
Journal of Computational and Applied Mathematics 149 (2002) 439–456
www.elsevier.com/locate/cam

Conjugate &lter approach for solving Burgers’ equation�

G.W. Weia;b; ∗, Yun Gub

aDepartment of Mathematics, Michigan State University, East Lansing, MI 48824, USA
bDepartment of Computational Science, National University of Singapore, Singapore 117543, Singapore

Received 20 August 2001; received in revised form 11 December 2001

Abstract

We propose a novel scheme for solving Burgers’ equation with all possible values of Reynolds numbers.
A low-pass &lter is introduced to intelligently eliminate the high frequency errors produced by its conjugate
high-pass &lters. All conjugate &lters are derived from one generating function and have essentially the same
degree of regularity, smoothness, time-frequency localization, e5ective support and bandwidth. Computational
accuracy is tested by using both a linear hyperbolic equation and Burgers’ equation at a moderately high
Reynolds number for which analytical solution is available. The ability of shock-capturing is validated by
using discontinuous initial values. Excellent numerical results indicate that the proposed scheme is e:cient,
robust and reliable for solving Burgers’ equation and for shock capturing. c© 2002 Elsevier Science B.V. All
rights reserved.

1. Introduction

The fundamental equation for the description of complex =uid =ow is the Navier–Stokes equation,
for which the full solution is still extremely di:cult in the full domain of physical interest. Burgers’
equation [4] is an important simple model for the understanding of physical =ows. Simulation of
Burgers’ equation is a natural &rst step towards developing methods for the computation of complex
=ows. In the past a few decades, it appears customary to test new approaches in computational =uid
dynamics by applying them to Burgers’ equation with a variety of initial values. Jamet and Bonnerot
solved Burgers’ equation by using an isoparametric rectangular space–time &nite element [14]. Jain
and Holla [13] developed a cubic spline approach for coupled Burgers’ equations. Varoglu and Finn
[18] proposed an isoparametric space–time &nite element method for solving Burgers’ equation,
utilizing the hyperbolic di5erential equation associated with Burgers’ equation. They obtained very
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high accuracy and numerical stability with a reasonable number of elements and time steps. Their
method was compared with a least square weak formulation of the &nite element method by Nguyen
and Reynen [17]. Caldwell et al. [5] further developed the &nite element method to allow a di5erent
size of elements at each stage based on the feed back from the previous step. A generalized boundary
element approach was proposed by Kakuda and Tosaka [16]. These authors tabulated their accurate
results for moderate Reynolds numbers and compared their results with those of Varoglu and Finn
[18] and of Nguyen and Reynen [17]. A bidimensional Tau-element method was developed by Ortiz
and Pun for solving Burgers’ equation with accurate results. Bar-Yoseph et al. discussed a number
of space–time spectral element methods for solving Burgers’ equation [2]. Arina and Canuto [1]
treated Burgers’ equation by a self-adaptive, domain decomposition method called the �-formulation.
Various &nite di5erence schemes for Burgers’ equation were compared by Biringen and Saati [3].
Recently, Wei et al. [25] have developed an accurate solver for Burgers’ equation in one and two
space dimensions. Most recently, Hon and Mao [12] have compared performance of their adaptive
multiquadric scheme with many other computational methods. It is not our purpose to exhaust the
literature. Despite of much e5ort, numerical solution of Burgers’ equation is still a nontrivial task
especially at very high Reynolds numbers where the nonlinear advection leads to shock waves. In
fact, Burgers’ inviscid shocks plague many standard computational algorithms. Obviously, to solve
Burgers’ equation at a high Reynolds number or with discontinuous initial values, a scheme which
is capable of shock-capturing is indispensable.
The purpose of this paper is to report a novel scheme for solving Burgers’ equation for all pos-

