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Abstract. In this paper we develop a Lax–Wendroff time discretization procedure for high
order finite difference weighted essentially nonoscillatory schemes to solve hyperbolic conservation
laws. This is an alternative method for time discretization to the popular TVD Runge–Kutta time
discretizations. We explore the possibility in avoiding the local characteristic decompositions or
even the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining
nonoscillatory properties for problems with strong shocks. As a result, the Lax–Wendroff time
discretization procedure is more cost effective than the Runge–Kutta time discretizations for certain
problems including two-dimensional Euler systems of compressible gas dynamics.
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1. Introduction. In this paper, we study an alternative method for time dis-
cretization, namely the Lax–Wendroff-type time discretization [7], to the popular
TVD Runge–Kutta time discretization in [16], for the high order finite difference
WENO (weighted essentially nonoscillatory) methods [6], [1] in solving nonlinear hy-
perbolic conservation law systems

{
ut +∇ · f(u) = 0,
u(x, 0) = u0(x).

(1.1)

WENO finite difference methods have been developed in recent years as a class of
high order methods for conservation laws (1.1) which gives sharp, nonoscillatory dis-
continuity transitions and at the same time provides high order accurate resolutions
for the smooth part of the solution. The first WENO scheme is constructed in [9] for
a third order finite volume version in one space dimension. In [6], third and fifth or-
der finite difference WENO schemes in multispace dimensions are constructed, with a
general framework for the design of the smoothness indicators and nonlinear weights.
Finite difference WENO schemes of higher orders (seventh to eleventh order) are con-
structed in [1]. WENO schemes are designed based on the successful ENO schemes
in [3, 16, 17]. Both ENO and WENO schemes use the idea of adaptive stencils in
the reconstruction procedure based on the local smoothness of the numerical solu-
tion to automatically achieve high order accuracy and a nonoscillatory property near
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discontinuities. ENO uses just one (optimal in some sense) out of many candidate
stencils when doing the reconstruction, while WENO uses a convex combination of all
the candidate stencils, each being assigned a nonlinear weight which depends on the
local smoothness of the numerical solution based on that stencil. WENO improves
upon ENO in robustness, better smoothness of fluxes, better steady state convergence,
better provable convergence properties, and more efficiency. Finite volume WENO
schemes on unstructured meshes and central-type WENO schemes have also been
constructed; see, e.g., [4, 5, 8, 11]. For a detailed review of ENO and WENO schemes,
we refer to the lecture notes [15].

WENO is a spatial discretization procedure; namely, it is a procedure to approx-
imate the spatial derivative terms in (1.1). The time derivative term there must also
be discretized. There are mainly two different approaches to approximate the time
derivative. The first approach is to use an ODE solver, such as a Runge–Kutta or a
multistep method, to solve the method of lines ODE obtained after spatial discretiza-
tion. The second approach is a Lax–Wendroff-type time discretization procedure,
which is also called the Taylor type, referring to a Taylor expansion in time, or the
Cauchy–Kowalewski type, referring to the similar Cauchy–Kowalewski procedure in
the PDE. This approach is based on the idea of the classical Lax–Wendroff scheme [7],
and it relies on converting all the time derivatives in a temporal Taylor expansion into
spatial derivatives by repeatedly using the PDE and its differentiated versions. The
spatial derivatives are then discretized by, e.g., the WENO approximations.

The first approach, namely the method of lines plus an ODE solver, has the ad-
vantage of simplicity, both in concept and in coding. It also enjoys good stability
properties when the TVD-type Runge–Kutta or multistep methods are used [16, 14].
Thus the majority of the WENO codes are using this type of time discretization.
To be on the safe side, a TVD time discretization [16, 14] is preferred. There is,
however, an order barrier for TVD Runge–Kutta methods with positive coefficients:
they cannot be higher than fourth order accurate [12]. In many practical implemen-
tations reported, when the solution is not smooth, a third order TVD Runge–Kutta
method from [16] has been used, e.g., even for the very high order WENO methods
in [1]. We should, however, remark that in practice it seems that for many problems
spatial accuracy is more crucial than temporal accuracy; hence a third order TVD
Runge–Kutta method together with a higher order spatial discretization often gives
satisfactory results.

