Burgers’ equation with high Reynolds number
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Burgers’ equation, involving very high Reynolds numbers, is numerically solved by using a new
approach based on the distributed approximating functional for representing spatial derivatives of
the velocity field. For moderately large Reynolds numbers, this simple approach can provide very
high accuracy while using a small number of grid points. In the case where the Reynolds number
=10, the exact solution is not available and a discrepancy exists in the literature. Our results clarify
the behavior of the solution under these conditions. 1897 American Institute of Physics.
[S1070-663(197)02406-9

This Brief Communication reports a new method for ary element approac¢hFor very large Reynolds numbers
solving Burgers’ equationand clarifies an on-going dis- (Re~10°), these authors found significantly different behav-
agreement regarding the early time behavior of solutions ofor for the early time solutionst&0.2, 0.4) from those of
Burgers’ equation in the case of large Reynolds numbeWaroglu and Finr?,and of Nguyen and ReynérBar-Yoseph
(Re=10). et al. more recently have discussed a number of space-time

Burgers’ model of turbulendds a very important fluid spectral element methods for solving Burgers’ equation.
dynamical model both for the conceptual understanding of @rina and Canutbhave approached Burgers’ equation using
class of physical flows and for testing various numerical al-a self-adaptive, domain decomposition method called the
gorithms. A great deal of effort has been expended in the-formulation. Various finite difference schemes for Bur-
past few years to compute efficiently the numerical solutiongjers’ equation have been compared by Biringen and $aati.

of the Burgers’ equation Shizgalet al!° also have compared different spectral method
approaches to Burgers’ equation.
au  ou 1 du In an earlier work! we applied the recently developed
T T Rex? () gistributed approximating functiondDAF) method?*® to

Burgers’ equation for moderately large Reynolds numbers.
for large values of the Reynolds numb@e). One of the We refer the reader to that work for more details about the
major difficulties is due to inviscid boundary layers producedDAF method and its application to Burgers’ equation. It was
by the steepening effect of the nonlinear advection term irfound that the DAF approach provides one of the most ac-
Burgers’ equation. This difficulty is also encountered in ancurate numerical solutions yet available, while requiring a
inviscid Navier—Stokes equation for a convection dominatedmall number of grid points and permitting the use of rea-
flow, and in fact, Burgers’ equation is one of the principle sonably large time steps. However for large Re values, a
equations used to test new numerical methods. For givesignificant increase in the number of grid points as well as a
initial-boundary conditions of Eqg.(1) such as u(x,0) reduction in the time increment is required for the solution to
= sin(mx),u(0t) = u(1t) = 0, and a Reynolds number equal be stable. A new scheme based on the properties of the DAF
to 1C%, the solution develops a sharp shock wave front at thés proposed in this Brief Communication to handle the cases
boundaryx=1 after a certain time of propagation. This thin where the Reynolds number is large. The accuracy and reli-
boundary layer normally requires an enormous number oébility of the present method is verified using the exact so-
evenly spaced grid points to describe the numerical solutiotutions of Burgers’ equatidft*>which are available fomod-
in the boundary layer regiochA typical signature of an in- eratelylarge Reynolds numbers.
sufficient number of points and poor accuracy is the appear- We proceed by introducing @, mapping of the coordi-
ance of oscillations in the solution in the boundary layernatex, f: y=f(x) and its inversex="f~*(y) such that the
region. In their treatment of Burgers’ equation, Varoglu andarbitrarily large but finite gradient of the solutions in the
Finn® presented an isoparametric space-time finite elemerfioundary layer region will be effectively reduced in the
approach, utilizing the hyperbolic differential equation asso-y-representation. Accordingly, Burgers’ equation in the
ciated with Burgers’ equation. They employed 200 elementy-representation reads
and 5 iterations in order to solve the equation. Another ap-
proach which has been used by Nguyen and Reyisethe