sible values of Reynolds numbers and for shock capturing. We propose a conjugate &lter oscillation
reduction (CFOR) scheme to solve Burgers’ equation. As the &rst and second derivatives are ap-
proximated by using two high-pass &lters, the numerical errors of the high-pass &lters at the high
frequency region lead to oscillations near Burgers’ shock wave front. The proposed idea is to ef-
fectively eliminate such oscillations by using a conjugate low-pass &lter. This set of high-pass and
low-pass &lters are conjugated in the sense that they are derived from one generating function and
consequently have essentially the same degree of regularity, smoothness, time-frequency localiza-
tion, e5ective support and bandwidth. In the present work, all conjugated &lters are constructed by
using a discrete singular convolution (DSC) algorithm [20–22], which was proposed as a potential
approach for the computer realization of singular integrations. The theory of distributions and theory
of wavelet analyses form the mathematical foundation for the DSC. Sequences of approximations
to the singular kernels of Hilbert type, Abel type and delta type were constructed. Applications are
discussed to analytical signal processing, Radon transform and surface interpolation. Numerical solu-
tions to di5erential equations are formulated via singular kernels of the delta type. By appropriately
choosing DSC kernels, the DSC approach exhibits global methods’ accuracy for integration and local
methods’ =exibility in handling complex geometries and boundary conditions. The DSC algorithm
was very successful in solving the Navier–Stokes equation [23,19] and in vibration analysis [24]. In
particular, the analysis of plates vibrating at extremely high frequency and with densely distributed
internal supports is a very challenging task, for which conventional methods have encountered a
great deal of numerical instability. The DSC algorithm is the only available method for resolving
these problems [26].
This paper is organized as follows. Section 2 is devoted to computational methodology. Conju-

gate &lters are constructed via the DSC algorithm. A scheme for oscillation reduction is proposed.
Numerical applications are presented in Section 3. A few benchmark examples are employed to test
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the proposed approach. Results are compared with those in the literature. This paper ends with a
conclusion.

2. Methodology

In this section, conjugated &lters are constructed by using the discrete singular convolution (DSC)
algorithm. A new oscillation reduction scheme is introduced after describing the DSC formalism.

2.1. Conjugated 5lters

As a special class of mathematical transformations, singular convolutions appear in many science
and engineering problems. It is most convenient to discuss singular convolutions in the context of
the theory of distributions. The latter has a signi&cant impact in mathematical analysis. It provides
a rigorous justi&cation for a number of informal manipulations in engineering and physics, and has
signi&cant in=uence many mathematical disciplines, such as operator calculus, di5erential equations,
functional analysis, harmonic analysis and transformation theory. Let T be distribution and �(t) be
an element of the space of test functions. A singular convolution is de&ned as

F(t) = (T ∗ �)(t) =
∫ ∞

−∞
T (t − x)�(x) dx: (1)

Here T (t− x) is a singular kernel. Depending on the form of the kernel T , the singular convolution
is the central issue for a wide range of science and engineering problems, such as Hilbert transform,
Abel transform and Radon transform. In the present study, only singular kernels of the delta type
are required

T (x) = 	(n)(x) (n= 0; 1; 2; : : :): (2)

Here, kernel T (x)=	(x) is of particular importance for interpolation of surfaces and curves. Higher-
order kernels, T (x) = 	(n); (n = 1; 2; : : :) are essential for numerically solving partial di5erential
equations and for image processing, noise estimation, etc. However, since these kernels are singular,
they cannot be directly digitized in computers. Hence, the singular convolution (1), is of little
numerical merit as it is. To avoid the di:culty of using singular expressions directly in computer,
we construct sequences of approximations {T�} to the distribution T

lim
�→�0

T�(x)→ T (x); (3)

where �0 is a generalized limit. Obviously, in the case of T (x)=	(x), each element in the sequence,
T�(x), is a delta sequence kernel. With a su:ciently smooth approximation, it is useful to consider
a discrete singular convolution of the form

F�(t) =
∑
k

T�(t − xk)f(xk); (4)

where F�(t) is an approximation to F(t) and {xk} is an appropriate set of discrete points on which
the DSC (4) is well de&ned. Note that, the original test function �(x) has been replaced by an
ordinary function f(x) because kernels T� are restricted to a set of well-behaved ones.
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A typical example is Shannon’s delta kernel, which is given by the following (inverse) Fourier
transform of the characteristic function, �[− �; �],

