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Burgers’ equation, involving very high Reynolds numbers, is numerically solved by using a new
approach based on the distributed approximating functional for representing spatial derivatives of
the velocity field. For moderately large Reynolds numbers, this simple approach can provide very
high accuracy while using a small number of grid points. In the case where the Reynolds number
>105, the exact solution is not available and a discrepancy exists in the literature. Our results clarify
the behavior of the solution under these conditions. ©1997 American Institute of Physics.
@S1070-6631~97!02406-9#
or
-

be

f
a
th
n

ed
i
an
te
le
ive

al
th
in
r o
tio

ea
e
nd
e
so
n
ap

o
od
th
o
un

s
v-

ime
n.
ng
the
r-
ati.
od

d

rs.
the
as
ac-
a
a-
, a
s a
to
AF
ses
reli-
so-

e
e
he
This Brief Communication reports a new method f
solving Burgers’ equation1 and clarifies an on-going dis
agreement regarding the early time behavior of solutions
Burgers’ equation in the case of large Reynolds num
(Re5105).

Burgers’ model of turbulence1 is a very important fluid
dynamical model both for the conceptual understanding o
class of physical flows and for testing various numerical
gorithms. A great deal of effort has been expended in
past few years to compute efficiently the numerical solutio
of the Burgers’ equation
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for large values of the Reynolds number~Re!. One of the
major difficulties is due to inviscid boundary layers produc
by the steepening effect of the nonlinear advection term
Burgers’ equation. This difficulty is also encountered in
inviscid Navier–Stokes equation for a convection domina
flow, and in fact, Burgers’ equation is one of the princip
equations used to test new numerical methods. For g
initial-boundary conditions of Eq.~1! such as u(x,0)
5 sin(px),u(0,t) 5 u(1,t) 5 0, and aReynolds number equ
to 105, the solution develops a sharp shock wave front at
boundaryx51 after a certain time of propagation. This th
boundary layer normally requires an enormous numbe
evenly spaced grid points to describe the numerical solu
in the boundary layer region.2 A typical signature of an in-
sufficient number of points and poor accuracy is the app
ance of oscillations in the solution in the boundary lay
region. In their treatment of Burgers’ equation, Varoglu a
Finn3 presented an isoparametric space-time finite elem
approach, utilizing the hyperbolic differential equation as
ciated with Burgers’ equation. They employed 200 eleme
and 5 iterations in order to solve the equation. Another
proach which has been used by Nguyen and Reynen4 is the
least squares weak-formulation of the finite element meth
Caldwellet al.5 further developed the finite element meth
to allow for different sized elements at each stage of
calculation based on feed-back from the previous step. M
recently, Kakuda and Tosaka proposed a generalized bo
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ary element approach.6 For very large Reynolds number
(Re'105), these authors found significantly different beha
ior for the early time solutions (t50.2, 0.4) from those of
Varoglu and Finn,3 and of Nguyen and Reynen.4 Bar-Yoseph
et al.more recently have discussed a number of space-t
spectral element methods for solving Burgers’ equatio7

Arina and Canuto8 have approached Burgers’ equation usi
a self-adaptive, domain decomposition method called
x-formulation. Various finite difference schemes for Bu
gers’ equation have been compared by Biringen and Sa9

Shizgalet al.10 also have compared different spectral meth
approaches to Burgers’ equation.

In an earlier work,11 we applied the recently develope
distributed approximating functional~DAF! method12,13 to
Burgers’ equation for moderately large Reynolds numbe
We refer the reader to that work for more details about
DAF method and its application to Burgers’ equation. It w
found that the DAF approach provides one of the most
curate numerical solutions yet available, while requiring
small number of grid points and permitting the use of re
sonably large time steps. However for large Re values
significant increase in the number of grid points as well a
reduction in the time increment is required for the solution
be stable. A new scheme based on the properties of the D
is proposed in this Brief Communication to handle the ca
where the Reynolds number is large. The accuracy and
ability of the present method is verified using the exact
lutions of Burgers’ equation14,15which are available formod-
erately large Reynolds numbers.