_ =n au [1 &y oy au  1[ay]? d°u
least squares weak-formulation of the finite element method. i ReaE  Yax v + Re 7x Ve
Caldwell et al® further developed the finite element method € x=t-15) 7Y x=f-1y) %Y

to allow for different sized elements at each stage of the 2
calculation based on feed-back from the previous step. More
recently, Kakuda and Tosaka proposed a generalized boun@Vith an appropriate choice of the functidnthe number of
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FIG. 1. The grid distributions in botk andy representationsy = 1.45). L .
The accuracy and reliability of the present approach is

tested at Re 10, and Re=100, for which exact solutions are

grid points can be reduced by three orders of magnitude. It iavailable. In Table I, the maximum absolute errbr,, at
to be noted that invertible mappings are widely used forfour different times for each Re is tabulated and compared
distributing grid points to resolve the behavior accurately atwith the accurate results obtained using generalized bound-
boundaries® This method becomes particularly powerful ary element method by Kakuda and Tos#kaK).° For Re
when combined with DAFs, since the DAF approach pro-=10, we choosé&=0.01 and use only 10 evenly spaced grid
vides the accuracy of a spectral method on a uniform gridpoints in they representation. This is to be compared with 40
For the aforementioned initial-boundary conditions we sim-elements and up to 5 iterations used by the generalized
ply choosey=tanAx)/tan(d), whereA is a constant varying boundary element method. The time increment in both meth-
between 0 andr/2, depending on the size of the Reynolds ods is 0.025. The present results are more accurate than those
number. For a small value of Reynolds number, such as Ref T-K, while requiring a small number of grid points. For
=10, we chooseA close to 0, which distributes the grid Re=100, the system shows a boundary layer behavior at a
points more or less evenly in both tlxeandy representa- sufficiently long time. Accordingly, we choose a large map-
tions. For very large Reynolds numbers, such asR&, ping parameteA (A=0.75) to concentrate more grid points
we chooseA close to /2, which distributes grid points in the boundary layer region. As a consequence, only 25 grid
densely in the boundary layer region in theepresentation points are required to obtain solutions which are about five to
for an evenly spaced representation grid. The grid point 200 times more accurate than those obtained using the gen-
distributions in both thex andy representations are plotted eralized boundary element method which required 100 ele-
in Fig. 1 for A=1.45. In the present computation, we use aments and up to 6 iterations. The time increment in both
second order approximatibhand take the Hermite DAF pa- methods is 0.01.
rameters ad! =88 ando=3.08%A for all calculations. To solve Burgers’ equation for very large Reynolds

Numerically, Burgers’ equation can be solved most easaumber, e.g., Re 10°, is a difficult task. Kakuda and Tosaka
ily in the y representation according to E®), sinceu(y) is  recently reported significantly different results for earlier
a slowly varying function. This is illustrated in Fig. 2 for the times from those of Varoglu and Firfnand Nguyen and
moderately large Reynolds number of310t is noted that Reynert It is not practical to evaluate the analytical solution
only 35 grid points are required to obtain the present soluat this Reynold number due to slow convergence of the infi-
tions, which are oscillation-free. This typically requires 100nite series* and thus the exact solution in this regime is
elements(or grid pointg using other methods. As seen in unknown. We use a very large mapping parameter
Fig. 2, the shock wave front in th& representation is (A=1.560 68) to shift most of the 200 grid points into the
smoothed out in thg representation. boundary layer region to obtain oscillation-free solutions. A

TABLE I. Maximum absolute errors of the numerical solutions for Burgers' equation.

t=0.05 =0.25 t=0.75 =1.50
Re=10 K-T Present K-T Present K-T Present K-T Present
3.99-3) 6.14-4) 9.03-3) 7.63-4) 3.91(-3) 1.66-4) 1.25-3) 7.70-5)
t=0.40 +=0.80 t=1.20 =3.00
Re=100 K-T Present K-T Present K-T Present K-T Present

2.60-2) 3.22-3) 2.89-2) 5.99-3) 1.77-2) 1.29-3) 6.93-3) 2.57-5)
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FIG. 3. The solutions of the Burger's equation for=RE0°. Solid lines:

present(200 grid points, second order approximagioDash lines: Kakuda
and Tosak&a200 elements 6 iteratiojisDots: Varoglu and Finr{200 ele-

ments 5 iterations

Phys. Fluids, Vol. 9, No. 6, June 1997 Brief Communicatons 1855

Downloaded-01-Apr-2004-to-137.132.123.76.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://pof.aip.org/pof/copyright.jsp