	�(x) =
1
2�

∫ ∞

−∞
�[−�;�]ei�x d�=

sin(�x)
�x

: (5)

For the purpose of digital computations, it is necessary to discretize delta kernels. To this end, we
examine a sampling basis given by Shannon’s delta kernel

Sk(x) =
sin �(x − xk)
�(x − xk)

: (6)

Such a sampling basis is obviously interpolative

Sk(xl) = 	k;l; (7)

where 	k;l is the Kronecker delta function. Computationally, being interpolative is desirable for
numerical accuracy and simplicity. In fact, this sampling basis is also an element of the Paley–
Wiener reproducing kernel Hilbert space. It provides a discrete representation of every (continuous)
function in B2�, that is

f(x) =
∑
k∈Z

f(xk)Sk(x); ∀k ∈B2�: (8)

This is Shannon’s sampling theorem and it means that one can recover a continuous bandlimited L2

function from a set of discrete values. Shannon’s sampling theorem had a great impact on information
theory, signal and image processing because the Fourier transform of Shannon’s delta kernel is an
ideal low-pass &lter, see Fig. 1. It is, in fact, an in&nite impulse response (IIR) low-pass &lter. For
numerical computations, Eq. (8) can never be realized because it requires in&nitely many sampling
points. A truncation is required in practical computations. Unfortunately, Shannon’s delta kernel
decays slowly and leads to substantial truncation errors. According to the theory of distributions, the
smoothness, regularity and localization of a tempered distribution can be improved by regularization
with a function of the Schwartz class. We apply this principle to regularize approximate convolution
kernels

	�;�(x) = R�(x)	�(x) (�¿ 0); (9)

where R� is a Gaussian regularizer R�(x)=exp[−x2=2�2]. The Gaussian regularizer is a Schwartz class
function and thus, the expression in Eq. (9) can be applied to tempered distributions. Numerically,
the truncation error is dramatically reduced by the use of the delta regularizer. The regularized
Shannon’s delta kernel (RSK) on an arbitrary grid is given by

	�;�(x − xk) =
sin �=�(x − xk)
�=�(x − xk)

e−(x−xk)2=2�2 ; (10)

where � is the grid spacing. Since the truncation error can be dramatically reduced by the Gaussian
regularizer, the expression given by Eq. (10) is practically a &nite impulse response (FIR) low-pass
&lter and has a compact support for numerical interpolation.
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Fig. 1. Graph of the frequency responses of the conjugated DSC &lters (in the unit of �=�). The maximum amplitude
is normalized to the unit. Stars: conjugate low-pass &lter; solid line: &rst-order high-pass &lter; Dash-dots: second-order
high-pass &lter; Small dots: ideal &lters; Dashed line: Fourier image of the numerical solution of Burgers’ equation
(t = 0:5; Re = 105) with oscillations; Big dots: Fourier image of the numerical solution obtained by using the CFOR
scheme.

As such, a function and its nth order derivative are approximated in the DSC algorithm as

f(n)(x) ≈
M∑

k=−M

	(n)�;�(x − xk)f(xk) (n= 0; 1; 2; : : :); (11)

where 	�;�(x − xk) is a collective symbol for any (regularized) delta kernel, and 2M + 1 is the
computational bandwidth. The higher-order derivative terms 	(n)�;�(x − xk) are given by

	(n)�;�(x − xk) =
(

d
dx

)n

	�;�(x − xk): (12)

Here, the di5erentiation can be carried out analytically. Numerical solution of di5erential equations
can be easily implemented in a collocation scheme by using Eq. (11). Expressions in Eq. (12) are
high-pass &lters as their &lter responses vanish at zero frequency. Obviously, both the low-pass &lter
and high-pass &lters are constructed by using the DSC delta kernel and thus, have essentially the
same degree of regularity, smoothness, time-frequency localization, e5ective support and bandwidth.
Therefore, we refer this set of &lters as conjugated &lters.
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2.2. Oscillation reduction scheme

