectors u and t containing the computed solution at the
time instants t.

Program 92 - multistep : Linear multistep methods

function [t,u] = multistep (a,b,tf,t0,u0,h,fun,dfun,tol,itmax)
y = u0; t = t0; f = eval (fun); p = length(a) - 1; u = u0;
nt = fix((tf - t0 (1) )/h);
for k = 1:nt

lu=length(u);
G = a’ *u (lu:-1:lu-p)+ h * b(2:p+2)’ * f(lu:-1:lu-p);
lt = length(t0); t0 = [t0; t0(lt)+h]; unew = u (lu);
t = t0 (lt+1); err = tol + 1; it = 0;
while (err > tol) & (it <= itmax)
y = unew; den = 1 - h * b (1) * eval(dfun);
fnew = eval (fun);
if den == 0

it = itmax + 1;
else

it = it + 1;
unew = unew - (unew - G - h * b (1) * fnew)/den;
err = abs (unew - y);

end
end
u = [u; unew]; f = [f; fnew];

end
t = t0;

In the forthcoming sections we examine some families of multistep methods.

11.5.1 Adams Methods
These methods are derived from the integral form (11.2) through an ap-
proximate evaluation of the integral of f between tn and tn+1. We suppose
that the discretization nodes are equally spaced, i.e., tj = t0 + jh, with
h > 0 and j ≥ 1, and then we integrate, instead of f , its interpolating
polynomial on p+ 1 distinct nodes. The resulting schemes are thus consis-
tent by construction and have the following form

un+1 = un + h
p∑

j=−1

bjfn−j , n ≥ p. (11.49)

The interpolation nodes can be either:

1. tn, tn−1, . . . , tn−p (in this case b−1 = 0 and the resulting method is
explicit);
or
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2. tn+1, tn, . . . , tn−p+1 (in this case b−1 '= 0 and the scheme is implicit).

The implicit schemes are called Adams-Moulton methods, while the explicit
ones are called Adams-Bashforth methods.

Adams-Bashforth methods (AB)

Taking p = 0 we recover the forward Euler method, since the interpolating
polynomial of degree zero at node tn is given by Π0f = fn. For p = 1, the
linear interpolating polynomial at the nodes tn−1 and tn is

Π1f(t) = fn + (t− tn)
fn−1 − fn
tn−1 − tn

.

Since Π1f(tn) = fn and Π1f(tn+1) = 2fn − fn−1, we get

tn+1∫

tn

Π1f(t) =
h

2
[Π1f(tn) +Π1f(tn+1)] =

h

2
[3fn − fn−1] .

Therefore, the two-step AB method is

un+1 = un +
h

2
[3fn − fn−1] . (11.50)

With a similar procedure, if p = 2, we find the three-step AB method

un+1 = un +
h

12
[23fn − 16fn−1 + 5fn−2] ,

while for p = 3 we get the four-step AB scheme

un+1 = un +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) .

In general, q-step Adams-Bashforth methods have order q. The error con-
stants C∗

q+1 of these methods are collected in Table 11.1.

Adams-Moulton methods (AM)

If p = −1, the Backward Euler scheme is recovered, while if p = 0, we
construct the linear polynomial interpolating f at the nodes tn and tn+1
to recover the Crank-Nicolson scheme (11.9). In the case of the two-step
method, the polynomial of degree 2 interpolating f at the nodes tn−1, tn,
tn+1 is generated, yielding the following scheme

un+1 = un +
h

12
[5fn+1 + 8fn − fn−1] . (11.51)
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The methods corresponding to p = 3 and 4 are respectively given by

un+1 = un +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2)

un+1 = un +
h

720
(251fn+1 + 646fn − 264fn−1 + 106fn−2 − 19fn−3) .

The q-step Adams-Moulton methods have order q + 1 and their error con-
stants Cq+1 are summarized in Table 11.1.

q C∗
q+1 Cq+1 q C∗

q+1 Cq+1

1 1
2 − 1

2 3 3
8 − 1

24

2 5
12 − 1

12 4 251
720 − 19

720

TABLE 11.1. Error constants for Adams-Bashforth methods (having order q) and
Adams-Moulton methods (having order q + 1)

11.5.2 BDF Methods
The so-called backward differentiation formulae (henceforth denoted by
BDF) are implicit MS methods derived from a complementary approach
to the one followed for the Adams methods. In fact, for the Adams meth-
ods we have resorted to numerical integration for the source function f ,
whereas in BDF methods we directly approximate the value of the first
derivative of y at node tn+1 through the first derivative of the polynomial
interpolating y at the p + 1 nodes tn+1, tn, . . . , tn−p+1.

By doing so, we get schemes of the form

un+1 =
p∑

j=0

ajun−j + hb−1fn+1

with b−1 '= 0. Method (11.8) represents the most elementary example,
corresponding to the coefficients a0 = 1 and b−1 = 1.

We summarize in Table 11.2 the coefficients of BDF methods that are
zero-stable. In fact, we shall see in Section 11.6.3 that only for p ≤ 5 are
BDF methods zero-stable (see [Cry73]).

11.6 Analysis of Multistep Methods

Analogous to what has been done for one-step methods, in this section
we provide algebraic conditions that ensure consistency and stability of
multistep methods.
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p a0 a1 a2 a3 a4 a5 b−1
0 1 0 0 0 0 0 1
1 4

3 - 1
3 0 0 0 0 2

3

2 18
11 - 9

11
2
11 0 0 0 6

11

3 48
25 - 36

25
16
25 - 3

25 0 0 12
25

4 300
137 - 300

137
200
137 - 75

137
12
137 0 60

137

5 360
147 - 450

147
400
147 - 225

147
72
147 - 10

147
60
137

TABLE 11.2. Coefficients of zero-stable BDF methods for p = 0, 1, . . . , 5

11.6.1 Consistency
The property of consistency of a multistep method introduced in Definition
11.9 can be verified by checking that the coefficients satisfy certain algebraic
equations, as stated in the following theorem.

Theorem 11.3 The multistep method (11.45) is consistent iff the following
algebraic relations among the coefficients are satisfied

p∑

j=0

aj = 1, −
p∑

j=0

jaj +
p∑

j=−1

bj = 1. (11.52)

Moreover, if y ∈ Cq+1(I) for some q ≥ 1, where y is the solution of the
Cauchy problem (11.1), then the method is of order q iff (11.52) holds and
the following additional conditions are satisfied

p∑

j=0

(−j)iaj + i
p∑

j=−1

(−j)i−1bj = 1, i = 2, . . . , q.

Proof. Expanding y and f in a Taylor series yields, for any n ≥ p

yn−j = yn − jhy′n + O(h2), fn−j = fn + O(h). (11.53)

Plugging these values back into the multistep scheme and neglecting the terms
in h of order higher than 1 gives

yn+1 −
p∑

j=0

ajyn−j − h
p∑

j=−1

bjfn−j

= yn+1 −
p∑

j=0

ajyn + h
p∑

j=0

jajy
′
n − h

p∑

j=−1

bjfn −O(h2)

(
p∑

j=0

aj −
p∑

j=−1

bj

)

= yn+1 −
p∑

j=0

ajyn − hy′
n

(

−
p∑

j=0

jaj +
p∑

j=−1

bj

)

−O(h2)

(
p∑

j=0

aj −
p∑

j=−1

bj

)

where we have replaced y′n by fn. From the definition (11.47) we then obtain

hτn+1(h) = yn+1 −
p∑

j=0

ajyn − hy′
n

(

−
p∑

j=0

jaj +
p∑

j−1

bj

)

−O(h2)

(
p∑

j=0

aj −
p∑

j=−1

bj

)
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hence the local truncation error is

τn+1(h) =
yn+1 − yn

h
+

yn
h

(

1−
p∑

j=0

aj

)

+y′n

(
p∑

j=0

jaj −
p∑

j=−1

bj

)

−O(h)

(
p∑

j=0

aj −
p∑

j=−1

bj

)

.

Since, for any n, (yn+1 − yn)/h→ y′
n, as h→ 0, it follows that τn+1(h) tends to

0 as h goes to 0 iff the algebraic conditions (11.52) are satisfied. The rest of the
proof can be carried out in a similar manner, accounting for terms of progressively
higher order in the expansions (11.53). !

11.6.2 The Root Conditions
Let us employ the multistep method (11.45) to approximately solve the
model problem (11.24). The numerical solution satisfies the linear difference
equation

un+1 =
p∑

j=0

ajun−j + hλ
p∑

j=−1

bjun−j , (11.54)

which fits the form (11.29). We can therefore apply the theory devel-
oped in Section 11.4 and look for fundamental solutions of the form uk =
[ri(hλ)]k, k = 0, 1, . . . , where ri(hλ), for i = 0, . . . , p, are the roots of the
polynomial Π ∈ Pp+1

Π(r) = ρ(r)− hλσ(r). (11.55)

We have denoted by

ρ(r) = rp+1 −
p∑

j=0

ajr
p−j , σ(r) = b−1rp+1 +

p∑

j=0

bjr
p−j

the first and second characteristic polynomials of the multistep method
(11.45), respectively. The polynomial Π(r) is the characteristic polynomial
associated with the difference equation (11.54), and rj(hλ) are its charac-
teristic roots.

The roots of ρ are ri(0), i = 0, . . . , p, and will be abbreviated henceforth
by ri. From the first condition in (11.52) it follows that if a multistep
method is consistent then 1 is a root of ρ. We shall assume that such a root
(the consistency root) is labelled as r0(0) = r0 and call the corresponding
root r0(hλ) the principal root.

Definition 11.10 (Root condition) The multistep method (11.45) is said
to satisfy the root condition if all roots ri are contained within the unit



11.6 Analysis of Multistep Methods 495

circle centered at the origin of the complex plane, otherwise, if they fall on
its boundary, they must be simple roots of ρ. Equivalently,

{
|rj | ≤ 1, j = 0, . . . , p;

furthermore, for those j such that |rj | = 1, then ρ′(rj) '= 0.
(11.56)

!