The second approach, the Lax–Wendroff-type time discretization, usually pro-
duces the same high order accuracy with a smaller effective stencil than that of the
first approach, and it uses more extensively the original PDE. However, the formula-
tion and coding of this procedure could be quite complicated, especially for multidi-
mensional systems. The original finite volume ENO schemes in [3] used this approach
for the time discretization. More recently, Titarev and Toro [18] and Schwartzkopff,
Munz, and Toro [13] used this approach to construct a class of high order schemes.
They termed such schemes ADER (arbitrary high order schemes utilizing higher order
derivatives), which stem from the modified generalized Riemann problem (MGRP)
scheme by Toro [19], a simplification of the GRP scheme by Ben-Artzi and Fal-
covitz [2]. The ADER approach is an explicit two-level, finite-volume scheme which
uses, among other things, the Lax–Wendroff time discretization procedure to convert
time derivatives to spatial derivatives using the PDE before discretizing them. In
Lukácová-Medvid’ová and Warnecke [10], a Lax–Wendroff-type second order evolu-
tion Galerkin method for multidimensional hyperbolic systems is discussed.
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The Lax–Wendroff-type time discretization is easier to formulate for the finite
volume than for the finite difference spatial discretizations. The existing schemes
using the Lax–Wendroff-type time discretization procedure in the literature, such as
those mentioned above, are mostly of finite volume (or finite element) type.

In this paper we explore the Lax–Wendroff-type time discretization procedure for
the high order finite difference WENO spatial discretizations in [6] and [1]. The same
procedure certainly also applies to other types of high order conservative finite dif-
ference methods. The resulting conservative schemes are more complex to formulate
and to code than those using the TVD Runge–Kutta time discretization [16]; hence
unless there is an advantage in CPU timing for the same accuracy, they will not be
competitive. Fortunately, after exploring the possibility in avoiding the local charac-
teristic decompositions or even the nonlinear weights for part of the procedure, hence
reducing the cost but still maintaining nonoscillatory properties for problems with
strong shocks, we demonstrate numerically that the Lax–Wendroff time discretiza-
tion procedure adopted in this paper is more cost effective than the Runge–Kutta
time discretizations for certain problems including two-dimensional Euler systems of
compressible gas dynamics.

In [11], we have demonstrated the necessity of using a local characteristic decom-
position in the WENO reconstruction procedure to avoid or to significantly reduce
the spurious oscillations, especially for higher order schemes, although for lower order
WENO schemes such local characteristic decompositions can sometimes be avoided.
A fact more relevant to this paper is that after extensive numerical experiments, we
found in [11] we need to perform only the costly local characteristic decomposition
for some part of reconstruction, and use componentwise WENO in other parts of
reconstruction, and still maintain an ENO shock transition. Similarly, in this paper
we develop the fifth order finite difference WENO schemes with a Lax–Wendroff time
discretization procedure by performing only the local characteristic decomposition
and WENO approximation for the reconstruction of the fluxes to the first order time
derivative, and using the inexpensive central difference approximations for the recon-
struction of the higher order time derivatives, as these terms are multiplied by O(∆t)
or its higher powers. We demonstrate through extensive numerical examples that
the procedure is robust, ENO, accurate, and CPU time efficient when compared with
the fifth order finite difference WENO schemes with Runge–Kutta time discretiza-
tions [6] for certain types of problems including the two-dimensional Euler equations
of compressible gas dynamics. Of course, this procedure becomes progressively more
complicated with more complicated PDEs and/or higher order time accuracy; hence
we do not expect it to be always cost effective relative to the standard Runge–Kutta
time discretizations.

In this paper we do not address the important issue of time discretization for
PDEs with diffusion terms and/or with stiff source terms, which calls for hybrid
explicit/implicit time discretization. There are good Runge–Kutta methods to easily
achieve this; see, e.g., [21]. The Lax–Wendroff procedure in this paper can also be
adapted for such a purpose, through careful Taylor expansions.

The organization of the paper is as follows. In section 2, we describe in detail
the construction and implementation of the high order (we use the fifth order as an
example) WENO finite difference schemes with a Lax–Wendroff-type time discretiza-
tion for one- and two-dimensional scalar and system equations (1.1). In section 3, we
provide extensive numerical examples to demonstrate the behavior of the schemes and
to perform a comparison with the fifth order finite difference WENO schemes with
Runge–Kutta time discretizations [6]. Concluding remarks are given in section 4.
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2. Construction and implementation of the scheme. In this section we
describe in detail the construction and implementation of the high order (using the
fifth order as an example) WENO finite difference schemes with a Lax–Wendroff-type
time discretization for one- and two-dimensional scalar and system conservation laws.

2.1. One-dimensional scalar case. Consider the one-dimensional scalar con-
servation laws: {

ut + f(u)x = 0,
u(x, 0) = u0(x).