Fig. 1 shows the frequency responses of the conjugate DSC low-pass &lter, the &rst- and second-
order high-pass &lters at � = 3:2�. Indeed, all conjugated &lters have essentially the same e5ective
bandwidth, which is about 0:7�=�. Below 0:7�=�, frequency responses of all the conjugated &lters
are essentially exact. However, in the very high frequency region, frequency response of both the
low-pass &lter and the &rst-order high-pass &lter is underestimated, whereas that of the second-order
high-pass &lter is overestimated. The proposed idea is to use the conjugate low-pass &lter to in-
telligently eliminate the high frequency errors produced by the conjugate high-pass &lters during a
numerical computation. As a consequence, the resulting numerical calculations are correct and reliable
for frequency below the e5ective bandwidth of conjugated &lters. Coordinate space implementation
and numerical demonstration of this idea are presented in the rest of this paper.
To solve Burgers’ equation at very high Reynolds numbers, let us consider a system of essentially

hyperbolic type in one dimension (1D)

ut + f(u)x = �uxx;

u(x; 0) = u0(x); (13)

where u is a scalar &eld, f is a hyperbolic mapping, and � is a small parameter. At the limit of
� → 0, the system reduces to standard hyperbolic conservation laws and can induce severe spurious
oscillations in a normal solution procedure.
The control of oscillations can be accomplished in a number of ways. For example, Godunov

algorithms [9], up-wind schemes, essentially nonoscillatory (ENO) schemes [11], weighted ENO
schemes [15] and &lter schemes [8] are standard methods for handling oscillations. In the present
work, we propose an alternative approach which makes use of the conjugate low-pass &lter, Eq.
(10). Since the peak of undesired oscillations resides outside the e5ective bandwidth of the conjugate
low-pass &lter as shown in Fig. 1, it can be removed by the &ltering via the conjugate low-pass
&lter. To eliminate oscillations and preserve the true solution e5ectively, we design the following
conjugate &lter oscillation reduction (CFOR) scheme

vn+1 = H (un); (14)

un+1 =

{
vn+1 	Wn+1¡�;

G(vn+1) 	Wn+1¿ �;
(15)

where H refers to the treatment by DSC high-pass &lters, 	(q)�;�=� (q = 1; 2), and G represents the
convolution with the DSC low-pass &lter 	�;�=�. Here � is a threshold value, and W is a high-pass
measure, which is de&ned via a multiscale wavelet transform of a set of discrete function values
{v(xk ; tn)}N

k=1 at time tn as

‖Wn‖=
∑
m

‖Wn
m‖; (16)

where ‖Wn
m‖ is given by a convolution with a wavelet  mj of scale m

‖Wn
m‖=

∑
k

|
∑
j

 mj(xk)un(xj)|: (17)
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Conjugate low-pass &lters are adaptively implemented whenever the di5erence of high pass measure
accesses a positive alarm threshold �

	Wn+1 = ‖Wn+1‖ − ‖Wn‖¿ �: (18)

In the present tests, we use the Haar wavelet of one scale. The choice of � depends on the time
increment Pt and the grid size Px.
Note that DSC low-pass &lters are interpolative. Therefore, it is necessary to implement them

through prediction [u(xk)→ u(xk+1=2)] and restoration [u(xk+1=2)→ u(xk)]. The use of such adaptive
&lters is computationally e:cient because it does not need to judge local =ow directions as a
Riemann solver does. The implementation of DSC &lters is very simple as explicitly shown in Eq.
(11). We use the standard fourth-order Runge–Kutta scheme for time advancement in the present
work, although an implicit scheme may also be easily implemented. It is straightforward to extend
the conjugated &lters to higher spatial dimensions by tensorial products.

3. Applications

In this section, we validate the proposed scheme for linear equation of the hyperbolic type before
the scheme is applied to Burgers’ equation. We hope that experience learned from solving a linear
equation is valuable for tackling a nonlinear one. In all the present calculations, we choose M = 32
and �=� = 3:5 for normal computations (including predictions). Parameter � = 0:001 is selected to
control the possible use of low-pass &ltering, in which, restoration is done with DSC parameters
M = 31 and �=�= 0:75.