Definition 11.11 (Strong root condition) The multistep method (11.45)
is said to satisfy the strong root condition if it satisfies the root condition
and r0 = 1 is the only root lying on the boundary of the unit circle. Equiv-
alently,

|rj | < 1 j = 1, . . . , p. (11.57)

!

Definition 11.12 (Absolute root condition) The multistep method
(11.45) satisfies the absolute root condition if there exists h0 > 0 such that

|rj(hλ)| < 1 j = 0, . . . , p, ∀h ≤ h0.

!

11.6.3 Stability and Convergence Analysis for Multistep
Methods

Let us now examine the relation between root conditions and the stability
of multistep methods. Generalizing the Definition 11.4, we can get the
following.

Definition 11.13 (Zero-stability of multistep methods) The multi-
step method (11.45) is zero-stable if

∃h0 > 0, ∃C > 0 : ∀h ∈ (0, h0], |z(h)
n − u(h)

n | ≤ Cε, 0 ≤ n ≤ Nh,
(11.58)

where Nh = max {n : tn ≤ t0 + T} and z(h)
n and u(h)

n are, respectively, the
solutions of problems






z(h)
n+1 =

p∑

j=0

ajz
(h)
n−j + h

p∑

j=−1

bjf(tn−j , z
(h)
n−j) + hδn+1,

z(h)
k = w(h)

k + δk, k = 0, . . . , p

(11.59)
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u(h)
n+1 =

p∑

j=0

aju
(h)
n−j + h

p∑

j=−1

bjf(tn−j , u
(h)
n−j),

u(h)
k = w(h)

k , k = 0, . . . , p

(11.60)

for p ≤ n ≤ Nh − 1, where |δk| ≤ ε, 0 ≤ k ≤ Nh, w(h)
0 = y0 and w(h)

k ,
k = 1, . . . , p, are p initial values generated by using another numerical
scheme. !

Theorem 11.4 (Equivalence of zero-stability and root condition)
For a consistent multistep method, the root condition is equivalent to zero-
stability.

Proof. Let us begin by proving that the root condition is necessary for the zero-
stability to hold. We proceed by contradiction and assume that the method is
zero-stable and there exists a root ri which violates the root condition.

Since the method is zero-stable, condition (11.58) must be satisfied for any
Cauchy problem, in particular for the problem y′(t) = 0 with y(0) = 0, whose
solution is, clearly, the null function. Similarly, the solution u(h)

n of (11.60) with
f = 0 and w(h)

k = 0 for k = 0, . . . , p is identically zero.
Consider first the case |ri| > 1. Then, define

δn =






εrni if ri ∈ R,

ε(ri + r̄i)n if ri ∈ C,

for ε > 0. It is simple to check that the sequence z(h)
n = δn for n = 0, 1, . . .

is a solution of (11.59) with initial conditions z(h)
k = δk and that |δk| ≤ ε for

k = 0, 1, . . . , p. Let us now choose t̄ in (t0, t0 + T ) and let xn be the nearest grid
node to t̄. Clearly, n is the integral part of t̄/h and limh→0 |z(h)

n | = limh→0 |u(h)
n −

z(h)
n |→∞ as h→ 0. This proves that |u(h)

n − z(h)
n | cannot be uniformly bounded

with respect to h as h → 0, which contradicts the assumption that the method
is zero-stable.

A similar proof can be carried out if |ri| = 1 but has multiplicity greater than
1, provided that one takes into account the form of the solution (11.33).

Let us now prove that the root condition is sufficient for method (11.45) to
be zero-stable. Recalling (11.46) and denoting by z(h)

n+j and u(h)
n+j the solutions

to (11.59) and (11.60), respectively, for j ≥ 1, it turns out that the function
w(h)

n+j = z(h)
n+j − u(h)

n+j satisfies the following difference equation

p+1∑

j=0

αjw
(h)
n+j = ϕn+p+1, n = 0, . . . , Nh − (p + 1), (11.61)

having set

ϕn+p+1 = h
p+1∑

j=0

βj

[
f(tn+j , z

(h)
n+j)− f(tn+j , u

(h)
n+j)

]
+ hδn+p+1. (11.62)
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Denote by
{
ψ(n)

j

}
a sequence of fundamental solutions to the homogeneous equa-

tion associated with (11.61). Recalling (11.42), the general solution of (11.61) is
given by

w(h)
n =

p∑

j=0

w(h)
j ψ(n)

j +
n∑

l=p+1

ψ(n−l+p)
p ϕl, n = p + 1, . . .

The following result expresses the connection between the root condition and the
boundedness of the solution of a difference equation (for the proof, see [Gau97],
Theorem 6.3.2).

Lemma 11.3 There exists a constant M > 0 for any solution {un} of the dif-
ference equation (11.28) such that

|un| ≤M

{

max
j=0,... ,k−1

|uj | +
n∑

l=k

|ϕl|
}

, n = 0, 1, . . . (11.63)

iff the root condition is satisfied for the polynomial (11.30), i.e., (11.56) holds for
the zeros of the polynomial (11.30).

Let us now recall that, for any j, {ψ(n)
j } is solution of a homogeneous difference

equation whose initial data are ψ(i)
j = δij , i, j = 0, . . . , p. On the other hand, for

any l, ψ(n−l+p)
p is solution of a difference equation with zero initial conditions and

right-hand sides equal to zero except for the one corresponding to n = l which is
ψ(p)

p = 1.
Therefore, Lemma 11.3 can be applied in both cases so we can conclude that

there exists a constant M > 0 such that |ψ(n)
j | ≤ M and |ψ(n−l+p)

p | ≤ M ,
uniformly with respect to n and l. The following estimate thus holds

|w(h)
n | ≤M




(p + 1) max
j=0,... ,p

|w(h)
j | +

n∑

l=p+1

|ϕl|




 , n = 0, 1, . . . , Nh. (11.64)

If L denotes the Lipschitz constant of f , from (11.62) we get

|ϕn+p+1| ≤ h max
j=0,... ,p+1

|βj |L
p+1∑

j=0

|w(h)
n+j | + h|δn+p+1|.

Let β = max
j=0,... ,p+1

|βj | and ∆[q,r] = max
j=q,... ,r

|δj+q|, q and r being some integers

with q ≤ r. From (11.64), the following estimate is therefore obtained

|w(h)
n | ≤ M




(p + 1)∆[0,p] + hβL
n∑

l=p+1

p+1∑

j=0

|w(h)
l−p−1+j | + Nhh∆[p+1,n]






≤ M

{

(p + 1)∆[0,p] + hβL(p + 2)
n∑

m=0

|w(h)
m | + T∆[p+1,n]

}

.
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Let Q = 2(p + 2)βLM and h0 = 1/Q, so that 1− hQ
2 ≥

1
2 if h ≤ h0. Then

1
2
|w(h)

n | ≤ |w(h)
n |(1− hQ

2 )

≤ M

{

(p + 1)∆[0,p] + hβL(p + 2)
n−1∑

m=0

|w(h)
m | + T∆[p+1,n]

}

.

Letting R = 2M
{
(p + 1)∆[0,p] + T∆[p+1,n]

}
, we finally obtain

|w(h)
n | ≤ hQ

n−1∑

m=0

|w(h)
m | + R.

Applying Lemma 11.2 with the following identifications: ϕn = |w(h)
n |, g0 = R,

ps = 0 and ks = hQ for any s = 0, . . . , n− 1, yields

|w(h)
n | ≤ 2MeTQ {

(p + 1)∆[0,p] + T∆[p+1,n]
}
. (11.65)

Method (11.45) is thus zero-stable for any h ≤ h0. !

Theorem 11.4 allows for characterizing the stability behavior of several
families of discretization methods.

In the special case of consistent one-step methods, the polynomial ρ ad-
mits only the root r0 = 1. They thus automatically satisfy the root condition
and are zero-stable.

For the Adams methods (11.49), the polynomial ρ is always of the form
ρ(r) = rp+1 − rp. Thus, its roots are r0 = 1 and r1 = 0 (with multiplicity
p) so that all Adams methods are zero-stable.

Also the midpoint method (11.43) and Simpson method (11.44) are zero-
stable: for both of them, the first characteristic polynomial is ρ(r) = r2−1,
so that r0 = 1 and r1 = −1.

Finally, the BDF methods of Section 11.5.2 are zero-stable provided that
p ≤ 5, since in such a case the root condition is satisfied (see [Cry73]).

We are in position to give the following convergence result.

Theorem 11.5 (Convergence) A consistent multistep method is conver-
gent iff it satisfies the root condition and the error on the initial data tends
to zero as h → 0. Moreover, the method converges with order q if it has
order q and the error on the initial data tends to zero as O(hq).

Proof. Suppose that the MS method is consistent and convergent. To prove that
the root condition is satisfied, we refer to the problem y′(t) = 0 with y(0) = 0
and on the interval I = (0, T ). Convergence means that the numerical solution
{un} must tend to the exact solution y(t) = 0 for any converging set of initial
data uk, k = 0, . . . , p, i.e. max

k=0,... ,p
|uk| → 0 as h → 0. From this observation, the

proof follows by contradiction along the same lines as the proof of Theorem 11.4,
where the parameter ε is now replaced by h.
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Let us now prove that consistency, together with the root condition, implies
convergence under the assumption that the error on the initial data tends to zero
as h→ 0. We can apply Theorem 11.4, setting u(h)

n = un (approximate solution
of the Cauchy problem) and z(h)

n = yn (exact solution), and from (11.47) it turns
out that δm = τm(h). Then, due to (11.65), for any n ≥ p + 1 we obtain

|un − yn| ≤ 2MeTQ

{
(p + 1) max

j=0,... ,p
|uj − yj | + T max

j=p+1,... ,n
|τj(h)|

}
.

Convergence holds by noticing that the right-hand side of this inequality tends
to zero as h→ 0. !

A remarkable consequence of the above theorem is the following equivalence
Lax-Richtmyer theorem.