(2.1)

For simplicity, we assume that the grid points {xi} are uniform with xi+1 − xi = ∆x,
and we denote the cells by Ii = [xi− 1

2
, xi+ 1

2
]. Let ∆t be the time step, tn+1 = tn+∆t,

and let un
i be the approximation of the point values u(xi, t

n). We denote by u(r) the
rth order time derivative of u, namely ∂ru

∂tr . We also use u
′, u′′, and u′′′ to denote the

first three time derivatives of u. By a temporal Taylor expansion we obtain

u(x, t+∆t) = u(x, t) + ∆tu′ +
∆t2

2
u′′ +

∆t3

6
u′′′ +

∆t4

24
u(4) + · · · .(2.2)

If we would like to obtain kth order accuracy in time, we would need to approximate
the first k time derivatives: u′, . . . , u(k). We will proceed up to fourth order in time
in this paper, although the procedure can be naturally extended to any higher order.

After extensive numerical tests, we have found the following Lax–Wendroff pro-
cedure, which produces the best balance between cost reduction and ensuring ENO
properties.

Step 1. The reconstruction of the first time derivative u′ = −f(u)x is obtained
by the regular conservative (2r − 1)th order WENO finite difference procedure as
described in detail in [6] and [1]; see also [15]. For example, r = 3 would produce a
fifth order approximation.

Step 2. The reconstruction of the second time derivative u′′ = −(f ′(u)u′)x is
obtained as follows. Notice that we will need only an approximation of order (2r−2),
one order lower than before, because of the extra ∆t factor. Let gi = f ′ (ui)u

′
i, where

ui and u′
i are the point values of u and u′ at the point (xi, t

n) computed in Step 1
described above. We can use a simple (2r − 2)th order central difference formula to
approximate u′′ at the point (xi, t

n). For example, when r = 3, we use the following
fourth order central difference approximation:

u′′
i ≈ − 1

12∆x
(gi−2 − 8gi−1 + 8gi+1 − gi+2).(2.3)

Notice that this approximation is conservative; namely, it can be written as a flux
differenced form. It seems that a more costly WENO approximation is not needed
here to control spurious oscillations, presumably because this term is multiplied by
an extra ∆t anyway.

Step 3. The reconstruction of the third time derivative u′′′ = −(f ′(u)u′′ +
f ′′(u)(u′)2)x is obtained as follows. Let gi = f ′(ui)u

′′
i + f ′′(ui)(u

′
i)

2; here u′
i and

u′′
i are the point values of u

′ and u′′ at the point (xi, t
n) computed in Step 1 and

Step 2 above. Then we repeat Step 2 to get the approximation of u′′′ using a central
difference approximation of order (2r− 2). In fact, we need only an approximation of
order (2r−3), because of the extra ∆t2 factor, but we would like to use simple central
differences which are all of even order. Again, it seems that a more costly WENO
approximation is not needed here to control spurious oscillations.
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Step 4. The reconstruction of the fourth time derivative u(4) = −(f ′(u)u′′′ +
3f ′′(u)u′u′′ + f ′′′(u)(u′)3)x is obtained in a similar fashion. Let gi = f ′(ui)u

′′′
i +

3f ′′(ui)u
′
iu

′′
i + f ′′′(ui)(u

′
i)

3, where u′
i, u

′′
i , and u′′′

i are the point values of u′, u′′, and
u′′′ at the point (xi, t

n) computed in Step 1, Step 2, and Step 3 above. In order
to get a (2r − 1)th order scheme, we need to use only a (2r − 4)th order central
difference approximation to u(4) at the point (xi, t

n), because of the extra ∆t3 factor.
For example, when r = 3, we can use the following second order approximation:

u
(4)
i ≈ − 1

2∆x
(gi+1 − gi−1),(2.4)

which is again a conservative approximation.
If we require higher order accuracy, in time this procedure can be continued in a

similar fashion. The final conservative approximation at the next time step is then
given by

u(xi, t
n+1) ≈ ui +∆tu′

i +
∆t2

2
u′′
i +

∆t3

6
u′′′
i +

∆t4

24
u

(4)
i + · · ·+ ∆tk

k!
u

(k)
i .(2.5)

In the following we denote the schemes with (2r−1)th order in space and kth order
in time, obtained with this Lax–Wendroff-type time discretization, as WENO(2r−1)-
LWk. We will concentrate our attention on WENO5-LW3 and WENO5-LW4. As
a comparison we denote the fifth order finite difference WENO schemes with time
discretization by third and fourth order Runge–Kutta methods in [6] as WENO5-
RK3 and WENO5-RK4.