We proceed by introducing aC2 mapping of the coordi-
natex, f : y5 f (x) and its inverse,x5 f21(y) such that the
arbitrarily large but finite gradient of the solutions in th
boundary layer region will be effectively reduced in th
y-representation. Accordingly, Burgers’ equation in t
y-representation reads
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With an appropriate choice of the functionf , the number of
185310.00 © 1997 American Institute of Physics
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grid points can be reduced by three orders of magnitude.
to be noted that invertible mappings are widely used
distributing grid points to resolve the behavior accurately
boundaries.16 This method becomes particularly powerf
when combined with DAFs, since the DAF approach p
vides the accuracy of a spectral method on a uniform g
For the aforementioned initial-boundary conditions we si
ply choosey5tan(Ax)/tan(A), whereA is a constant varying
between 0 andp/2, depending on the size of the Reynol
number. For a small value of Reynolds number, such as
510, we chooseA close to 0, which distributes the gri
points more or less evenly in both thex and y representa-
tions. For very large Reynolds numbers, such as Re5105,
we chooseA close top/2, which distributes grid points
densely in the boundary layer region in thex representation
for an evenly spacedy representation grid. The grid poin
distributions in both thex andy representations are plotte
in Fig. 1 for A51.45. In the present computation, we use
second order approximation11 and take the Hermite DAF pa
rameters asM588 ands53.05D for all calculations.

Numerically, Burgers’ equation can be solved most e
ily in the y representation according to Eq.~2!, sinceu(y) is
a slowly varying function. This is illustrated in Fig. 2 for th
moderately large Reynolds number of 103. It is noted that
only 35 grid points are required to obtain the present so
tions, which are oscillation-free. This typically requires 1
elements~or grid points! using other methods. As seen
Fig. 2, the shock wave front in thex representation is
smoothed out in they representation.

FIG. 1. The grid distributions in bothx andy representations (A 5 1.45).
1854 Phys. Fluids, Vol. 9, No. 6, June 1997
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The accuracy and reliability of the present approach
tested at Re510, and Re5100, for which exact solutions ar
available. In Table I, the maximum absolute error,L` , at
four different times for each Re is tabulated and compa
with the accurate results obtained using generalized bou
ary element method by Kakuda and Tosaka~T-K!.6 For Re
510, we chooseA50.01 and use only 10 evenly spaced gr
points in they representation. This is to be compared with
elements and up to 5 iterations used by the general
boundary element method. The time increment in both me
ods is 0.025. The present results are more accurate than
of T-K, while requiring a small number of grid points. Fo
Re5100, the system shows a boundary layer behavior a
sufficiently long time. Accordingly, we choose a large ma
ping parameterA (A50.75) to concentrate more grid poin
in the boundary layer region. As a consequence, only 25
points are required to obtain solutions which are about five
200 times more accurate than those obtained using the
eralized boundary element method which required 100
ments and up to 6 iterations. The time increment in b
methods is 0.01.

To solve Burgers’ equation for very large Reynol
number, e.g., Re5105, is a difficult task. Kakuda and Tosak
recently reported significantly different results for earli
times from those of Varoglu and Finn,3 and Nguyen and
Reynen.4 It is not practical to evaluate the analytical solutio
at this Reynold number due to slow convergence of the i
nite series,14 and thus the exact solution in this regime
unknown. We use a very large mapping parame
(A51.560 68) to shift most of the 200 grid points into th
boundary layer region to obtain oscillation-free solutions.

FIG. 2. The solutions of the Burger’s equation for Re5103 (A51.456)
using 35 grid points in eitherx ~solid lines! or y ~dash lines! representation.
nt

nt
TABLE I. Maximum absolute errors of the numerical solutions for Burgers’ equation.

t50.05 t50.25 t50.75 t51.50

Re510 K-T Present K-T Present K-T Present K-T Prese
3.98~-3! 6.14~-4! 9.03~-3! 7.63~-4! 3.91~-3! 1.66~-4! 1.25~-3! 7.70~-5!

t50.40 t50.80 t51.20 t53.00

Re5100 K-T Present K-T Present K-T Present K-T Prese
2.60~-2! 3.22~-3! 2.88~-2! 5.98~-3! 1.77~-2! 1.29~-3! 6.93~-3! 2.57~-5!
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small time increment (2.531025) is chosen to ensure hig
accuracy. The convergence of the present results is also
firmed by repeating the calculation with 300 grid points.
shown in Fig. 3, at the earlier times (t50.2, 0.4), the presen
results are close to those of Varoglu and Finn, and
Nguyen and Reynen, but are significantly different fro
those recently reported by Kakuda and Tosaka. At the l
times (t51.0–2.0), the present results are more similar
those obtained by Kakuda and Tosaka than to those repo
by Varoglu and Finn at the extreme edge of the bound
layer.

In conclusion, the present DAF-based approach provi
a simple and accurate method for solving Burgers’ equa
for wide range of Reynolds numbers. It is believed that
present approach will also prove useful for solving mo
general problems in fluid dynamics. Its application to t
Navier–Stokes equation is under consideration.
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