Corollary 11.1 (Equivalence theorem) A consistent multistep method
is convergent iff it is zero-stable and if the error on the initial data tends
to zero as h tends to zero.

We conclude this section with the following result, which establishes an
upper limit for the order of multistep methods (see [Dah63]).

Property 11.1 (First Dahlquist barrier) There isn’t any zero-stable,
p-step linear multistep method with order greater than p + 1 if p is odd,
p + 2 if p is even.

11.6.4 Absolute Stability of Multistep Methods
Consider again the difference equation (11.54), which was obtained by ap-
plying the MS method (11.45) to the model problem (11.24). According to
(11.33), its solution takes the form

un =
k′∑

j=1

(mj−1∑

s=0

γsjn
s

)

[rj(hλ)]n, n = 0, 1, . . .

where rj(hλ), j = 1, . . . , k′, are the distinct roots of the characteristic
polynomial (11.55), and having denoted by mj the multiplicity of rj(hλ).
In view of (11.25), it is clear that the absolute root condition introduced
by Definition 11.12 is necessary and sufficient to ensure that the multistep
method (11.45) is absolutely stable as h ≤ h0.

Among the methods enjoying the absolute stability property, the pref-
erence should go to those for which the region of absolute stability A,
introduced in (11.26), is as wide as possible or even unbounded. Among
these are the A-stable methods introduced at the end of Section 11.3.3 and
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the ϑ-stable methods, for which A contains the angular region defined by
z ∈ C such that −ϑ < π − arg(z) < ϑ, with ϑ ∈ (0,π/2). A-stable meth-
ods are of remarkable importance when solving stiff problems (see Section
11.10).

Im

Re

Im

Reϑ

ϑ

FIGURE 11.4. Regions of absolute stability for A-stable (left) and (right) ϑ-stable
methods

The following result, whose proof is given in [Wid67], establishes a relation
between the order of a multistep method, the number of its steps and its
stability properties.

Property 11.2 (Second Dahlquist barrier) A linear explicit multistep
method can be neither A-stable, nor ϑ-stable. Moreover, there is no A-
stable linear multistep method with order greater than 2. Finally, for any
ϑ ∈ (0,π/2), there only exist ϑ-stable p-step linear multistep methods of
order p for p = 3 and p = 4.

Let us now examine the region of absolute stability of several MS methods.

The regions of absolute stability of both explicit and implicit Adams schemes
reduce progressively as the order of the method increases. In Figure 11.5
(left) we show the regions of absolute stability for the AB methods exam-
ined in Section 11.5.1, with exception of the Forward Euler method whose
region is shown in Figura 11.3.

The regions of absolute stability of the Adams-Moulton schemes, except
for the Crank-Nicolson method which is A-stable, are represented in Figure
11.5 (right).

In Figure 11.6 the regions of absolute stability of some of the BDF meth-
ods introduced in Section 11.5.2 are drawn. They are unbounded and al-
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FIGURE 11.5. Outer contours of the regions of absolute stability for
Adams-Bashforth methods (left) ranging from second to fourth-order (AB2, AB3
and AB4) and for Adams-Moulton methods (right), from third to fifth-order
(AM3, AM4 and AM5). Notice that the region of the AB3 method extends into
the half-plane with positive real part. The region for the explicit Euler (AB1)
method was drawn in Figure 11.3

ways contain the negative real numbers. These stability features make BDF
methods quite attractive for solving stiff problems (see Section 11.10).

−4 −2 0 2 4 6 8 10 12 14

−6

−4

−2

0

2

4

6

BDF6

BDF5

BDF3

FIGURE 11.6. Inner contours of regions of absolute stability for three-step
(BDF3), five-step (BDF5) and six-step (BDF6) BDF methods. Unlike Adams
methods, these regions are unbounded and extend outside the limited portion
that is shown in the figure

Remark 11.3 Some authors (see, e.g., [BD74]) adopt an alternative defi-
nition of absolute stability by replacing (11.25) with the milder property

∃C > 0 : |un| ≤ C, as tn → +∞.

According to this new definition, the absolute stability of a numerical
method should be regarded as the counterpart of the asymptotic stabil-
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ity (11.6) of the Cauchy problem. The new region of absolute stability A∗

would be

A∗ = {z ∈ C : ∃C > 0, |un| ≤ C, ∀n ≥ 0}

and it would not necessarily coincide with A. For example, in the case of
the midpoint method A is empty (thus, it is unconditionally absolutely
unstable), while A∗ = {z = αi, α ∈ [−1, 1]}.

In general, if A is nonempty, then A∗ is its closure. We notice that zero-
stable methods are those for which the region A∗ contains the origin z = 0
of the complex plane. !

To conclude, let us notice that the strong root condition (11.57) implies,
for a linear problem, that

∀h ≤ h0, ∃C > 0 : |un| ≤ C(|u0| + . . . + |up|), ∀n ≥ p + 1. (11.66)

We say that a method is relatively stable if it satisfies (11.66). Clearly,
(11.66) implies zero-stability, but the converse does not hold.
Figure 11.7 summarizes the main conclusions that have been drawn in this
section about stability, convergence and root-conditions, in the particular
case of a consistent method applied to the model problem (11.24).

Root ⇐= Strong root ⇐= Absolute root
condition condition condition

cde
dde

cde

Convergence ⇐⇒ Zero ⇐= (11.66) ⇐= Absolute
stability stability

FIGURE 11.7. Relations between root conditions, stability and convergence for
a consistent method applied to the model problem (11.24)

11.7 Predictor-Corrector Methods

When solving a nonlinear Cauchy problem of the form (11.1), at each time
step implicit schemes require dealing with a nonlinear equation. For in-
stance, if the Crank-Nicolson method is used, we get the nonlinear equation

un+1 = un +
h

2
[fn + fn+1] = Ψ(un+1),
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that can be cast in the form Φ(un+1) = 0, where Φ(un+1) = un+1 −
Ψ(un+1). To solve this equation the Newton method would give

u(k+1)
n+1 = u(k)

n+1 − Φ(u(k)
n+1)/Φ

′(u(k)
n+1),

for k = 0, 1, . . . , until convergence and require an initial datum u(0)
n+1 suffi-

ciently close to un+1. Alternatively, one can resort to fixed-point iterations

u(k+1)
n+1 = Ψ(u(k)

n+1) (11.67)

for k = 0, 1, . . . , until convergence. In such a case, the global convergence
condition for the fixed-point method (see Theorem 6.1) sets a constraint
on the discretization stepsize of the form

h <
1

|b−1|L
(11.68)

where L is the Lipschitz constant of f with respect to y. In practice, ex-
cept for the case of stiff problems (see Section 11.10), this restriction on
h is not significant since considerations of accuracy put a much more re-
strictive constraint on h. However, each iteration of (11.67) requires one
evaluation of the function f and the computational cost can be reduced by
providing a good initial guess u(0)

n+1. This can be done by taking one step of
an explicit MS method and then iterating on (11.67) for a fixed number m
of iterations. By doing so, the implicit MS method that is employed in the
fixed-point scheme “corrects” the value of un+1 “predicted” by the explicit
MS method. A procedure of this sort is called a predictor-corrector method,
or PC method. There are many ways in which a predictor-corrector method
can be implemented.

In its basic version, the value u(0)
n+1 is computed by an explicit p̃+1-step

method, called the predictor (here identified by the coefficients {ãj , b̃j})

[P ] u(0)
n+1 =

p̃∑

j=0

ãju
(1)
n−j + h

p̃∑

j=0

b̃jf
(0)
n−j ,

where f (0)
k = f(tk, u

(0)
k ) and u(1)

k are the solutions computed by the PC
method at the previous steps or are the initial conditions. Then, we evaluate
the function f at the new point (tn+1, u

(0)
n+1) (evaluation step)

[E] f (0)
n+1 = f(tn+1, u

(0)
n+1),

and finally, one single fixed-point iteration is carried out using an implicit
MS scheme of the form (11.45)

[C] u(1)
n+1 =

p∑

j=0

aju
(1)
n−j + hb−1f

(0)
n+1 + h

p∑

j=0

bjf
(0)
n−j .
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This second step of the procedure, which is actually explicit, is called the
corrector. The overall procedure is shortly denoted by PEC or P (EC)1
method, in which P and C denote one application at time tn+1 of the
predictor and the corrector methods, respectively, while E indicates one
evaluation of the function f .

This strategy above can be generalized supposing to perform m > 1 iter-
ations at each step tn+1. The corresponding methods are called predictor-
multicorrector schemes and compute u(0)

n+1 at time step tn+1 using the pre-
dictor in the following form

[P ] u(0)
n+1 =

p̃∑

j=0

ãju
(m)
n−j + h

p̃∑

j=0

b̃jf
(m−1)
n−j . (11.69)

Here m ≥ 1 denotes the (fixed) number of corrector iterations that are
carried out in the following steps [E], [C]: for k = 0, 1, . . . ,m− 1

[E] f (k)
n+1 = f(tn+1, u

(k)
n+1),

[C] u(k+1)
n+1 =

p∑

j=0

aju
(m)
n−j + hb−1f

(k)
n+1 + h

p∑

j=0

bjf
(m−1)
n−j .

These implementations of the predictor-corrector technique are referred to
as P (EC)m. Another implementation, denoted by P (EC)mE, consists of
updating at the end of the process also the function f and is given by

[P ] u(0)
n+1 =

p̃∑

j=0

ãju
(m)
n−j + h

p̃∑

j=0

b̃jf
(m)
n−j ,

and for k = 0, 1, . . . ,m− 1,

[E] f (k)
n+1 = f(tn+1, u

(k)
n+1),

[C] u(k+1)
n+1 =

p∑

j=0

aju
(m)
n−j + hb−1f

(k)
n+1 + h

p∑

j=0

bjf
(m)
n−j ,

followed by

[E] f (m)
n+1 = f(tn+1, u

(m)
n+1).

Example 11.8 Heun’s method (11.10) can be regarded as a predictor-corrector
method whose predictor is the forward Euler method, while the corrector is the
Crank-Nicolson method.