We remark that the Lax–Wendroff-type time discretization adopted in this paper
yields a final stencil which is narrower than the corresponding scheme with a Runge–
Kutta time discretization. Hence the scheme is more compact, which is a feature
shared by all Lax–Wendroff-type time discretization based schemes. For example, for
the WENO5 reconstruction, 7 points are needed in the most general case with a Lax–
Friedrich flux splitting [6]. For the schemes WENO5-RK3 and WENO5-RK4, 3 and
4 inner stages are needed, respectively, to march one time step; hence 3 or 4 WENO5
reconstructions are needed to compute solution at the next time step, resulting in a
final stencil consisting of 19 and 25 points, respectively, for the WENO5-RK3 and
WENO5-RK4 schemes. On the other hand, the total number of points in the final
stencil for the WENO5-LW3 and WENO5-LW4 schemes are 15 and 17, respectively,
which consist of 7 points in Step 1, 4 additional points in each of Steps 2 and 3, and
2 additional points in Step 4.

2.2. One-dimensional systems. For systems of conservation laws (2.1), u(x, t)
= (u1(x, t), . . . , um(x, t))T is a vector and f(u) = (f1(u1, . . . , um), . . . , fm(u1, . . . , um))T

is a vector function of u. As before, the time derivatives in (2.2) are replaced by the
spatial derivatives using the PDE. For the first time derivative u′ = −f(u)x, we again
use the regular conservative WENO procedure of (2r−1)th order accuracy to approx-
imate −f(u)x. This approximation should be performed in the local characteristic
directions to avoid spurious oscillations. See [6] and [11] for details. For the second
and higher time derivatives, however, it seems that central approximations compo-
nent by component of adequate order of accuracy, as in the scalar case, is enough to
ensure the ENO property. Neither a local characteristic decomposition nor a WENO
approximation is needed for these terms. On the other hand, it seems that WENO
schemes with TVD Runge–Kutta time discretizations [6] would need a local charac-
teristic decomposition for all inner stages to guarantee a nonoscillatory solution. If
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Table 1
CPU time (in seconds) for the WENO5-LW and WENO5-RK schemes to compute the double

Mach reflection problem in Example 3.9.

Schemes 240× 59 Ratio 480× 119 Ratio
WENO5-LW3 104.36 1290.97
WENO5-RK3 210.48 1:2.02 2805.65 1:2.17
WENO5-LW4 152.80 2111.94
WENO5-RK4 281.54 1:1.84 3780.80 1:1.75

the local characteristic decomposition is performed only for the first inner stage, the
result becomes oscillatory, according to our numerical experiments. We note that the
second and higher order time derivatives, when converted to spatial derivatives as
before, involve expressions like f ′(u), which is a matrix (the Jacobian), f ′′(u), which
is a three-dimensional “matrix” (tensor), etc., which could become very complicated.
A symbolic manipulator such as MAPLE would be helpful to avoid mistakes. The
code is also quite long and messy compared with codes using Runge–Kutta time dis-
cretizations. However, we will see in the next section that one can save CPU time by
this approach for certain problems.

2.3. Two-dimensional cases. Consider the two-dimensional conservation laws:{
ut + f(u)x + g(u)y = 0,
u(x, y, 0) = u0(x, y).

(2.6)

By a temporal Taylor expansion we obtain

u(x, y, t+∆t) = u(x, y, t) + ∆tu′ +
∆t2

2
u′′ +

∆t3

6
u′′′ + · · · .

For example, for third order accuracy in time we would need to reconstruct three time
derivatives: u′, u′′, u′′′.

We again use the PDE (2.6) to replace time derivatives by spatial derivatives. The
first time derivative u′ = −f(u)x − g(u)y is approximated by the regular conserva-
tive finite difference procedure in a dimension-by-dimension fashion, including a local
characteristic decomposition for the system case; see [6]. On the other hand, as in
the one-dimensional situation, the second order time derivative u′′ = −(f ′(u)u′)x −
(g′(u)u′)y, the third order time derivative u′′′ = −(f ′′(u)(u′)2+f ′(u)u′′)x−(g′′(u)(u′)2

+g′(u)u′′)y, and the fourth order time derivative u(4) = −(f ′′′(u)(u′)3+3f ′′(u)u′u′′+
f ′(u)u′′′)x−(g′′′(u)(u′)3+3g′′(u)u′u′′+g′(u)u′′′)y, etc., can be approximated by simple
central differences of suitable orders of accuracy, again in a dimension-by-dimension
fashion. For the system case, no local characteristic decompositions are needed for
these approximations. It is again helpful to use a symbolic manipulator to obtain the
complicated time derivative terms for the system case.