3.1. A linear equation

The di:culty of solving Burgers’ equation at arbitrary high Reynolds numbers lies in the possible
spurious oscillations. The capability of shock-capturing is the key for any potential scheme. To
validate a scheme for shock-capturing, it is standard to consider a linear equation of hyperbolic type
[15]

ut + ux = 0; −1¡x¡ 1;

u(x; 0) = u0(x); periodic: (19)

The exact solution is a family of traveling waves given by u(x; t)=u0(x−t) for t¿ 0. The solution
u(x; t) is constant along the characteristics given by a ray x− t= x0. We investigate the performance
of the proposed scheme by using three sets of initial data u0(x). The &rst two examples are designed
to test the computational accuracy and to compare with standard methods in the literature. The
third example is discontinuous and is used to examine the shock-capturing ability of the proposed
scheme.

Example 1. The &rst initial value is given by

u0(x) = sin4(�x): (20)



446 G.W. Wei, Y. Gu / Journal of Computational and Applied Mathematics 149 (2002) 439–456

Table 1
Comparison of errors and numerical orders of four numerical schemes

Method N L∞ errors L∞ order L1 errors L1 order

20 7.31(− 02) — 3.29(− 02) —
WENO-RF-4 40 2.48(− 02) 1.56 9.99(− 03) 1.72

80 4.60(− 03) 2.43 1.44(− 03) 2.79

20 1.08(− 01) — 4.91(− 02) —
WENO-RF-5 40 8.90(− 03) 3.60 3.64(− 03) 3.75

80 1.80(− 03) 2.31 5.00(− 04) 2.86

20 5.23(− 02) — 3.53(− 02) —
Central-5 40 2.47(− 03) 4.40 1.52(− 03) 4.46

80 8.23(− 05) 4.89 5.09(− 05) 4.90

20 1.00(− 09) — 4.12(− 10) —
CFOR 40 2.07(− 15) 18.88 1.11(− 16) 21.82

80 8.23(− 16) 1.33 3.44(− 17) 1.69

This problem is valuable since it is analytically solvable and has been considered by previous
authors to test their shock-capturing schemes [15]. The errors and numerical orders of the proposed
scheme at time t=1 are listed in Table 1; and compared with those of three other standard methods
[15]. Here N is the total number of cells, and Pt=Px is optimized. The fourth-order weighted
essentially nonoscillatory scheme with Roe’s =ux splitting and entropy &x (WENO-RF-4) is a quite
sophisticated shock-capturing scheme and is popularly used in the &eld of hyperbolic conservation
laws. The WENO-RF-5, an accuracy-enhanced version of WENO-RF-4, is often regarded as the
state of art scheme for shock-capturing. The performance of both schemes, as well as that of the
&fth-order central di5erence scheme, was reported in the literature [15] for Eq. (20). It is seen that
the DSC-based CFOR scheme yields a very high accuracy even for a coarse grid (N=20). It reaches
the machine precision with a total of 40 grid points. The largest L1 order of CFOR scheme is about
22, in comparing to about 4 for the WENO-RF-5 scheme. The accuracy of CFOR at 80 grid points
is obviously limited by the double precision algorithm used in the computation.

Example 2. We next consider a Gaussian wave packet given by

u0(x) = cos[k�(x − x0)]e−(x−x0)2=2�20 ; (21)

where parameter k can be adjusted to give a more oscillatory wave; �0=0:1 is a constant controlling
the width of the wave packet and x0 = 0 is the initial center of the wave packet. This problem is
interesting because real-world waves are both bandlimited and time-limited. Exact solution of the
problem is the same wave packet moving to the right with velocity 1. We solve the problem by
using three sets of grid points (N =50; 100 and 200) and three di5erent k values (k=5; 10 and 15).
The time increment is &xed as small as Pt = 10−5 so that most errors are due to the DSC spatial
discretization. Errors and numerical orders of the CFOR scheme for propagating the wave packets
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are listed in Table 2 for t = 2; 4 and 6, which correspond to period 1, 2 and 3, respectively. When
k = 5, some numerical orders with respect to mesh re&nements are as high as 30. Obviously, the
reported accuracy is limited by the double precision algorithm when the grid is re&ned to N = 200.
Even for k = 15, the computed numerical orders are still very high in both the &rst and second
mesh re&nements. This indicates that the CFOR scheme is extremely accurate in solving the wave
packet problem. For a comparison, both exact wave packets and numerical solutions obtained with
N = 100; t = 6 are depicted in Fig. 2 for k = 5; 10 and 15. Obviously, there is no visual di5erence
between the exact solutions and the CFOR results.