Another example is provided by the Adams-Bashforth method of order 2
(11.50) and the Adams-Moulton method of order 3 (11.51). Its corresponding
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PEC implementation is: given u(0)
0 = u(1)

0 = u0, u(0)
1 = u(1)

1 = u1 and f (0)
0 =

f(t0, u(0)
0 ), f (0)

1 = f(t1, u(0)
1 ), compute for n = 1, 2, . . . ,

[P ] u(0)
n+1 = u(1)

n +
h
2

[
3f (0)

n − f (0)
n−1

]
,

[E] f (0)
n+1 = f(tn+1, u

(0)
n+1),

[C] u(1)
n+1 = u(1)

n +
h
12

[
5f (0)

n+1 + 8f (0)
n − f (0)

n−1

]
,

while the PECE implementation is: given u(0)
0 = u(1)

0 = u0, u(0)
1 = u(1)

1 = u1 and
f (1)
0 = f(t0, u(1)

0 ), f (1)
1 = f(t1, u(1)

1 ), compute for n = 1, 2, . . . ,

[P ] u(0)
n+1 = u(1)

n +
h
2

[
3f (1)

n − f (1)
n−1

]
,

[E] f (0)
n+1 = f(tn+1, u

(0)
n+1),

[C] u(1)
n+1 = u(1)

n +
h
12

[
5f (0)

n+1 + 8f (1)
n − f (1)

n−1

]
,

[E] f (1)
n+1 = f(tn+1, u

(1)
n+1).

•

Before studying the convergence of predictor-corrector methods, we intro-
duce a simplification in the notation. Usually the number of steps of the
predictor is greater than those of the corrector, so that we define the num-
ber of steps of the predictor-corrector pair as being equal to the number of
steps of the predictor. This number will be denoted henceforth by p. Owing
to this definition we no longer demand that the coefficients of the corrector
satisfy |ap| + |bp| '= 0. Consider for example the predictor-corrector pair

[P ] u(0)
n+1 = u(1)

n + hf(tn−1, u
(0)
n−1),

[C] u(1)
n+1 = u(1)

n + h
2

[
f(tn, u

(0)
n ) + f(tn+1, u

(0)
n+1)

]
,

for which p = 2 (even though the corrector is a one-step method). Conse-
quently, the first and the second characteristic polynomials of the corrector
method will be ρ(r) = r2 − r and σ(r) = (r2 + r)/2 instead of ρ(r) = r− 1
and σ(r) = (r + 1)/2.

In any predictor-corrector method, the truncation error of the predictor
combines with the one of the corrector, generating a new truncation error
which we are going to examine. Let q̃ and q be, respectively, the orders of the
predictor and the corrector and assume that y ∈ C q̂+1, where q̂ = max(q̃, q).
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Then

y(tn+1) −
p∑

j=0

ãjy(tn−j)− h
p∑

j=0

b̃jf(tn−j , yn−j)

= C̃q̃+1hq̃+1y(q̃+1)(tn) + O(hq̃+2),

y(tn+1) −
p∑

j=0

ajy(tn−j)− h
p∑

j=−1

bjf(tn−j , yn−j)

= Cq+1hq+1y(q+1)(tn) + O(hq+2),

where C̃q̃+1, Cq+1 are the error constants of the predictor and the corrector
method respectively. The following result holds.

Property 11.3 Let the predictor method have order q̃ and the corrector
method have order q. Then:

If q̃ ≥ q (or q̃ < q with m > q − q̃), then the predictor-corrector method
has the same order and the same PLTE as the corrector.

If q̃ < q and m = q− q̃, then the predictor-corrector method has the same
order as the corrector, but different PLTE.

If q̃ < q and m ≤ q− q̃− 1, then the predictor-corrector method has order
equal to q̃ + m (thus less than q).

In particular, notice that if the predictor has order q− 1 and the corrector
has order q, the PEC suffices to get a method of order q. Moreover, the
P (EC)mE and P (EC)m schemes have always the same order and the same
PLTE.

Combining the Adams-Bashforth method of order q with the correspond-
ing Adams-Moulton method of the same order we obtain the so-called ABM
method of order q. It is possible to estimate its PLTE as

Cq+1

C∗
q+1 − Cq+1

(
u(m)
n+1 − u(0)

n+1

)
,

where Cq+1 and C∗
q+1 are the error constants given in Table 11.1. Accord-

ingly, the steplength h can be decreased if the estimate of the PLTE exceeds
a given tolerance and increased otherwise (for the adaptivity of the step
length in a predictor-corrector method, see [Lam91], pp.128–147).

Program 93 provides an implementation of the P (EC)mE methods. The
input parameters at, bt, a, b contain the coefficients ãj , b̃j (j = 0, . . . , p̃)
of the predictor and the coefficients aj (j = 0, . . . , p), bj (j = −1, . . . , p) of
the corrector. Moreover, f is a string containing the expression of f(t, y),
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h is the stepsize, t0 and tf are the end points of the time integration
interval, u0 is the vector of the initial data, m is the number of the corrector
inner iterations. The input variable pece must be set equal to ’y’ if the
P (EC)mE is selected, conversely the P (EC)m scheme is chosen.

Program 93 - predcor : Predictor-corrector scheme

function [u,t]=predcor(a,b,at,bt,h,f,t0,u0,tf,pece,m)
p = max(length(a),length(b)-1); pt = max(length(at),length(bt));
q = max(p,pt); if length(u0) < q, break, end;
t = [t0:h:t0+(q-1)*h]; u = u0; y = u0; fe = eval(f);
k = q;
for t = t0+q*h:h:tf

ut = sum(at.*u(k:-1:k-pt+1))+h*sum(bt.*fe(k:-1:k-pt+1));
y = ut; foy = eval(f);
uv = sum(a.*u(k:-1:k-p+1))+h*sum(b(2:p+1).*fe(k:-1:k-p+1));
k = k+1;
for j = 1:m

fy = foy; up = uv + h*b(1)*fy; y = up; foy = eval(f);
end
if (pece==’y’|pece==’Y’)

fe = [fe, foy];
else

fe = [fe, fy];
end
u = [u, up];

end
t = [t0:h:tf];

Example 11.9 Let us check the performance of the P (EC)mE method on the
Cauchy problem y′(t) = e−y(t) for t ∈ [0, 1] with y(0) = 1. The exact solution is
y(t) = log(1 + t). In all the numerical experiments, the corrector method is the
Adams-Moulton third-order scheme (AM3), while the explicit Euler (AB1) and
the Adams-Bashforth second-order (AB2) methods are used as predictors. Figure
11.8 shows that the pair AB2-AM3 (m = 1) yields third-order convergence rate,
while AB1-AM3 (m = 1) has a first-order accuracy. Taking m = 2 allows to
recover the third-order convergence rate of the corrector for the AB1-AM3 pair.
•

As for the absolute stability, the characteristic polynomial of P (EC)m
methods reads

ΠP (EC)m(r) = b−1r
p (ρ̂(r)− hλσ̂(r)) +

Hm(1−H)
1−Hm

(ρ̃(r)σ̂(r)− ρ̂(r)σ̃(r))

while for P (EC)mE we have

ΠP (EC)mE(r) = ρ̂(r)− hλσ̂(r) +
Hm(1−H)

1−Hm
(ρ̃(r)− hλσ̃(r)) .
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FIGURE 11.8. Convergence rate for P (EC)mE methods as a function of log(h).
The symbol ∇ refers to the AB2-AM3 method (m = 1), ◦ to AB1-AM3 (m = 1)
and # to AB1-AM3 with m = 2

We have set H = hλb−1 and denoted by ρ̃ and σ̃ the first and second charac-
teristic polynomial of the predictor method, respectively. The polynomials
ρ̂ and σ̂ are related to the first and second characteristic polynomials of the
corrector, as previously explained after Example 11.8. Notice that in both
cases the characteristic polynomial tends to the corresponding polynomial
of the corrector method, since the function Hm(1−H)/(1−Hm) tends to
zero as m tends to infinity.

Example 11.10 If we consider the ABM methods with a number of steps p, the
characteristic polynomials are ρ̂(r) = ρ̃(r) = r(rp−1 − rp−2), while σ̂(r) = rσ(r),
where σ(r) is the second characteristic polynomial of the corrector. In Figure 11.9
(right) the stability regions for the ABM methods of order 2 are plotted. In the
case of the ABM methods of order 2, 3 and 4, the corresponding stability regions
can be ordered by size, namely, from the largest to the smallest one the regions of
PECE, P (EC)2E, the predictor and PEC methods are plotted in Figure 11.9,
left. The one-step ABM method is an exception to the rule and the largest region
is the one corresponding to the predictor method (see Figure 11.9, left). •

11.8 Runge-Kutta (RK) Methods

When evolving from the forward Euler method (11.7) toward higher-order
methods, linear multistep methods (MS) and Runge-Kutta methods (RK)
adopt two opposite strategies.

Like the Euler method, MS schemes are linear with respect to both un

and fn = f(tn, un), require only one functional evaluation at each time
step and their accuracy can be increased at the expense of increasing the
number of steps. On the other hand, RK methods maintain the structure
of one-step methods, and increase their accuracy at the price of an increase
of functional evaluations at each time level, thus sacrifying linearity.
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FIGURE 11.9. Stability regions for the ABM methods of order 1 (left) and 2
(right)

A consequence is that RK methods are more suitable than MS methods
at adapting the stepsize, whereas estimating the local error for RK methods
is more difficult than it is in the case of MS methods.
In its most general form, an RK method can be written as

un+1 = un + hF (tn, un, h; f), n ≥ 0 (11.70)

where F is the increment function defined as follows

F (tn, un, h; f) =
s∑

i=1

biKi,

Ki = f(tn + cih, un + h
s∑

j=1

aijKj), i = 1, 2, . . . , s
(11.71)

and s denotes the number of stages of the method. The coefficients {aij},
{ci} and {bi} fully characterize an RK method and are usually collected in
the so-called Butcher array

c1 a11 a12 . . . a1s
c2 a21 a22 a2s
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

or
c A

bT

where A = (aij) ∈ Rs×s, b = (b1, . . . , bs)
T ∈ Rs and c = (c1, . . . , cs)

T ∈
Rs. We shall henceforth assume that the following condition holds

ci =
s∑

j=1

aij i = 1, . . . , s. (11.72)
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If the coefficients aij in A are equal to zero for j ≥ i, with i = 1, 2, . . . , s,
then each Ki can be explicitly computed in terms of the i − 1 coefficients
K1, . . . ,Ki−1 that have already been determined. In such a case the RK
method is explicit. Otherwise, it is implicit and solving a nonlinear system
of size s is necessary for computing the coefficients Ki.

