Error reading XSLT file: \xslt\languageSelector.xslt

当前位置:计算和应用数学中心 >> 学术交流 >> 学术活动 >> 学术报告:Data-driven tight frame construction and image denoising

学术活动


学术报告:Data-driven tight frame construction and image denoising

报告人: 蔡剑锋 助理教授

 University of Iowa

 

报告题目:Data-driven tight frame construction and image denoising

 

报告时间:2013年06月13日下午16:30开始

 

报告地点:行政楼703

 

报告摘要: Sparsity based
regularization methods for image restoration assume that the underlying image
has a good sparse approximation under a certain system. Such a system can be a
basis, a frame, or a general over-complete dictionary. One widely used class of
such systems in image restoration are wavelet tight frames. There have been
enduring efforts on seeking wavelet tight frames under which a certain class of
functions or images can have a good sparse approximation. However, the
structure of images varies greatly in practice and a system working well for
one type of images may not work for another. I will present a method that
derives a discrete tight frame system from the input image itself to provide a
better sparse approximation to the input image. Such an adaptive tight frame
construction scheme is applied to image denoising by constructing a tight frame
tailored to the given noisy data. The experiments showed that the proposed
approach performs better in image denoising than those wavelet tight frames
designed for a class of images. Moreover, by ensuring the system derived from
our approach is always a tight frame, our approach also runs much faster than
some other adaptive over-complete dictionary based approaches with comparable
PSNR performance.

 

报告人简介:蔡剑锋,2007年在香港中文大学获数学博士学位,获得香港最佳博士论文奖;2007-2009年在新加坡国立大学工作;2009-2011年在美国加州大学洛杉矶分校(UCLA)担任CAM Assistant Adjunct Professor;2011年至今,在美国爱荷华大学(University of Iowa)数学系任助理教授。蔡剑锋博士研究兴趣为计算与应用调和分析及其在成像科学中的应用,多次受邀在国际学术会议上做报告,目前担任多种重要数学期刊审稿人。蔡剑锋博士2012年以第一作者在数学顶级期刊J. Amer. Math. Soc发表论文,目前已发表高水平SCI论文30多篇,其合作者包括Stanley Osher, Shen zuowei, Raymond
Chan, Emmanuel Candes等,论文总被引用达一千多次。