Example 3. Finally; we test the proposed scheme by using the following piecewise continuous initial
value

u(x; 0) =




1; 06 x6 0:2;

4x − 6
10 ; 0:2¡x6 0:4;

−4x + 52
20 ; 0:46 x¡ 0:6;

1; 0:66 x6 0:8;

0; otherwise:

(22)

This is a case with the so-called contact discontinuities and is quite di:cult to solve in hyperbolic
conservation laws. The discontinuity in the initial value may lead to severe spurious oscillations
and shock-capturing ability is crucial for solving this problem. In particular; the intersections of two
lines at x = 0:2 and 0.6 are di:cult to resolve. Exact solution is given by the initial value moved
with velocity 1 to the right. In Fig. 3; numerical solutions are given at t = 8. Obviously, the CFOR
scheme performs extremely well for this case.

3.2. Burgers’ equation

Having established our con&dence for using the proposed scheme for treating the linear equation
with various initial values, we pursue with the solution of Burgers’ equation [4]

@u
@t
+ u

@u
@x
=
1
Re

@2u
@x2

; (23)

where u(x; t) is the dependent variable resembling the =ow velocity and Re is the Reynolds number
characterizing the size of viscosity. The competition between the nonlinear advection and the viscous
di5usion is controlled by the value of Re in Burgers’ equation, and thus determines the behavior of
the solution.
To test the proposed scheme for solving Burgers’ equation, three standard benchmark problems

are employed in this subsection. These problems are designed to explore the computational accuracy,
stability, and shock-resolving capability of the CFOR scheme.

Example 1. We &rst consider Eq. (23) with the following initial-boundary conditions

u(x; 0) = sin(�x);

u(0; t) = u(1; t) = 0: (24)
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Fig. 2. Time evolution of Gaussian wave packets (t = 6, Px = 0:02 and Pt = 10−5). (a) k = 5; (b) k = 10; (c) k = 15.

Cole has provided the exact solution [6] for this problem in terms of an expansion series which
is readily computable roughly for the parameter Re6 100. In the present DSC treatment; the DSC
high-pass &lters (12) are used for solving Burgers’ equation at Re = 100 as the conjugate low-pass
&lter is rarely activated at this moderate Reynolds number. The present calculations use 41 grid
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Fig. 3. Linear equation with a discontinuous initial value (t = 8; Px = 0:01 and Pt=Px = 0:1).

Table 3
Comparison of errors for solving Burgers’ equation

K–T DSC

Time L∞ L∞ L1

0.4 2.6(− 2) 2.4(− 3) 2.2(− 4)
0.8 2.9(− 2) 3.3(− 3) 2.9(− 4)
1.2 1.8(− 2) 4.7(− 4) 1.1(− 5)
3.0 6.9(− 3) 7.6(− 8) 1.1(− 8)

points in the interval [0; 1]. Time increment of 0.01 is used for the time integration. Both L∞ and
L1 errors at 4 di5erent times are listed in Table 3. In an earlier work, Kakuda and Tosaka [16]
tested their generalized boundary element method by using 100 elements, up to 6 iterations and the
same time increment as ours (Pt = 0:01). Their results are also listed in Table 3 for a comparison.
The errors in both methods are very small. The DSC results are from 10 to 105 times more accurate
than those of Kakuda and Tosaka [16](K–T), while the present results are obtained by using much
fewer grid points.
The numerical solution of Burgers’ equation at a high Reynolds number (Re=105) is very di:cult

due to the presence of shock [14]. A direct application of the DSC algorithm using 64 grid points
(N = 64) and a small time increment (Pt = 0:001) leads to highly oscillatory results as shown in
Fig. 4. The time integration is shown up to 0.5 time units and eventually collapses at a later time.
The plot is given in the spatial interval of [0; 2], which is generated by an antisymmetric extension
of the original numerical results in the spatial interval of [0; 1]. The oscillation starts near 0.3 time