The increase in the computational effort for implicit schemes makes their
use quite expensive; an acceptable compromise is provided by RK semi-
implicit methods, in which case aij = 0 for j > i so that each Ki is the
solution of the nonlinear equation

Ki = f



tn + cih, un + haii Ki + h
i−1∑

j=1

aijKj



 .

A semi-implicit scheme thus requires s nonlinear independent equations to
be solved.

The local truncation error τn+1(h) at node tn+1 of the RK method
(11.70) is defined through the residual equation

hτn+1(h) = yn+1 − yn − hF (tn, yn, h; f),

where y(t) is the exact solution to the Cauchy problem (11.1). Method
(11.70) is consistent if τ(h) = maxn |τn(h)|→ 0 as h→ 0. It can be shown
(see [Lam91]) that this happens iff

s∑

i=1

bi = 1.

As usual, we say that (11.70) is a method of order p (≥ 1) with respect to
h if τ(h) = O(hp) as h→ 0.

As for convergence, since RK methods are one-step methods, consistency
implies stability and, in turn, convergence. As happens for MS methods,
estimates of τ(h) can be derived; however, these estimates are often too
complicated to be profitably used. We only mention that, as for MS meth-
ods, if an RK scheme has a local truncation error τn(h) = O(hp), for any
n, then also the convergence order will be equal to p.

The following result establishes a relation between order and number of
stages of explicit RK methods.

Property 11.4 The order of an s-stage explicit RK method cannot be
greater than s. Also, there do not exist s-stage explicit RK methods with
order s ≥ 5.

We refer the reader to [But87] for the proofs of this result and the results we
give below. In particular, for orders ranging between 1 and 10, the minimum



11.8 Runge-Kutta (RK) Methods 511

number of stages smin required to get a method of corresponding order is
shown below

order 1 2 3 4 5 6 7 8
smin 1 2 3 4 6 7 9 11

Notice that 4 is the maximum number of stages for which the order of the
method is not less than the number of stages itself. An example of a fourth-
order RK method is provided by the following explicit 4-stage method

un+1 = un +
h

6
(K1 + 2K2 + 2K3 + K4)

K1 = fn,

K2 = f(tn + h
2 , un + h

2K1),

K3 = f(tn + h
2 , un + h

2K2),

K4 = f(tn+1, un + hK3).

(11.73)

As far as implicit schemes are concerned, the maximum achievable order
using s stages is equal to 2s.

Remark 11.4 (The case of systems of ODEs) An RK method can be
readily extended to systems of ODEs. However, the order of an RK method
in the scalar case does not necessarily coincide with that in the vector
case. In particular, for p ≥ 4, a method having order p in the case of the
autonomous system y′ = f(y), with f : Rm → Rn maintains order p even
when applied to an autonomous scalar equation y′ = f(y), but the converse
is not true. Regarding this concern, see [Lam91], Section 5.8. !

11.8.1 Derivation of an Explicit RK Method
The standard technique for deriving an explicit RK method consists of en-
forcing that the highest number of terms in Taylor’s expansion of the exact
solution yn+1 about tn coincide with those of the approximate solution
un+1, assuming that we take one step of the RK method starting from the
exact solution yn. We provide an example of this technique in the case of
an explicit 2-stage RK method.

Let us consider a 2-stage explicit RK method and assume to dispose at
the n-th step of the exact solution yn. Then

un+1 = yn + hF (tn, yn, h; f) = yn + h(b1K1 + b2K2),

K1 = fn, K2 = f(tn + hc2, yn + hc2K1),

having assumed that (11.72) is satisfied. Expanding K2 in a Taylor series
in a neighborhood of tn and truncating the expansion at the second order,
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we get

K2 = fn + hc2(fn,t + K1fn,y) + O(h2).

We have denoted by fn,z (for z = t or z = y) the partial derivative of f
with respect to z evaluated at (tn, yn). Then

un+1 = yn + hfn(b1 + b2) + h2c2b2(fn,t + fnfn,y) + O(h3).

If we perform the same expansion on the exact solution, we find

yn+1 = yn + hy′n +
h2

2
y′′n + O(h3) = yn + hfn +

h2

2
(fn,t + fnfn,y) + O(h3).

Forcing the coefficients in the two expansions above to agree, up to higher-
order terms, we obtain that the coefficients of the RK method must satisfy
b1 + b2 = 1, c2b2 = 1

2 .
Thus, there are infinitely many 2-stage explicit RK methods with second-

order accuracy. Two examples are the Heun method (11.10) and the modi-
fied Euler method (11.91). Of course, with similar (and cumbersome) com-
putations in the case of higher-stage methods, and accounting for a higher
number of terms in Taylor’s expansion, one can generate higher-order RK
methods. For instance, retaining all the terms up to the fifth one, we get
scheme (11.73).

11.8.2 Stepsize Adaptivity for RK Methods
Since RK schemes are one-step methods, they are well-suited to adapting
the stepsize h, provided that an efficient estimator of the local error is
available. Usually, a tool of this kind is an a posteriori error estimator,
since the a priori local error estimates are too complicated to be used in
practice. The error estimator can be constructed in two ways:

- using the same RK method, but with two different stepsizes (typically 2h
and h);
- using two RK methods of different order, but with the same number s of
stages.

In the first case, if an RK method of order p is being used, one pretends
that, starting from an exact datum un = yn (which would not be available
if n ≥ 1), the local error at tn+1 is less than a fixed tolerance. The following
relation holds

yn+1 − un+1 = Φ(yn)hp+1 + O(hp+2), (11.74)

where Φ is an unknown function evaluated at yn. (Notice that, in this
special case, yn+1 − un+1 = hτn+1(h)).



11.8 Runge-Kutta (RK) Methods 513

Carrying out the same computation with a stepsize of 2h, starting from
tn−1, and denoting by ûn+1 the computed solution, yields

yn+1 − ûn+1 = Φ(yn−1)(2h)p+1 + O(hp+2) = Φ(yn)(2h)p+1 + O(hp+2)(11.75)

having expanded also yn−1 with respect to tn. Subtracting (11.74) from
(11.75), we get

(2p+1 − 1)hp+1Φ(yn) = un+1 − ûn+1 + O(hp+2),

from which

yn+1 − un+1 1
un+1 − ûn+1

(2p+1 − 1)
= E .

If |E| is less than the fixed tolerance ε, the scheme moves to the next time
step, otherwise the estimate is repeated with a halved stepsize. In general,
the stepsize is doubled whenever |E| is less than ε/2p+1.

This approach yields a considerable increase in the computational effort,
due to the s− 1 extra functional evaluations needed to generate the value
ûn+1. Moreover, if one needs to half the stepsize, the value un must also
be computed again.

An alternative that does not require extra functional evaluations consists
of using simultaneously two different RK methods with s stages, of order
p and p + 1, respectively, which share the same set of values Ki. These
methods are synthetically represented by the modified Butcher array

c A
bT 2

b̂T 2

ET 2

(11.76)

where the method of order p is identified by the coefficients c, A and b,
while that of order p+ 1 is identified by c, A and b̂, and where E = b− b̂.

Taking the difference between the approximate solutions at tn+1 pro-
duced by the two methods provides an estimate of the local truncation
error for the scheme of lower order. On the other hand, since the coeffi-
cients Ki coincide, this difference is given by h

∑s
i=1 EiKi and thus it does

not require extra functional evaluations.
Notice that, if the solution un+1 computed by the scheme of order p is

used to initialize the scheme at time step n+2, the method will have order
p, as a whole. If, conversely, the solution computed by the scheme of order
p+1 is employed, the resulting scheme would still have order p+1 (exactly
as happens with predictor-corrector methods).

The Runge-Kutta Fehlberg method of fourth-order is one of the most
popular schemes of the form (11.76) and consists of a fourth-order RK
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scheme coupled with a fifth-order RK method (for this reason, it is known
as the RK45 method). The modified Butcher array for this method is shown
below

0 0 0 0 0 0 0
1
4

1
4 0 0 0 0 0

3
8

3
32

9
32 0 0 0 0

12
13

1932
2197 − 7200

2197
7296
2197 0 0 0

1 439
216 −8 3680

513 − 845
4104 0 0

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40 0

25
216 0 1408

2565
2197
4104 − 1

5 0
16
135 0 6656

12825
28561
56430 − 9

50
2
55

1
360 0 − 128

4275 − 2197
75240

1
50

2
55

This method tends to underestimate the error. As such, its use is not com-
pletely reliable when the stepsize h is large.

Remark 11.5 MATLAB provides a package tool funfun, which, besides
the two classical Runge-Kutta Fehlberg methods, RK23 (second-order and
third-order pair) and RK45 (fourth-order and fifth-order pair), also imple-
ments other methods suitable for solving stiff problems. These methods are
derived from BDF methods (see [SR97]) and are included in the MATLAB
program ode15s. !

11.8.3 Implicit RK Methods
Implicit RK methods can be derived from the integral formulation of the
Cauchy problem (11.2). In fact, if a quadrature formula with s nodes in
(tn, tn+1) is employed to approximate the integral of f (which we assume,
for simplicity, to depend only on t), we get

tn+1∫

tn

f(τ) dτ 1 h
s∑

j=1

bjf(tn + cjh)

having denoted by bj the weights and by tn + cjh the quadrature nodes. It
can be proved (see [But64]) that for any RK formula (11.70)-(11.71), there
exists a correspondence between the coefficients bj , cj of the formula and
the weights and nodes of a Gauss quadrature rule.