3. Numerical results. In this section we present the results of our numerical
experiments for WENO5-LW3/LW4 schemes developed in the previous section and
compare them with the finite difference WENO schemes using Runge–Kutta time
discretizations in [6]. Uniform meshes are used, and the CFL number is taken as 0.5.

We first remark on the important issue of CPU timing and relevant efficiency of
WENO5-LW schemes compared with WENO-RK schemes. In general the WENO5-
LW schemes have smaller CPU costs for the same mesh and same order of accuracy
in our implementation. For example, in Table 1, we provide a CPU time compar-
ison between WENO5-LW and WENO5-RK schemes for the two-dimensional Euler



WENO SCHEMES WITH LAX–WENDROFF TIME DISCRETIZATIONS 2191

Table 2
ut+(

u2

2
)x = 0. u(x, 0) = 0.5+sin(πx). WENO5-LW4 using N equally spaced points. t = 0.5/π.

L1 and L∞ errors.

N L1 error L1 order L∞ error L∞ order
10 3.65E-02 6.85E-02
20 4.44E-03 3.04 1.26E-02 2.45
40 2.55E-04 4.12 1.06E-03 3.57
80 9.99E-06 4.67 5.11E-05 4.38
160 3.76E-07 4.73 1.69E-06 4.92
320 1.15E-08 5.03 7.62E-08 4.47
640 2.96E-10 5.28 1.46E-09 5.70

equation, double Mach reflection test case in Example 3.9. The computer we used
is an IBM PC with a Pentium-4 processor of 1.4G cpu and a 128M ram. We can
see that the WENO5-LW schemes cost about half the CPU time compared with the
WENO5-RK schemes for this example. Of course, this is closely related to the fact
that the costly local characteristic decomposition and WENO approximation are used
only once per time step in computing the first order time derivative, and the much
less costly central difference approximations are used for all higher order time deriva-
tives. However, in all the numerical experiments we have performed, nonoscillatory
results can be obtained by this approach. We should remark, however, that there are
also possibilities for reducing costs in Runge–Kutta methods, such as the possibility
of freezing the nonlinear smoothness indicators for the inner stages, etc., which could
potentially change the comparison in Table 1 but are not addressed in this paper.

3.1. Accuracy tests. We first test the accuracy of the schemes on linear scalar
problems (results not shown to save space), nonlinear scalar problems, and nonlinear
systems. Fourth order accuracy in time is used for this subsection. It seems that for
all the test cases here, the spatial errors are dominating over the time errors; hence
we actually observe close to fifth order accuracy, even though the time accuracy is
only fourth order, for the meshes we have used.

Example 3.1. We solve the following nonlinear scalar Burgers equation:

ut +

(
u2

2

)
x

= 0(3.1)

with the initial condition u(x, 0) = 0.5+sin(πx) and a 2-periodic boundary condition.
When t = 0.5/π the solution is still smooth, and the errors and numerical orders of
accuracy by the WENO5-LW4 scheme are shown in Table 2. For comparison, errors
and numerical orders of accuracy by the WENO5-RK4 scheme are shown in Table 3.
We can see that both WENO5-LW4 and WENO5-RK4 schemes achieve their designed
order of accuracy, and they produce similar errors and orders of accuracy.

Example 3.2. We solve the following two-dimensional nonlinear scalar Burgers
equation:

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0(3.2)

with the initial condition u(x, y, 0) = 0.5+sin(π(x+ y)/2) and a 4-periodic boundary
condition. To avoid any special error cancelations due to the symmetry axis being in
the diagonals of cells, we use different mesh sizes in the x- and y-directions. When
t = 0.5/π the solution is still smooth, and the errors and numerical orders of accuracy
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Table 3
ut+(

u2

2
)x = 0. u(x, 0) = 0.5+sin(πx). WENO5-RK4 using N equally spaced points. t = 0.5/π.

L1 and L∞ errors.

N L1 error L1 order L∞ error L∞ order
10 4.10E-02 7.43E-02
20 4.31E-03 3.25 1.23E-02 2.59
40 2.49E-04 4.12 1.05E-03 3.55
80 8.79E-06 4.82 4.78E-05 4.46
160 3.27E-07 4.75 1.40E-06 5.09
320 9.60E-09 5.09 7.27E-08 4.27
640 2.37E-10 5.34 1.20E-09 5.92

Table 4
ut + (

u2

2
)x + (

u2

2
)y = 0, u0(x) = 0.5 + sin(π(x+ y)/2). [0, 4]× [0, 4], t = 0.5/π. WENO5-LW4

using Nx ×Ny equally spaced points. L1 and L∞ errors.