G.W. Wei, Y. Gu / Journal of Computational and Applied Mathematics 149 (2002) 439–456 451

Fig. 4. (a) The oscillatory numerical solution of Burgers’ equation (Re = 105;Pt = 0:001; N = 64; t = 0 ∼ 0:5); (b) Three
scale wavelet analysis of Fig. 4(a); (c) The last scale low pass response of Fig. 4(b); (d) The CFOR solution of Burgers’
equation (Re = 105;Pt = 0:001; N = 64; t = 0 ∼ 0:5).

units and is accumulated and ampli&ed in further integrations. The solid line in Fig. 1 shows the
Fourier image of the result at t = 0:5. The image has two large peaks, one near the zero and the
other near the Nyquist frequency �=�.
To analyze Fig. 4(a) further, a three-scale wavelet transform is performed and the result is de-

picted in Fig. 4(b). Daubechies’ biorthogonal wavelets (D7=9) [7] are employed for the wavelet
transform. At the &rst scale, a response extended over a large domain is recorded over the southeast
quarter of the quadrangle which corresponds to high frequency oscillations in Fig. 4(a). Note that
high frequency oscillations reside exclusively at the southeast quarter of quadrangle because oscil-
lations only occur within a special frequency range. The peak at the middle of the high frequency
response region is due to the shock front, which produces two other similar narrow high frequency
responses at the second and third scales, respectively. The response of the highest amplitude at
the southwest corner is enlarged in Fig. 4(c). Surprisingly, this part seems containing the desired
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Fig. 5. The CFOR solutions of Burgers’ equation at t=0:2 (i), 0.5 (ii), 1.0 (iii), 1.5 (iv) and 2.0 (v) (Pt=0:001; N=101).
(a) Re = 100; (b) Re = 103; (c) Re = 105; (d) Re =∞.

solution to Burgers’ equation. However, there is a kink in the late part of the low pass solution
which does not belong to the desired solution. Obviously, had the high frequency oscillations been
controlled in the course of integration, such a kink would not have appeared. From this analysis we
conclude that the peak near the Nyquist frequency in the Fourier image in Fig. 1 is due to undesired
oscillations.
Fig. 4(d) shows the results under the same conditions as those of Fig. 4(a), obtained by using

the CFOR scheme. Note that the oscillations are eliminated and meanwhile, a sharp shock pro&le is
resolved. The dotted line in Fig. 1 shows the Fourier image of the solution at time 0.5. It is noted
that there is little change to the image inside the e5ective bandwidth of conjugated &lters. However,
peaks of high frequency oscillations are e5ectively eliminated.
We test this scheme for the case of Re = 103 and 105 at Px = 0:01; Pt = 0:001. As shown in

Fig. 5(b) and (c), the CFOR results are excellent. Clearly, all oscillations are e5ectively removed and
the shock front is very sharp. In a dramatic case, we consider inviscid Burgers’ equation (Re=∞).
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Fig. 6. Inviscid Burgers’ equation with shock wave (Px = 0:01; Pt=Px = 0:4). (a) results at t = 1, (b) results at t = 2.

As depicted in Fig. 5(d), our CFOR scheme works extremely well for this case too. The results for
Re = 100 are shown in Fig. 5(a) for a comparison.

Example 2. To test the proposed scheme for solving Burgers’ equation further; we next consider the
following Riemann type initial value for the inviscid case (Re =∞)

u(x; 0) =

{
1; x6 0;

0; x¿ 0:
(25)

This is a standard benchmark problem in hyperbolic conservation laws and has been considered by
many researchers. The exact solution is a shock wave moving with a constant velocity

u(x; t) =

{
1; x − St ¡ 0;

0; x − St ¿ 0;
(26)

where the speed of the shock front is given by

S = 1
2 :

The shock wave is compressive in nature. Results of the proposed scheme are depicted in Fig. 6 for
two di5erent times. Apparently, the present results are some of the best for solving this problem.