In particular, the coefficients c1, . . . , cs are the roots of the Legendre
polynomial Ls in the variable x = 2c − 1, so that x ∈ [−1, 1]. Once the
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s coefficients cj have been found, we can construct RK methods of order
2s, by determining the coefficients aij and bj as being the solutions of the
linear systems

s∑

j=1

ck−1
j aij = (1/k)cki , k = 1, 2, . . . , s,

s∑

j=1

ck−1
j bj = 1/k, k = 1, 2, . . . , s.

The following families can be derived:

1. Gauss-Legendre RK methods, if Gauss-Legendre quadrature nodes are
used. These methods, for a fixed number of stages s, attain the maximum
possible order 2s. Remarkable examples are the one-stage method (implicit
midpoint method) of order 2

un+1 = un + hf
(
tn + 1

2h,
1
2 (un + un+1)

)
,

1
2

1
2

1

and the 2-stage method of order 4, described by the following Butcher array

3−
√

3
6

1
4

3−2
√

3
12

3+
√

3
6

3+2
√

3
12

1
4

1
2

1
2

2. Gauss-Radau methods, which are characterized by the fact that the
quadrature nodes include one of the two endpoints of the interval (tn, tn+1).
The maximum order that can be achieved by these methods is 2s−1, when
s stages are used. Elementary examples correspond to the following Butcher
arrays

0 1
1 ,

1 1
1 ,

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

and have order 1, 1 and 3, respectively. The Butcher array in the middle
represents the backward Euler method.

3. Gauss-Lobatto methods, where both the endpoints tn and tn+1 are quadra-
ture nodes. The maximum order that can be achieved using s stages is
2s− 2. We recall the methods of the family corresponding to the following
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Butcher arrays

0 0 0
1 1

2
1
2

1
2

1
2

,

0 1
2 0

1 1
2 0

1
2

1
2

,

0 1
6 − 1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

which have order 2, 2 and 3, respectively. The first array represents the
Crank-Nicolson method.

As for semi-implicit RK methods, we limit ourselves to mentioning the
case of DIRK methods (diagonally implicit RK), which, for s = 3, are
represented by the following Butcher array

1+µ
2

1+µ
2 0 0

1
2 −µ

2
1+µ

2 0
1−µ

2 1 + µ −1− 2µ 1+µ
2

1
6µ2 1− 1

3µ2
1

6µ2

The parameter µ represents one of the three roots of 3µ3−3µ−1 = 0 (i.e.,
(2/
√

3) cos(10o), −(2/
√

3) cos(50o), −(2/
√

3) cos(70o)). The maximum or-
der that has been determined in the literature for these methods is 4.

11.8.4 Regions of Absolute Stability for RK Methods
Applying an s-stage RK method to the model problem (11.24) yields

Ki = un + hλ
s∑

i=1

aijKj , un+1 = un + hλ
s∑

i=1

biKi, (11.77)

that is, a first-order difference equation. If K and 1 are the vectors of com-
ponents (K1, . . . ,Ks)T and (1, . . . , 1)T , respectively, then (11.77) becomes

K = un1 + hλAK, un+1 = un + hλbTK,

from which, K = (I− hλA)−11un and thus

un+1 =
[
1 + hλbT (I− hλA)−11

]
un = R(hλ)un

where R(hλ) is the so-called stability function.
The RK method is absolutely stable, i.e., the sequence {un} satisfies

(11.25), iff |R(hλ)| < 1. Its region of absolute stability is given by

A = {z = hλ ∈ C such that |R(hλ)| < 1} .
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If the method is explicit, A is strictly lower triangular and the function R
can be written in the following form (see [DV84])

R(hλ) =
det(I− hλA + hλ1bT )

det(I− hλA)
.

Thus since det(I−hλA) = 1, R(hλ) is a polynomial function in the variable
hλ, |R(hλ)| can never be less than 1 for all values of hλ. Consequently, A
can never be unbounded for an explicit RK method.

In the special case of an explicit RK of order s = 1, . . . , 4, one gets (see
[Lam91])

R(hλ) =
s∑

k=0

1
k!

(hλ)k.

The corresponding regions of absolute stability are drawn in Figure 11.10.
Notice that, unlike MS methods, the regions of absolute stability of RK
methods increase in size as the order grows.
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FIGURE 11.10. Regions of absolute stability for s-stage explicit RK methods,
with s = 1, . . . , 4. The plot only shows the portion Im(hλ) ≥ 0 since the regions
are symmetric about the real axis

We finally notice that the regions of absolute stability for explicit RK meth-
ods can fail to be connected; an example is given in Exercise 14.

11.9 Systems of ODEs

Let us consider the system of first-order ODEs

y′ = F(t,y), (11.78)

where F : R × Rn → Rn is a given vector function and y ∈ Rn is the
solution vector which depends on n arbitrary constants set by the n initial
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conditions

y(t0) = y0. (11.79)

Let us recall the following property (see [PS91], p. 209).

Property 11.5 Let F : R × Rn → Rn be a continuous function on D =
[t0, T ] × Rn, with t0 and T finite. Then, if there exists a positive constant
L such that

‖F(t,y)− F(t, ȳ)‖ ≤ L‖y − ȳ‖ (11.80)

holds for any (t,y) and (t, ȳ) ∈ D, then, for any y0 ∈ Rn there exists a
unique y, continuous and differentiable with respect to t for any (t,y) ∈ D,
which is a solution of the Cauchy problem (11.78)-(11.79).

Condition (11.80) expresses the fact that F is Lipschitz continuous with
respect to the second argument.

It is seldom possible to write out in closed form the solution to system
(11.78). A special case is where the system takes the form

y′(t) = Ay(t), (11.81)

with A∈ Rn×n. Assume that A has n distinct eigenvalues λj , j = 1, . . . , n;
therefore, the solution y can be written as

y(t) =
n∑

j=1

Cje
λjtvj , (11.82)

where C1, . . . , Cn are some constants and {vj} is a basis formed by the
eigenvectors of A, associated with the eigenvalues λj for j = 1, . . . , n. The
solution is determined by setting n initial conditions.

From the numerical standpoint, the methods introduced in the scalar
case can be extended to systems. A delicate matter is how to generalize the
theory developed about absolute stability.

With this aim, let us consider system (11.81). As previously seen, the
property of absolute stability is concerned with the behavior of the numer-
ical solution as t grows to infinity, in the case where the solution of problem
(11.78) satisfies

‖y(t)‖ → 0 as t→∞. (11.83)

Condition (11.83) is satisfied if all the real parts of the eigenvalues of A are
negative since this ensures that

eλjt = eReλjt(cos(Imλj) + i sin(Imλi)) → 0, as t→∞, (11.84)
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from which (11.83) follows recalling (11.82). Since A has n distinct eigen-
values, there exists a nonsingular matrix Q such that Λ = Q−1AQ, Λ being
the diagonal matrix whose entries are the eigenvalues of A (see Section 1.8).

Introducing the auxiliary variable z = Q−1y, the initial system can there-
fore be transformed into

z′ = Λz. (11.85)

Since Λ is a diagonal matrix, the results holding in the scalar case immedi-
ately apply to the vector case as well, provided that the analysis is repeated
on all the (scalar) equations of system (11.85).

11.10 Stiff Problems

Consider a nonhomogeneous linear system of ODEs with constant coeffi-
cients

y′(t) = Ay(t) + ϕ(t), with A ∈ Rn×n, ϕ(t) ∈ Rn,

and assume that A has n distinct eigenvalues λj , j = 1, . . . , n. Then

y(t) =
n∑

j=1

Cje
λjtvj + ψ(t)

where C1, . . . , Cn, are n constants, {vj} is a basis formed by the eigenvec-
tors of A and ψ(t) is a particular solution of the ODE at hand. Throughout
the section, we assume that Reλj < 0 for all j.

As t → ∞, the solution y tends to the particular solution ψ. We can
therefore interpret ψ as the steady-state solution (that is, after an infinite

time) and
n∑

j=1

Cje
λjt as being the transient solution (that is, for t finite).

Assume that we are interested only in the steady-state. If we employ a
numerical scheme with a bounded region of absolute stability, the stepsize h
is subject to a constraint that depends on the maximum module eigenvalue
of A. On the other hand, the greater this module, the shorter the time
interval where the corresponding component in the solution is meaningful.
We are thus faced with a sort of paradox: the scheme is forced to employ
a small integration stepsize to track a component of the solution that is
virtually flat for large values of t.

Precisely, if we assume that

σ ≤ Reλj ≤ τ < 0, ∀j = 1, . . . , n (11.86)

and introduce the stiffness quotient rs = σ/τ , we say that a linear system
of ODEs with constant coefficients is stiff if the eigenvalues of matrix A all
have negative real parts and rs 4 1.
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However, referring only to the spectrum of A to characterize the stiffness of
a problem might have some drawbacks. For instance, when τ 1 0, the stiff-
ness quotient can be very large while the problem appears to be “genuinely”
stiff only if |σ| is very large. Moreover, enforcing suitable initial conditions
can affect the stiffness of the problem (for example, selecting the data in
such a way that the constants multiplying the “stiff” components of the
solution vanish).

For this reason, several authors find the previous definition of a stiff
problem unsatisfactory, and, on the other hand, they agree on the fact that
it is not possible to exactly state what it is meant by a stiff problem. We
limit ourselves to quoting only one alternative definition, which is of some
interest since it focuses on what is observed in practice to be a stiff problem.