Nx ×Ny L1 error L1 order L∞ error L∞ order
8* 12 2.23E-02 6.44E-02
16* 24 2.98E-03 2.90 1.45E-02 2.15
32* 48 2.90E-04 3.36 1.65E-03 3.13
64* 96 8.58E-06 5.08 8.08E-05 4.36
128* 192 3.27E-07 4.71 2.57E-06 4.97
256* 384 1.01E-08 5.01 1.33E-07 4.28

by the WENO5-LW4 scheme are shown in Table 4. We can see that the scheme
achieves close to its designed order of accuracy.

Example 3.3. We solve the following nonlinear system of Euler equations:

ξt + f(ξ)x + g(ξ)y = 0(3.3)

with

ξ = (ρ, ρu, ρv,E)T , f(ξ) = (ρu, ρu2 + p, ρuv, u(E + p))T ,

g(ξ) = (ρv, ρuv, ρv2, v(E + p))T .

Here ρ is the density, (u, v) is the velocity, E is the total energy, and p is the pressure,
which is related to the total energy by E = p

γ−1+
1
2ρ(u

2+v2) with γ = 1.4. The initial

condition is set to be ρ(x, y, 0) = 1+0.2 sin(π(x+y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3,
p(x, y, 0) = 1, with a 2-periodic boundary condition. The exact solution is ρ(x, y, t) =
1+0.2 sin(π(x+y−(u+v)t)), u = 0.7, v = 0.3, p = 1. We compute the solution up to
t = 2. The errors and numerical orders of accuracy of the density ρ for WENO5-LW4
are shown in Table 5. For comparison, the errors and numerical orders of accuracy by
the WENO5-RK4 scheme are shown in Table 6. We can see that both WENO5-LW4
and WENO5-RK4 schemes achieve their designed order of accuracy, and they produce
similar errors and orders of accuracy. Again, to avoid any special error cancelations
due to the symmetry axis being in the diagonals of cells, we use different mesh sizes
in the x- and y-directions.

3.2. Test cases with shocks.
Example 3.4. We solve the same nonlinear Burgers equation (3.1) as in Example

3.1 with the same initial condition u(x, 0) = 0.5 + sin(πx), except that we now plot
the results at t = 1.5/π when a shock has already appeared in the solution. In
Figure 1, the solutions of WENO5-LW and the comparison schemes WENO5-RK are
shown. The left figure compares WENO5-LW3 with WENO5-RK3, and the right
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Table 5
Euler equations. ρ(x, y, 0) = 1+0.2 sin(π(x+y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1.

WENO5-LW4 using Nx ×Ny equally spaced points. t = 2. L1 and L∞ errors of the density ρ.

Nx ×Ny L1 error L1 order L∞ error L∞ order
8* 12 1.14E-02 1.84E-02
16* 24 6.78E-04 4.07 1.18E-03 3.96
32* 48 2.19E-05 4.95 4.38E-05 4.75
64* 96 6.78E-07 5.01 1.36E-06 5.00
128* 192 2.09E-08 5.02 4.07E-08 5.07
256* 384 6.44E-10 5.02 1.14E-09 5.16

Table 6
Euler equations. ρ(x, y, 0) = 1+0.2 sin(π(x+y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1.

WENO5-RK4 using Nx ×Ny equally spaced points. t = 2. L1 and L∞ errors of the density ρ.

Nx ×Ny L1 error L1 order L∞ error L∞ order
8* 12 1.70E-02 2.65E-02
16* 24 1.03E-03 4.05 1.69E-03 3.97
32* 48 3.41E-05 4.91 6.51E-05 4.70
64* 96 1.06E-06 5.00 2.09E-06 4.96
128* 192 3.31E-08 5.01 6.31E-08 5.05
256* 384 1.02E-09 5.02 1.87E-09 5.08
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Fig. 1. The Burgers equation. u(x, 0) = 0.5 + sin(πx). t = 1.5/π. N = 80 points. Left:
WENO5-LW3 and WENO5-RK3; right: WENO5-LW4 and WENO5-RK4.

figure compares WENO5-LW4 with WENO5-RK4. N = 80 grid points are used. We
can see that both schemes give equally good nonoscillatory shock transitions for this
problem. Notice that the central difference approximations for the higher order time
derivatives in the WENO5-LW schemes do not lead to spurious oscillations.