Example 3. Finally; we consider another Riemann type initial value for the inviscid Burgers’ equa-
tion (Re =∞)

u(x; 0) =

{
0; x¡ 0;

1; x¿ 0:
(27)

The exact solution of this problem is a rarefaction wave

u(x; t) =



0; x

t ¡ 0;
x
t ; 0¡ x

t ¡ 1;

1; x
t ¿ 1:

(28)
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Fig. 7. Inviscid Burgers’ equation with rarefaction wave (Px= 0:01 and Pt=Px= 0:4). (a) results at t = 1, (b) results at
t = 2.

The solution is expansive in nature and thus; is a so-called entropy-violating wave. The CFOR results
are plotted in Fig. 7 for two di5erent times. Obviously, the present scheme performs extremely well
for this case.

4. Conclusion

In conclusion, a novel approach, the conjugate &lter oscillation reduction (CFOR) scheme is intro-
duced for solving Burgers’ equation with di5erent initial values and Reynolds numbers. The essence
of the CFOR scheme is to adaptively implement a conjugate low-pass &lter to e5ectively remove
the accumulated numerical errors produced by a set of high-pass &lters. The conjugated low-pass
and high-pass &lters have essentially the same degree of regularity, smoothness, time-frequency lo-
calization, e5ective support and bandwidth. In this work, all conjugated &lters are constructed by
using discrete singular convolution (DSC) kernels [20].
The numerical accuracy of the CFOR approach is tested by using a linear equation of hyperbolic

type with two di5erent initial values. Comparison is made with standard shock-capturing schemes,
such as fourth order and &fth order weighted essentially nonoscillatory scheme with Roe’s =ux
splitting and entropy &x (WENO-RF-4 and WENO-RF-5) [15]. The proposed scheme is about 1010

times more accuracy than these standard methods. The L∞ and L1 numerical orders of the CFOR
scheme are about 19 and 22, respectively, in solving this linear wave equation. In fact, much better
numerical results are obtained in propagating Gaussian wave packets with the same linear equation.
Numerical orders are as high as 30 in resolving the wave packets. We also test the accuracy of the
proposed scheme for solving Burgers’ equation, for which the analytical solution is readily available
at a moderately high Reynolds number (Re= 100). While using much fewer grid points, our results
are about 10 to 105 times more accurate than those of an accurate &nite element approach [16].
The capability of the proposed scheme for shock-capturing is tested on the linear wave equation

with contact discontinuities. Such a problem is somewhat di:cult to solve in shock capturing.
Numerical experiments indicate that the CFOR scheme works extremely well in resolving the shock.
Burgers’ equation is nonlinear and thus, at high Reynolds number, it produces shock front with a
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smooth initial value when the Dirichlet boundary condition is employed. For extremely high Reynolds
numbers (Re¿ 105), the DSC algorithm develops severe oscillations near the shock front. The CFOR
scheme can minimize error accumulations and resolve the shock front well. The ability of the CFOR
scheme for treating inviscid Burgers’ equation is con&rmed by taking discontinuous initial values
of the Riemann type with periodic boundary conditions. These cases are benchmark problems in
hyperbolic conservation laws. Excellent numerical results are obtained for these problems. Therefore,
the present CFOR scheme is very accurate and reliable for integrating Burgers’ equation over all
possible values of Reynolds numbers.
It is noted that the present approach is very general. It can be directly applied to the numer-

ical solution of other partial di5erential equations, particularly, compressible =ows and hyperbolic
conservation laws. Moreover, the CFOR scheme can be implemented along with any other stan-
dard computational methods, such as high-order central di5erence schemes, &nite element methods
and spectral approximations. A detailed discussion of these aspects as well as applications to more
general hyperbolic conservation law systems is beyond the scope of the present paper and will be
reported elsewhere [10].
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