Definition 11.14 (from [Lam91], p. 220) A system of ODEs is stiff if,
when approximated by a numerical scheme characterized by a region of
absolute stability with finite size, it forces the method, for any initial con-
dition for which the problem admits a solution, to employ a discretization
stepsize excessively small with respect to the smoothness of the exact so-
lution. !
From this definition, it is clear that no conditionally absolute stable method
is suitable for approximating a stiff problem. This prompts resorting to
implicit methods, such as MS or RK, which are more expensive than explicit
schemes, but have regions of absolute stability of infinite size. However, it
is worth recalling that, for nonlinear problems, implicit methods lead to
nonlinear equations, for which it is thus crucial to select iterative numerical
methods free of limitations on h for convergence.

For instance, in the case of MS methods, we have seen that using fixed-
point iterations sets the constraint (11.68) on h in terms of the Lipschitz
constant L of f . In the case of a linear system this constraint is

L ≥ max
i=1,... ,n

|λi|,

so that (11.68) would imply a strong limitation on h (which could even
be more stringent than those required for an explicit scheme to be stable).
One way of circumventing this drawback consists of resorting to Newton’s
method or some variants. The presence of Dahlquist barriers imposes a
strong limitation on the use of MS methods, the only exception being BDF
methods, which, as already seen, are θ-stable for p ≤ 5 (for a larger number
of steps they are even not zero-stable). The situation becomes definitely
more favorable if implicit RK methods are considered, as observed at the
end of Section 11.8.4.

The theory developed so far holds rigorously if the system is linear. In
the nonlinear case, let us consider the Cauchy problem (11.78), where the
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function F : R × Rn → Rn is assumed to be differentiable. To study its
stability a possible strategy consists of linearizing the system as

y′(t) = F(τ,y(τ)) + JF(τ,y(τ)) [y(t)− y(τ)] ,

in a neighborhood (τ,y(τ)), where τ is an arbitrarily chosen value of t
within the time integration interval.

The above technique might be dangerous since the eigenvalues of JF do
not suffice in general to describe the behavior of the exact solution of the
original problem. Actually, some counterexamples can be found where:

1. JF has complex conjugate eigenvalues, while the solution of (11.78)
does not exhibit oscillatory behavior;

2. JF has real nonnegative eigenvalues, while the solution of (11.78) does
not grow monotonically with t;

3. JF has eigenvalues with negative real parts, but the solution of (11.78)
does not decay monotonically with t.

As an example of the case at item 3. let us consider the system of
ODEs

y′ =




− 1

2t
2
t3

− t

2
− 1

2t



y = A(t)y.

For t ≥ 1 its solution is

y(t) = C1

[
t−3/2

− 1
2 t

1/2

]
+ C2

[
2t−3/2 log t
t1/2(1− log t)

]

whose Euclidean norm diverges monotonically for t > (12)1/4 1 1.86
when C1 = 1, C2 = 0, whilst the eigenvalues of A(t), equal to (−1 ±
2i)/(2t), have negative real parts.

Therefore, the nonlinear case must be tackled using ad hoc techniques, by
suitably reformulating the concept of stability itself (see [Lam91], Chapter
7).

11.11 Applications

We consider two examples of dynamical systems that are well-suited to
checking the performances of several numerical methods introduced in the
previous sections.
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11.11.1 Analysis of the Motion of a Frictionless Pendulum
Let us consider the frictionless pendulum in Figure 11.11 (left), whose
motion is governed by the following system of ODEs

{
y′1 = y2,

y′2 = −K sin(y1),
(11.87)

for t > 0, where y1(t) and y2(t) represent the position and angular velocity
of the pendulum at time t, respectively, while K is a positive constant
depending on the geometrical-mechanical parameters of the pendulum. We
consider the initial conditions: y1(0) = θ0, y2(0) = 0.

y
weight1

A

A’ − π K
1/2

π K
1/2

FIGURE 11.11. Left: frictionless pendulum; right: orbits of system (11.87) in the
phase space

Denoting by y = (y1, y2)T the solution to system (11.87), this admits
infinitely many equilibrium conditions of the form y = (nπ, 0)T for n ∈ Z,
corresponding to the situations where the pendulum is vertical with zero
velocity. For n even, the equilibrium is stable, while for n odd it is unstable.
These conclusions can be drawn by analyzing the linearized system

y′ = Aey =

[
0 1

−K 0

]

y, y′ = Aoy =

[
0 1

K 0

]

y.

If n is even, matrix Ae has complex conjugate eigenvalues λ1,2 = ±i
√
K

and associated eigenvectors y1,2 = (∓i/
√
K, 1)T , while for n odd, Ao

has real and opposite eigenvalues λ1,2 = ±
√
K and eigenvectors y1,2 =

(1/
√
K,∓1)T .

Let us consider two different sets of initial data: y(0) = (θ0, 0)T and
y(0) = (π + θ0, 0)T , where |θ0| : 1. The solutions of the corresponding
linearized system are, respectively,
{

y1(t) = θ0 cos(
√
Kt)

y2(t) = −
√
Kθ0 sin(

√
Kt)

,

{
y1(t) = (π + θ0) cosh(

√
Kt)

y2(t) =
√
K(π + θ0) sinh(

√
Kt),
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and will be henceforth denoted as “stable” and “unstable”, respectively, for
reasons that will be clear later on. To these solutions we associate in the
plane (y1, y2), called the phase space, the following orbits (i.e., the graphs
obtained plotting the curve (y1(t), y2(t)) in the phase space).

(
y1

θ0

)2

+
(

y2√
Kθ0

)2

= 1, (stable case)
(

y1

π + θ0

)2

−
(

y2√
K(π + θ0)

)2

= 1, (unstable case).

In the stable case, the orbits are ellipses with period 2π/
√
K and are cen-

tered at (0, 0)T , while in the unstable case they are hyperbolae centered at
(0, 0)T and asymptotic to the straight lines y2 = ±

√
Ky1.

The complete picture of the motion of the pendulum in the phase space
is shown in Figure 11.11 (right). Notice that, letting v = |y2| and fixing
the initial position y1(0) = 0, there exists a limit value vL = 2

√
K which

corresponds in the figure to the points A and A’. For v(0) < vL, the orbits
are closed, while for v(0) > vL they are open, corresponding to a continuous
revolution of the pendulum, with infinite passages (with periodic and non
null velocity) through the two equilibrium positions y1 = 0 and y1 = π.
The limit case v(0) = vL yields a solution such that, thanks to the total
energy conservation principle, y2 = 0 when y1 = π. Actually, these two
values are attained asymptotically only as t→∞.
The first-order nonlinear differential system (11.87) has been numerically
solved using the forward Euler method (FE), the midpoint method (MP)
and the Adams-Bashforth second-order scheme (AB). In Figure 11.12 we
show the orbits in the phase space that have been computed by the two
methods on the time interval (0, 30) and taking K = 1 and h = 0.1. The
crosses denote initial conditions.

As can be noticed, the orbits generated by FE do not close. This kind
of instability is due to the fact that the region of absolute stability of the
FE method completely excludes the imaginary axis. On the contrary, the
MP method describes accurately the closed system orbits due to the fact
that its region of asymptotic stability (see Section 11.6.4) includes pure
imaginary eigenvalues in the neighborhood of the origin of the complex
plane. It must also be noticed that the MP scheme gives rise to oscillating
solutions as v0 gets larger. The second-order AB method, instead, describes
correctly all kinds of orbits.

11.11.2 Compliance of Arterial Walls
An arterial wall subject to blood flow can be modelled by a compliant
circular cylinder of length L and radius R0 with walls made by an incom-
pressible, homogeneous, isotropic, elastic tissue of thickness H. A simple
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FIGURE 11.12. Orbits for system (11.87) in the case K = 1 and h = 0.1, com-
puted using the FE method (upper plot), the MP method (central plot) and the
AB method (lower plot), respectively. The initial conditions are θ0 = π/10 and
v0 = 0 (thin solid line), v0 = 1 (dashed line), v0 = 2 (dash-dotted line) and
v0 = −2 (thick solid line)

model describing the mechanical behavior of the walls interacting with the
blood flow is the so called “independent-rings” model according to which
the vessel wall is regarded as an assembly of rings which are not influenced
one by the others.

This amounts to neglecting the longitudinal (or axial) inner actions along
the vessel, and to assuming that the walls can deform only in the radial
direction. Thus, the vessel radius R is given by R(t) = R0 +y(t), where y is
the radial deformation of the ring with respect to a reference radius R0 and
t is the time variable. The application of Newton’s law to the independent-
ring system yields the following equation modeling the time mechanical
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behavior of the wall

y′′(t) + βy′(t) + αy(t) = γ(p(t)− p0) (11.88)

where α = E/(ρwR2
0), γ = 1/(ρwH) and β is a positive constant. The

physical parameters ρw and E denote the vascular wall density and the
Young modulus of the vascular tissue, respectively. The function p − p0
is the forcing term acting on the wall due to the pressure drop between
the inner part of the vessel (where the blood flows) and its outer part
(surrounding organs). At rest, if p = p0, the vessel configuration coincides
with the undeformed circular cylinder having radius equal exactly to R0
(y = 0).

Equation (11.88) can be formulated as y′(t) = Ay(t) + b(t) where y =
(y, y′)T , b = (0,−γ(p− p0))T and

A =

(
0 1

−α −β

)

. (11.89)

The eigenvalues of A are λ± = (−β ±
√
β2 − 4α)/2; therefore, if β ≥ 2

√
α

both the eigenvalues are real and negative and the system is asymptotically
stable with y(t) decaying exponentially to zero as t→∞. Conversely, if 0 <
β < 2

√
α the eigenvalues are complex conjugate and damped oscillations

arise in the solution which again decays exponentially to zero as t→∞.
Numerical approximations have been carried out using both the backward
Euler (BE) and Crank-Nicolson (CN) methods. We have set y(t) = 0
and used the following (physiological) values of the physical parameters:
L = 5 · 10−2[m], R0 = 5 · 10−3[m], ρw = 103[Kgm−3], H = 3 · 10−4[m] and
E = 9 · 105[Nm−2], from which γ 1 3.3[Kg−1m−2] and α = 36 · 106[s−2].
A sinusoidal function p− p0 = x∆p(a+ b cos(ω0t)) has been used to model
the pressure variation along the vessel direction x and time, where ∆p =
0.25 · 133.32 [Nm−2], a = 10 · 133.32 [Nm−2], b = 133.32 [Nm−2] and the
pulsation ω0 = 2π/0.8 [rad s−1] corresponds to a heart beat.