Example 3.5. We solve the nonlinear nonconvex scalar Buckley–Leverett problem

ut +

(
4u2

4u2 + (1− u)2

)
x

= 0(3.4)

with the initial data u = 1 when − 1
2 ≤ x ≤ 0 and u = 0 elsewhere. The solution is

computed up to t = 0.4. The exact solution is a shock-rarefaction-contact disconti-
nuity mixture. We remark that some high order schemes may fail to converge to the
correct entropy solution for this problem. In Figure 2, the solutions of WENO5-LW3
and WENO5-RK3 schemes (left) and WENO5-LW4 and WENO-RK4 schemes (right)
with N = 160 grid points are shown. The solid line is the exact solution. We can



2194 JIANXIAN QIU AND CHI-WANG SHU

+++++++++++++++++++++++++++++++++++++++++++++++
+++++++++

+++++++++
+++++++

++

+

+

++++++
+
+++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+++++++++++++++++++++++++++

x

u

-1 -0.5 0 0.5 1

0

0.5

1

Exact
WENO5-LW3
WENO5-RK3+

+++++++++++++++++++++++++++++++++++++++++++++++
+++++++++

+++++++++
+++++++

++

+

+

++++++
+
+++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+++++++++++++++++++++++++++

x

u

-1 -0.5 0 0.5 1

0

0.5

1

Exact
WENO5-LW4
WENO5-RK4+

Fig. 2. The Buckley–Leverett problem. t = 0.4. N = 160 points. Left: WENO5-LW3 and
WENO5-RK3; right: WENO5-LW4 and WENO5-RK4.
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Fig. 3. WENO5-LW4 comparing with WENO5-RK4. N = 200 points. Density. Left: the Lax
problem at t = 0.16; right: the Sod problem at t = 0.1644.

see that all the schemes give good nonoscillatory resolutions to the correct entropy
solution for this problem.

Example 3.6. We solve the Euler equations (3.3) in one dimension with a Riemann
initial condition for the Lax Problem:

(ρ, v, p) = (0.445, 0.698, 3.528) for x ≤ 0; (ρ, v, p) = (0.5, 0, 0.571) for x > 0.

And for the Sod Problem,

(ρ, v, p) = (1.0, 0, 1.0) for x ≤ 0; (ρ, v, p) = (0.125, 0, 0.1) for x > 0.

The computed density ρ is plotted at t = 0.16 for the Lax Problem and at t = 0.1644
for the Sod Problem against the exact solution. In Figure 3, we plot the densities
by the WENO5-LW4 scheme, together with those by the WENO5-RK4 scheme, with
N = 200 uniformly spaced grid points. We can see that the results by both schemes
are nonoscillatory and comparable.

Example 3.7. The previous examples contain only shocks and simple smooth re-
gion solutions (almost piecewise linear) for which shock resolution is the main concern
and usually a good second order nonoscillatory scheme would give satisfactory results.
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Fig. 4. The shock density wave interaction problem. t = 1.8. by WENO5-LW4. Left: N = 200
grid points; right: N = 400 grid points.

There is little advantage in using higher order schemes for such cases. We have been
using them in the numerical experiments mainly to demonstrate the nonoscillatory
properties of the high order schemes. A higher order scheme would show its advan-
tage when the solution contains both shocks and complex smooth region structures.
A typical example for this is the problem of shock interaction with entropy waves [17].
We solve the Euler equations (3.3) in one dimension with a moving Mach=3 shock
interacting with sine waves in density, i.e., initially

(ρ, v, p) = (3.857143, 2.629369, 10.333333) for x < −4;

(ρ, v, p) = (1 + ε sin(5x), 0, 1) for x ≥ −4.
Here we take ε = 0.2. The computed density ρ is plotted at t = 1.8 against the
reference solution, which is a converged solution computed by the fifth order finite
difference WENO scheme [6] with 2000 grid points.

In Figure 4 we show the results of the WENO5-LW4 scheme with N = 200 (left)
and N = 400 (right) grid points.

Example 3.8. We solve the same nonlinear Burgers equation (3.2) as in Example
3.2 with the same initial condition u(x, y, 0) = 0.5 + sin(π(x+ y)/2), except that we
now plot the results at t = 1.5/π when a shock has already appeared in the solution.
In Figure 5, the solutions of WENO5-LW4 with 80×80 grid points are shown. On the
left we are showing a one-dimensional cut at x = y, and on the right we are showing
the surface of the computed solution. We can see that the scheme gives nonoscillatory
shock transitions for this problem.