The results reported below refer to the ring coordinate x = L/2. The
two (very different) cases (1) β =

√
α [s−1] and (2) β = α [s−1] have been

analyzed; it is easily seen that in case (2) the stiffness quotient (see Section
11.10) is almost equal to α, thus the problem is highly stiff. We notice also
that in both cases the real parts of the eigenvalues of A are very large,
so that an appropriately small time step should be taken to accurately
describe the fast transient of the problem.
In case (1) the differential system has been studied on the time interval
[0, 2.5 ·10−3] with a time step h = 10−4. We notice that the two eigenvalues
of A have modules equal to 6000, thus our choice of h is compatible with
the use of an explicit method as well.

Figure 11.13 (left) shows the numerical solutions as functions of time.
The solid (thin) line is the exact solution while the thick dashed and solid
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lines are the solutions given by the CN and BE methods, respectively. A far
better accuracy of the CN method over the BE is clearly demonstrated; this
is confirmed by the plot in Figure 11.13 (right) which shows the trajectories
of the computed solutions in the phase space. In this case the differential
system has been integrated on the time interval [0, 0.25] with a time step
h = 2.5 · 10−4. The dashed line is the trajectory of the CN method while
the solid line is the corresponding one obtained using the BE scheme. A
strong dissipation is clearly introduced by the BE method with respect to
the CN scheme; the plot also shows that both methods converge to a limit
cycle which corresponds to the cosine component of the forcing term.
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FIGURE 11.13. Transient simulation (left) and phase space trajectories (right)

In the second case (2) the differential system has been integrated on the
time interval [0, 10] with a time step h = 0.1. The stiffness of the problem is
demonstrated by the plot of the deformation velocities z shown in Figure
11.14 (left). The solid line is the solution computed by the BE method
while the dashed line is the corresponding one given by the CN scheme; for
the sake of graphical clarity, only one third of the nodal values have been
plotted for the CN method. Strong oscillations arise since the eigenvalues of
matrix A are λ1 = −1, λ2 = −36 ·106 so that the CN method approximates
the first component y of the solution y as

yCN
k =

(
1 + (hλ1)/2
1− (hλ1)/2

)k

1 (0.9048)k, k ≥ 0,

which is clearly stable, while the approximate second component z(= y′) is

zCN
k =

(
1 + (hλ2)/2
1− (hλ2)/2

)k

1 (−0.9999)k, k ≥ 0

which is obviously oscillating. On the contrary, the BE method yields

yBE
k =

(
1

1− hλ1

)k

1 (0.9090)k, k ≥ 0,
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and

zCN
k =

(
1

1− hλ2

)k

1 (0.2777)k, k ≥ 0

which are both stable for every h > 0. According to these conclusions the
first component y of the vector solution y is correctly approximated by
both the methods as can be seen in Figure 11.14 (right) where the solid
line refers to the BE scheme while the dashed line is the solution computed
by the CN method.
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FIGURE 11.14. Long-time behavior of the solution: velocities (left) and displace-
ments (right)

11.12 Exercises
1. Prove that Heun’s method has order 2 with respect to h.

[Suggerimento : notice that hτn+1 = yn+1− yn−hΦ(tn, yn;h) = E1 +E2,
where E1 =

{∫ tn+1
tn

f(s, y(s))ds− h
2 [f(tn, yn) + f(tn+1, yn+1)]

}
and E2 =

h
2 {[f(tn+1, yn+1)− f(tn+1, yn + hf(tn, yn))]}, where E1 is the error due to
numerical integration with the trapezoidal method and E2 can be bounded
by the error due to using the forward Euler method.]

2. Prove that the Crank-Nicoloson method has order 2 with respect to h.
[Solution : using (9.12) we get, for a suitable ξn in (tn, tn+1)

yn+1 = yn +
h
2

[f(tn, yn) + f(tn+1, yn+1)]−
h3

12
f ′′(ξn, y(ξn))

or, equivalently,

yn+1 − yn
h

=
1
2

[f(tn, yn) + f(tn+1, yn+1)]−
h2

12
f ′′(ξn, y(ξn)). (11.90)

Therefore, relation (11.9) coincides with (11.90) up to an infinitesimal of
order 2 with respect to h, provided that f ∈ C2(I).]
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3. Solve the difference equation un+4 − 6un+3 + 14un+2 − 16un+1 + 8un = n
subject to the initial conditions u0 = 1, u1 = 2, u2 = 3 and u3 = 4.
[Solution : un = 2n(n/4− 1) + 2(n−2)/2 sin(π/4) + n + 2.]

4. Prove that if the characteristic polynomial Π defined in (11.30) has simple
roots, then any solution of the associated difference equation can be written
in the form (11.32).
[Hint : notice that a generic solution un+k is completely determined by
the initial values u0, . . . , uk−1. Moreover, if the roots ri of Π are distinct,
there exist unique k coefficients αi such that α1r

j
1 + . . . + αkr

j
k = uj with

j = 0, . . . , k − 1 . . . ]

5. Prove that if the characteristic polynomial Π has simple roots, the matrix
R defined in (11.37) is not singular.
[Hint: it coincides with the transpose of the Vandermonde matrix where
xj
i is replaced by rij (see Exercise 2, Chapter 8).]

6. The Legendre polynomials Li satisfy the difference equation

(n + 1)Ln+1(x)− (2n + 1)xLn(x) + nLn−1(x) = 0

with L0(x) = 1 and L1(x) = x (see Section 10.1.2). Defining the generating
function F (z, x) =

∑∞
n=0 Pn(x)zn, prove that F (z, x) = (1−2zx+z2)−1/2.

7. Prove that the gamma function

Γ(z) =
∞∫

0

e−ttz−1dt, z ∈ C, Rez > 0

is the solution of the difference equation Γ(z + 1) = zΓ(z)
[Hint : integrate by parts.]

8. Study, as functions of α ∈ R, stability and order of the family of linear
multistep methods

un+1 = αun + (1− α)un−1 + 2hfn +
hα
2

[fn−1 − 3fn] .

9. Consider the following family of linear multistep methods depending on
the real parameter α

un+1 = un + h[(1− α
2

)f(xn, un) +
α
2
f(xn+1, un+1)].

Study their consistency as a function of α; then, take α = 1 and use the
corresponding method to solve the Cauchy problem

y′(x) = −10y(x), x > 0,
y(0) = 1.

Determine the values of h in correspondance of which the method is abso-
lutely stable.
[Solution : the only consistent method of the family is the Crank-Nicolson
method (α = 1).]
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10. Consider the family of linear multistep methods

un+1 = αun +
h
2

(2(1− α)fn+1 + 3αfn − αfn−1)

where α is a real parameter.

(a) Analyze consistency and order of the methods as functions of α, de-
termining the value α∗ for which the resulting method has maximal
order.

(b) Study the zero-stability of the method with α = α∗, write its charac-
teristic polynomial Π(r;hλ) and, using MATLAB, draw its region of
absolute stability in the complex plane.

11. Adams methods can be easily generalized, integrating between tn−r and
tn+1 with r ≥ 1. Show that, by doing so, we get methods of the form

un+1 = un−r + h
p∑

j=−1

bjfn−j

and prove that for r = 1 the midpoint method introduced in (11.43) is
recovered (the methods of this family are called Nystron methods.)

12. Check that Heun’s method (11.10) is an explicit two-stage RK method and
write the Butcher arrays of the method. Then, do the same for the modified
Euler method, given by

un+1 = un + hf(tn +
h
2
, un +

h
2
fn), n ≥ 0. (11.91)

[Solution : the methods have the following Butcher arrays

0 0 0
1 1 0

2 1
2
2 1

2

0 0 0
2
3

1
2 2

3

1
2 0

0 1
.]

13. Check that the Butcher array for method (11.73) is given by

0 0 0 0 0
1
2

2 1
2
2 0 0 0

1
2 0 2 1

2
2 0 0

1 0 0 1 0
1
6

2 1
3
2 1

3
1
6

14. Write a MATLAB program to draw the regions of absolute stability for a
RK method, for which the function R(hλ) is available. Check the code in
the special case of

R(hλ) = 1 + hλ + (hλ)2/2 + (hλ)3/6 + (hλ)4/24 + (hλ)5/120 + (hλ)6/600

and verify that such a region is not connected.
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homogènes et applications. Dunod, Paris.

[LS96] Lehoucq R. and Sorensen D. (1996) Deflation Techniques for
an Implicitly Restarted Iteration. SIAM J. Matrix Anal. Ap-
plic. 17(4): 789–821.

[Lue73] Luenberger D. (1973) Introduction to Linear and Non Linear
Programming. Addison-Wesley, Reading, Massachusetts.

[Man69] Mangasarian O. (1969) Non Linear Programming. Prentice-
Hall, Englewood Cliffs, New Jersey.

[Man80] Manteuffel T. (1980) An Incomplete Factorization Technique
for Positive Definite Linear Systems. Math. Comp. 150(34):
473–497.

[Mar86] Markowich P. (1986) The Stationary Semiconductor Device
Equations. Springer-Verlag, Wien and New York.

[McK62] McKeeman W. (1962) Crout with Equilibration and Iteration.
Comm. ACM 5: 553–555.

[MdV77] Meijerink J. and der Vorst H. V. (1977) An Iterative Solution
Method for Linear Systems of Which the Coefficient Matrix is
a Symmetric M-matrix. Math. Comp. 137(31): 148–162.

[MM71] Maxfield J. and Maxfield M. (1971) Abstract Algebra and So-
lution by Radicals. Saunders, Philadelphia.

[MMG87] Martinet R., Morlet J., and Grossmann A. (1987) Analysis of
sound patterns through wavelet transforms. Int. J. of Pattern
Recogn. and Artificial Intellig. 1(2): 273–302.
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