Example 3.9. Double Mach reflection. This problem is originally from [20]. The
computational domain for this problem is [0, 4]× [0, 1]. The reflecting wall lies at the
bottom, starting from x = 1

6 . Initially a right-moving Mach 10 shock is positioned at
x = 1

6 , y = 0 and makes a 60o angle with the x-axis. For the bottom boundary, the
exact postshock condition is imposed for the part from x = 0 to x = 1

6 and a reflective
boundary condition is used for the rest. At the top boundary, the flow values are set
to describe the exact motion of a Mach 10 shock. We compute the solution up to
t = 0.2. In Figure 6 we show 30 equally spaced density contours from 1.5 to 22.7
computed by the WENO5-LW4 scheme. A “zoomed-in” graph is provided in Figure
7. Uniform meshes with grid points 960× 239 and 1920× 479 are used.
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Fig. 5. The two-dimensional Burgers equation. u(x, 0) = 0.5 + sin(π(x + y)/2). t = 1.5/π.
80 × 80 grid points, by WENO5-LW4. Left: a cut of the solution at x = y, where the solid line is
the exact solution and the squares are the computed solution; right: the surface of the solution.
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Fig. 6. Double Mach reflection problem by WENO5-LW4 with 960× 239 (top) and 1920× 479
(bottom) grid points. 30 equally spaced contours from 1.5 to 22.7 for the density ρ.

4. Concluding remarks. We have developed and implemented a Lax–Wendroff-
type time discretization procedure for high order finite difference WENO schemes.
After exploring a balance between reduction of cost and maintaining the nonoscilla-
tory property, we have found that it suffices to use the regular WENO procedure,
with the local characteristic decomposition for systems, only on the treatment of the
first order time derivative terms. The higher order time derivative terms, when con-
verted to spatial derivatives using the PDE, can be approximated by the inexpensive
central difference formulas of suitable orders of accuracy. Extensive numerical experi-
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Fig. 7. Zoomed-in figures. Double Mach reflection problem by WENO5-LW4 with 960 × 239
(left) and 1920× 479 (right) grid points. 30 equally spaced contours from 1.5 to 22.7 for the density
ρ.

ments are performed to verify the accuracy and nonoscillatory shock resolution of this
approach. A comparison with WENO schemes using Runge–Kutta time discretiza-
tions indicates that the schemes based on this Lax–Wendroff-type time discretization
saves CPU time for certain problems, including the two-dimensional Euler systems
of compressible gas dynamics. Of course, this procedure becomes progressively more
complicated with more complicated PDEs and/or higher order time accuracy; hence
we do not expect it to always be cost effective relative to the standard Runge–Kutta
time discretizations.
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[10] M. Lukácová-Medvid’ová and G. Warnecke, Lax-Wendroff type second order evolution
Galerkin methods for multidimensional hyperbolic systems, East-West J. Numer. Math., 8
(2000), pp. 127–152.

[11] J. Qiu and C.-W. Shu, On the construction, comparison, and local characteristic decomposi-
tion for high order central WENO schemes, J. Comput. Phys., 183 (2002), pp. 187–209.

[12] S. J. Ruuth and R. J. Spiteri, Two barriers on strong-stability-preserving time discretization
methods, J. Sci. Comput., 17 (2002), pp. 211–220.

[13] T. Schwartzkopff, C. D. Munz, and E. F. Toro, ADER: A high-order approach for linear
hyperbolic systems in 2D, J. Sci. Comput., 17 (2002), pp. 231–240.

[14] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9
(1988), pp. 1073–1084.



2198 JIANXIAN QIU AND CHI-WANG SHU

[15] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyper-
bolic Equations, B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor, A. Quarteroni, ed.,
Lecture Notes in Math. 1697, Springer-Verlag, Berlin, 1998, pp. 325–432.

[16] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[17] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock cap-
turing schemes II, J. Comput. Phys., 83 (1989), pp. 32–78.

[18] V. A. Titarev and E. F. Toro, ADER: Arbitrary high order Godunov approach, J. Sci.
Comput., 17 (2002), pp. 609–618.

[19] E. F. Toro, Primitive, conservative and adaptive schemes for hyperbolic conservation laws,
in Numerical Methods for Wave Propagation, E. F. Toro and J. F. Clarke, eds., Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 323–385.

[20] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with
strong shocks, J. Comput. Phys., 54 (1984), pp. 115–173.

[21] X. Zhong, Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilib-
rium reactive flows, J. Comput. Phys., 128 (1996), pp. 19–31.


